

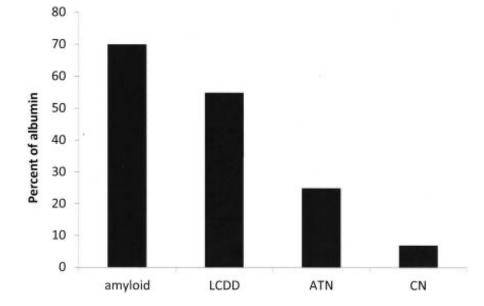
Challenging Cases in Hematology / Oncology "How I Treat Newly Diagnosed Multiple Myeloma with Acute Kidney Injury"

Aaron S Rosenberg MD, MS Associate Professor of Medicine Director, Plasma Cell Diseases Clinic Division of Hematologic Malignancies, Cellular Therapy, BMT UCD Comprehensive Cancer Center

Multiple Myeloma in 15 minutes or less.....

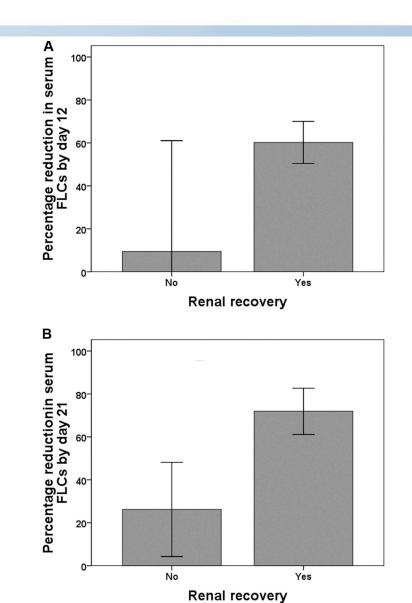
- Case Presentation
- Pathophysiology of AKI in MM
- Treatment of AKI in NDMM
 - Light chain removal
 - Disease directed therapy
- Case follow up
- Q&A

55 year old man....


- 55 year old, Hispanic man presents with worsening back pain during physical therapy
- Routine plain films identify lytic bone lesions throughout the lumbar spine, oncology referral made
 - Hemoglobin 13.4; creatinine 1.0
- 2 months later patient establishes with oncologist
 - Labs and bone marrow biopsy ordered
- Bone marrow biopsy performed 10 days later
 - Marrow hypercellular with 70% plasma cells
 - Hgb 10.7; creatinine 4.7
 - sFLC: 6,824.6; lambda 6.8; K:L 1,008
 - M-spike: 0.7, IFE: IgGK

Acute Kidney Injury in NDMM

- IMWG definition: creatinine > 2 or eGFR </= 40related to MM
- 15-20% of patients will present with AKI depending on definition
- Classic myeloma kidney is due to light chain casts that precipitate with uromodulin
- 15% of renal insufficiency in NDMM is unrelated or driven by protein deposition (Amyloid, acute tubular necrosis, light chain deposition)
- Diagnosis is tricky: can rely on 24 hour urine protein electrophoresis
 - Excretion of light chains only suggests cast nephropathy
 - Albuminuria suggests another cause

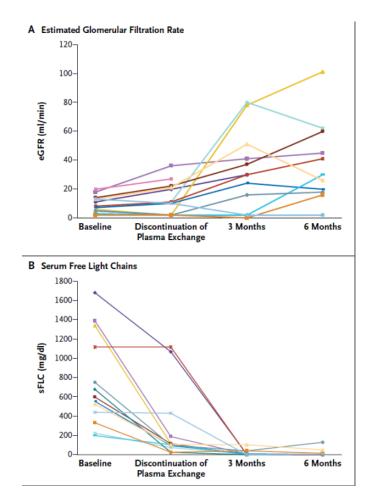


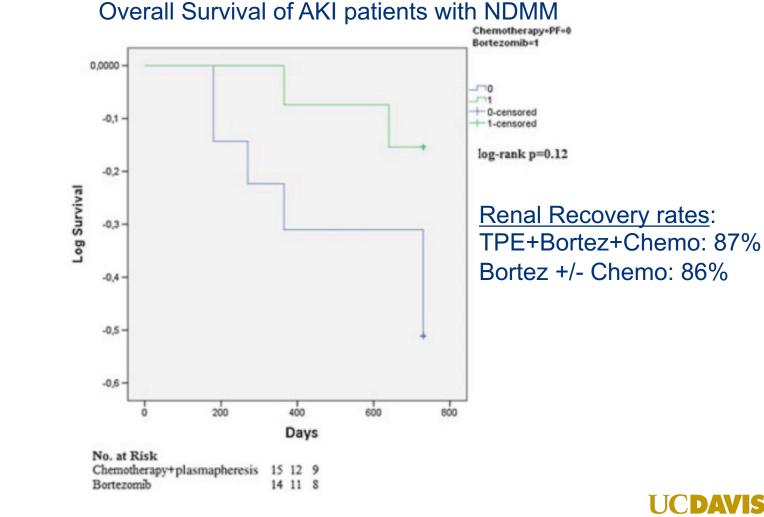
Dimopoulos et al JCO 2015, Finkel et al CJASN 2016, Nasr et al AJKD 2012

Reversing Cast Nephropathy in NDMM

- This is an urgency/emergency
- Clear light chains from tubules
 - Hydration
 - Bicarbonate is unproven
 - AVOID in hypercalcemia
- Decrease light chain production
 - Again, time is of the essence

Getting rid of light chains


Plasma Exchange


- Theoretical benefit for cast nephropathy
- However, light chains are total-body volume distributed even when all plasma exchanged, there is rapid rebound of light chains
- Expensive, and with risk (exposure to donor plasma, line placement etc)
- Only 1 RCT available (did NOT confirm cast nephropathy)

Receiving dialysis or GFR < 0.29 mL \cdot s ⁻² \cdot m ⁻² (<30 mL/min per 1.	.73 m²) at 6 mo‡	
Received plasma exchange	2.083 (0.758-5.727)	0.890 (0.221-3.583)
Received VAD chemotherapy	0.850 (0.318-2.272)	0.474 (0.093-2.410)
Receiving dialysis at baseline	0.579 (0.197-1.700)	0.300 (0.058-1.544)
Durie–Salmon stage IIIB	0.864 (0.307-2.432)	0.968 (0.228-4.120)
Age at entry	0.987 (0.946-1.029)	0.940 (0.876-1.008)
Baseline urine protein level	0.967 (0.908-1.030)	0.940 (0.852-1.036)
Baseline serum albumin level	0.895 (0.830-0.965)	0.873 (0.786-0.968)

Plasma Exchange + Bortezomib based therapy

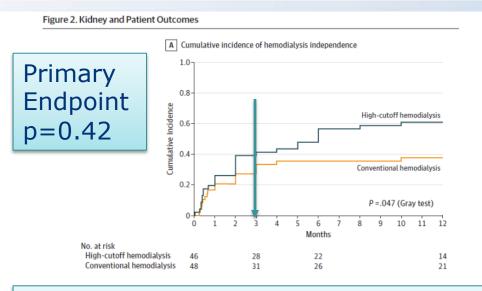
COMPREHENSIVI

CANCER CENTER

Burnette et al NEJM 2011, Premuzic Ther Apher Dial 2018

Should we still be considering Plasma Exchange?

- Generally no some small retrospective series imply benefit, others do not
- HOWEVER the entrance criteria to both prospective AND retrospective studies have done a poor job at isolating the patients most likely to benefit from plasma exchange
- In patients with minimal albuminuria, high clonal light chains on 24 hour urine and progressive AKI, one should consider it


A Quick Word on High-Cutoff Hemodialysis

- High-Cutoff hemodialysis (HCO-HD) uses a permeable filter in HD patients that can rapidly clear light chains
- Theoretical benefits over plasma exchange:
 - Can have longer treatments than plasma exchange (clear more light chains)
 - No exposure to exogenous plasma

Bridoux et al, JAMA 2017, Hutchison et al, Lancet Haem 2019

Does HCO-HD Work?

MYRE study:

- All patients with NDMM
- biopsy proven cast nephropathy
- those requiring HD randomized to HCO vs standard HD
- All received bortez-dex; hematologic non-responders received cyclophosphamide 750 mg/m2 q21days

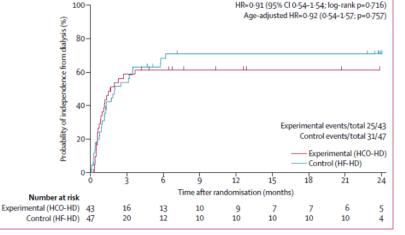


Figure 3: Reverse Kaplan-Meier graph of time to independence from dialysis by treatment group HCO-HD=high cutoff haemodialysis. HF-HD=high-flux haemodialysis. HR=hazard ratio.

EuLITE Study:

- All patients with NDMM
- Biopsy proven cast nephropathy
- Dialysis dependent
- Randomized to HCO vs standard HD

COMPREHENSIV

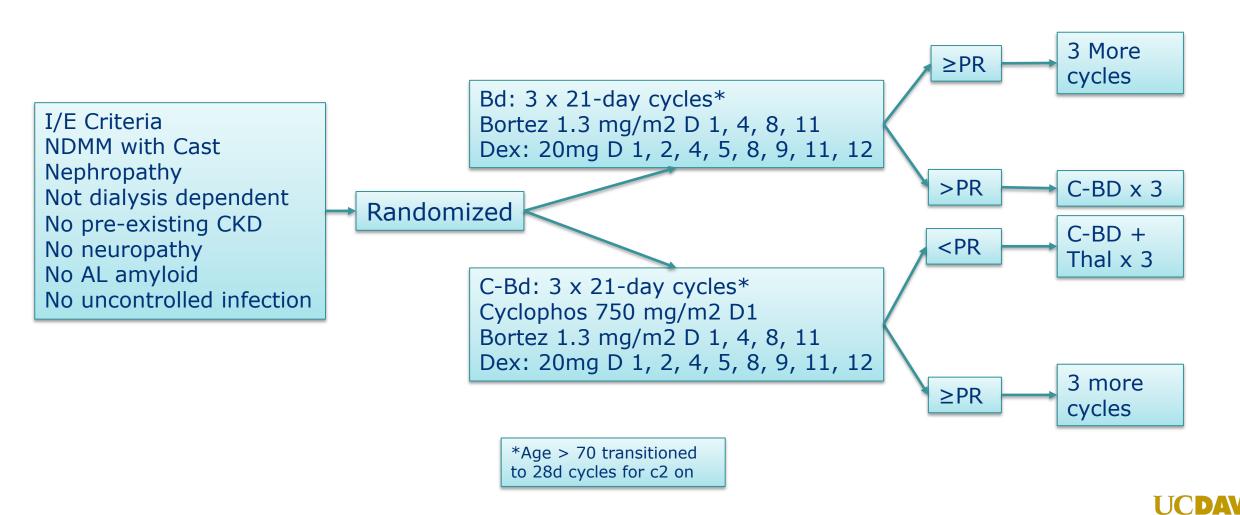
CANCER CENTER

 All patients received bortezomib, doxorubicin, dex (PAD)

Summary Thus Far

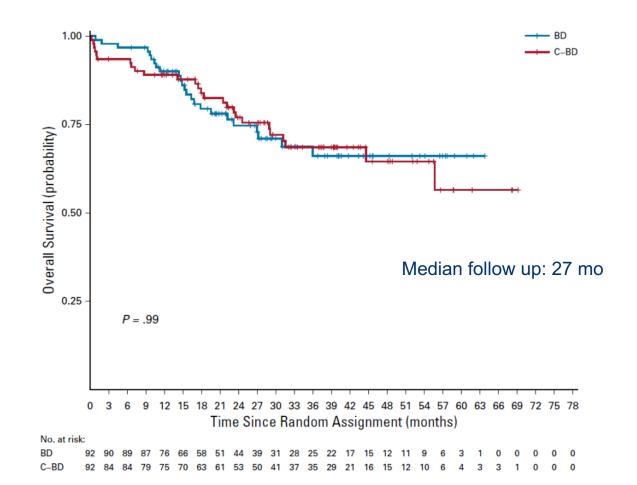
- Acute kidney damage in NDMM is multifaceted
- Supportive measures aimed to decreasing toxic effects of light chains, hypercalcemia, dehydration
- Myeloma Kidney (Cast Nephropathy) requires clearance of light chains to recover
 - Plasma exchange MAY be useful
 - High Cutoff HD Not readily available (we don't have it at UCD)
 - Conflicting results from two well designed RCTs
 - Differences in MM therapy or response rates may have made a difference
 - Differences in disease response
 - MYRE 3 month ≥VGPR rates: 61% HCO vs 44% HD
 - EuLITE 6 month ≥VGPR rates: 37% HCO vs 62% HD
- Rapid Response to treatment is necessary for renal recovery

How do we achieve a rapid renal response


- Bortezomib based regimens
 - Not nephrotoxic
 - Can lead to rapid reduction in light chains
- Dexamethasone
- Is a third agent needed?
 - Note differences in MYRE vs EuLITE study in dialysis independence

Randomized Trial Comparing Double Versus Triple Bortezomib-Based Regimen in Patients With Multiple Myeloma and Acute Kidney Injury Due to Cast Nephropathy

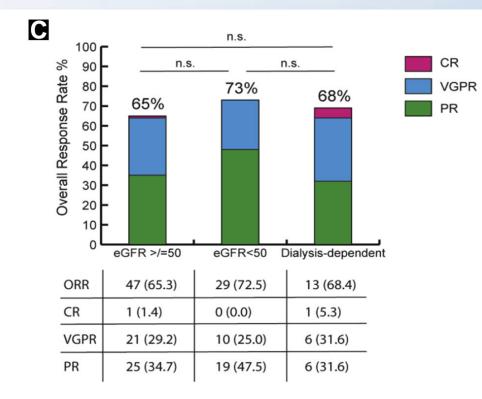
Frank Bridoux, MD, PhD^{1,2,3}; Bertrand Arnulf, MD, PhD⁴; Lionel Karlin, MD⁵; Nicolas Blin, MD⁶; Nolwenn Rabot, MD⁷; Margaret Macro, MD⁸; Vincent Audard, MD, PhD⁹; Karim Belhadj, MD¹⁰; Brigitte Pegourie, MD¹¹; Pierre Gobert, MD¹²; Emilie Cornec Le Gall, MD, PhD¹³; Bertrand Joly, MD¹⁴; Alexandre Karras, MD, PhD¹⁵; Arnaud Jaccard, MD, PhD^{2,3,16}; Karine Augeul-Meunier, MD¹⁷; Salomon Manier, MD, PhD¹⁸; Bruno Royer, MD¹⁹; Denis Caillot, MD, PhD²⁰; Mourad Tiab, MD²¹; Sébastien Delbes, MD²²; Felipe Suarez, MD, PhD²³; Cécile Vigneau, MD, PhD²⁴; Sophie Caillard, MD, PhD²⁵; Nina Arakelyan-Laboure, MD²⁶; Damien Roos-Weil, MD, PhD²⁷; Sylvie Chevret, MD, PhD²⁸; and Jean Paul Fermand, MD⁴; for the MYRE study group


MYRE: Study Design (Non HD component)

COMPREHENSIVE

Results

- Renal response at 3 months
 - BD: 44.6%
 - C-BD: 51.1%
 - Risk ratio 0.87 (0.64 1.18)
- Overall Response at 3 months
 - BD: 78.3%
 - C-BD: 77.2%
- ≥VGPR at 6 months
 - BD: 46.8%
 - C-BD51.1%
 - RR 0.88 (0.66 1.17)



Modified HyperCAD

- Cy 350 mg/m2 BID, Dex 40 mg pulsed, +/- doxorubicin, +/- PI
- NDMM: 12 patients
 - 25% eGFR <50</p>
- RRMM / intensification: 119
 - 30% eGFR <50</p>

(GFR <5	0	Dial	ysis-depe	endent
1, 2, 3, 4	8, 9,10,11	15,16,17,18	Day 1, 2, 3, 4	8, 9,10,11	15,16,17,18
	D	D	D	D	D
	v v			v v	
	D	D	D	D	D
ccc ccc v v	v v		v v	v v	
	D	D		D	D
CCC CCC AAA K K	кк	кк	ссс АА КК	кк	кк
	D	D	D	D	D
ссс ссс кк	кк	кк	сссккк	кк	кк
	D	D		D	D
CCC CCC AAA			CC C A A		
	D	D	D	D	D
CC C CC C			ccc		

Results in patients with AKI

Renal Responses (defined as improvement in serum creatinine): 80% Worsening renal function: 20% Toxicity

Neutropenic Fever	24%
Infection	37%
Cardiac Events (consistent across dosing schemes)	15%

Narayan et al, CLML 2020

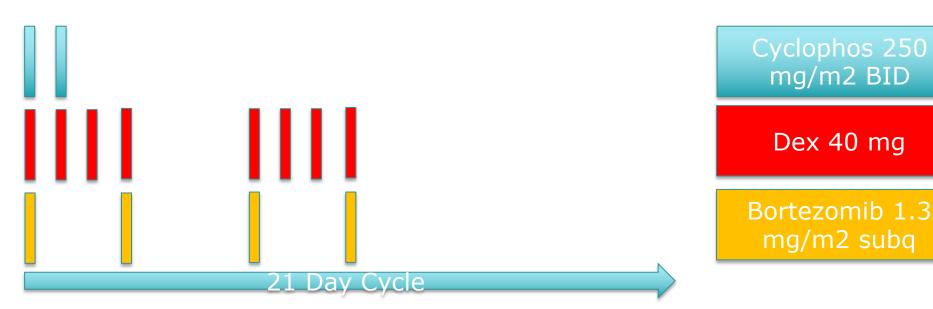
mCBAD

- Cyclophosphamide 350 mg/m2 BID d1-4
- Bortezomib 1.3 mg/m2 d 1, 4, 8, 11
- Doxorubicin 9 mg/m2 CIV d1-4
- Dex 40 mg pulse

- NDMM n=13, RRMM n=116
- AKI
 - NDMM: 69%
 - RRMM: 31%

mCBAD

- Overall response in NDMM 100%
 - ≥VGPR 46%
 - 85% had 1-2 cycles only
- Renal response NOT reported


Toxicity	
Neutropenic Fever	26%
Infection	37%
Neuropathy	24%
CHF/arrhythmia	3%

The UCD approach: Intensified CyBorD

 Based on potential cardiotoxicity of Hyper CD/CAD/CVD we have opted for fractionated cy at lower dose

- Opting for higher dose dex and bortezomib for 1 cycle to rapidly decrease light chain burden
- Transition to VRd

55 year old NDMM with AKI

- PLEX x 3
- Received one cycle of intensified CyBorD
 - KLC declined to 1147 after first week
 - KLC 165 after cycle 1
 - Creatinine improved to 1.5 after cycle 1
- Planned transition to VRd -> Stem cell transplant
- Pre-transplant creatinine 1.0

Practice Points

- AKI in newly diagnosed MM is frequently multifactorial
- Understanding the pathophysiology may help with assigning treatment
- 24 hour urine and serum free light chain findings can help identify cast nephropathy
 - Monoclonal light chains in 24 hour urine with minimal albuminuria + high involved serum free light chains argue for the diagnosis of CN
 - Significant albuminuria argues against
- Plasma exchange may still have a role in this narrow patient population, though available studies have not directly addressed the question in a way directly applicable to practice
- Support with hydration avoiding nephrotoxins (such as IV contrast) is key
- Rapid cessation of light chain production is necessary for renal recovery

