

Updates on HER2positive breast cancers

- Bora Lim, MD
- Associate Professor
- Director, Translational Research, Breast Cancer Program
- Associate Director, Clinical Science, Lester and Sue Smith Breast Center
- Baylor College of Medicine

Escalation, De-Escalation Choice of Genomics, Serial Monitoring, Extreme Responders

HER2 adjuvant therapy: The Age of three kingdoms

Baylor College of Medicine

Agents:

T-DM1 Pertuzumab + Herceptin Neratinib

Down-tailoring biomarkers being studied.

Duration continues to be an issue: Herceptin – 9 weeks vs 6 mo vs 12 mo

ExteNET: Results

CI indicates confidence interval; HR, hazard ratio or hormone receptor; iDFS, invasive disease-free survival.

Chan A, Delaloge S, Holmes FA, et al. Neratinib after adjuvant chemotherapy and trastuzumab in HER2-positive early breast cancer: primary analysis at 2 years of a phase III, randomized, placebo-controlled trial (ExteNET). J Clin Oncol. 2015;33(suppl; abstr 508). Used with permission from author.

APHINITY: Intent-to-Treat Primary Endpoint Analysis Invasive Disease-free Survival

von Minckwitz, G et al. N Engl J Med. 2017;377:122-131

Baylor

College of

Medicine

KATHERINE/NSABP B50 Study Schema

KATHERINE: Result

Table 1. Demographic and Clinical Characteristics of the Patients at Baseline.*				
Characteristic	Trastuzumab Group (N=743)	T-DM1 Group (N=743)		
Median age (range) — yr	49 (23–80)	49 (24–79)		
Race or ethnic group — no. of patients (%)†				
White	531 (71.5)	551 (74.2)		
Asian	64 (8.6)	65 (8.7)		
Black	19 (2.6)	21 (2.8)		
American Indian or Alaska Native‡	50 (6.7)	36 (4.8)		
Multiple or unknown	79 (10.6)	70 (9.4)		
Clinical stage at presentation — no. of patients (%)				
Inoperable breast cancer∬	190 (25.6)	185 (24.9)		
Operable breast cancer¶	553 (74.4)	558 (75.1)		
Hormone-receptor status — no. of patients (%)				
Estrogen-receptor-negative and progesterone-receptor- negative or status unknown	203 (27.3)	209 (28.1)		
Estrogen-receptor-positive, progesterone-receptor- positive, or both	540 (72.7)	534 (71.9)		
Previous use of anthracycline — no. of patients (%)	564 (75.9)	579 (77.9)		
Neoadjuvant HER2-targeted therapy — no. of patients (%)				
Trastuzumab alone	596 (80.2)	600 (80.8)		
Trastuzumab plus pertuzumab	139 (18.7)	133 (17.9)		
Trastuzumab plus other HER2-targeted therapy	8 (1.1)	10 (1.3)		

* Additional baseline characteristics are listed in Table S1 in the Supplementary Appendix. Percentages may not total 100 because of rounding. HER2 denotes human epidermal growth factor receptor 2, and T-DM1 trastuzumab emtansine. † Race or ethnic group was reported by the investigators.

t The American Indian category includes North, Central, and South American Indians.

∫ Inoperable breast cancer was defined as tumor stage T4, nodal stage Nx, and metastasis stage M0 or tumor stage Tx, nodal stage N2 or N3, and metastasis stage M0.

¶ Operable breast cancer was defined as tumor stage T1 to T3, nodal stage N0 or N1, and metastasis stage M0.

Other HER2-targeted agents were neratinib, dacomitinib, afatinib, and lapatinib.

Baylor College of Medicine

APT (NCT00542451)

HER2 adjuvant therapy: The New Age

Agents:

T-DxD Other antibiody-drug-conjugates

Primary endpoint to look for toxicity differences and a 3yr DFS of at least 95%

Presented By Shanu Modi at 2015 ASCO Annual Meeting

Finished Accrual. Result to be seen.

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

TH still the winner

Check for updates

https://doi.org/10.1038/s41467-021-26019-y

OPEN

Neoadjuvant T-DM1/pertuzumab and paclitaxel/ trastuzumab/pertuzumab for HER2⁺ breast cancer in the adaptively randomized I-SPY2 trial

Fig. 1 Consort diagram for the T-DM1/Pertuzumab, THP, and control populations. Consort diagram shows the number of patients screening,

CompassHER2 trials

3030 ASCO #55020

San Antonio Breast Cancer Symposium – December 6-10,2022

endent validation of the HER2DX genomic test in HER2-positive breast cancer treated with neoadjuvant paclitaxel, trastu and pertuzumab (THP): a correlative analysis from the DAPHNe phase II clinical trial

Adrienne G. Waks,¹ Esther R. Ogayo,¹ Laia Paré,² Mercedes Marín-Aguilera,² Fara Brasó-Maristany,³ Patricia Galván,³ Olga Martínez-Sáez,³ Ana Vivancos,⁴ Patricia Villagrasa,² Paolo Tarantino,¹ Neelam Desai,⁵ Otto Metzger,¹ Nadine M. Tung.⁵ Ian E. Krop.⁶ Joel S. Parker,⁷ Charles M. Perou,⁷ Aleix Prat.³ Eric P. Winer.⁶ Sara M. Tolanev,¹ Elizabeth A. Mittendorf^{1,8}

r Cancer Institute, Boston, MA; 2. Reveal Genomics, Barcelona, Spain; 3. Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunver Biomedical Research Institute (IDIBAPS), Barcelona, Spain; 4. Cancer Genomics Group, Vall d'Heb Dncology, Barcelona, Spain; 5. Beth Israel Deaconess Medical Center, Boston, MA; 6. Yale Cancer Center, New Haven, CT; 7. Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; 8. Brigham and Women's Hospital, Boston, M

assay is a supervised learning algorithm that incorporates clinical information (tumor size, nodal four gene expression signatures (immune infiltration, tumor cell proliferation, luminal n, and expression of the HER2 amplicon) to provide two independent scores to predict the pCR (pCR score) and long-term prognosis (risk score) in patients with early-stage HER2+ breast A et al EBioMedicine 2022 PMID: 34990895; Prat A et al Lancet Oncol 2020 PMID: 33152285) [03716180] was a single-arm investigator-initiated prospective phase II trial in which patients with ïve stage II-III HER2+ breast cancer received a de-escalated neoadjuvant regimen consisting of axel (T) for 12 cycles along with trastuzumab and pertuzumab (HP) every 3 weeks for 4 cycles. al NPJ Breast Cancer 2022 PMID: 35538105)

d the HER2DX assay centrally on pre-treatment tumor biopsy tissue from patients enrolled in

te the predictive value of the HER2DX pCR score in the setting of a modern, de-escalated systemic men (THP)

the HER2DX pCR score assay in patient subpopulations according to hormone receptor status. he relationship between the predictive HER2DX pCR score and the prognostic HER2DX risk score.

enrolled on the DAPHNe trial underwent pre-treatment research biopsy. RNA was extracted from tissue. HER2DX assay was evaluated centrally.

and multivariable logistic regression analyses were used to investigate the association of each nterest with pCR. Factors found to be significant in the univariable model were incorporated into iable model.

RESULTS-1: Description of the DAPHNe trial HER2DX cohort

gram: Patients enrolled in the overall DAPHNe who were evaluable for HER2DX testing (N=8

	HEP	2DX sub- pulation	Original	trial population
	N	%	N	%
N.	80	-	98	-
Age (mean and range)	50.	3 (26-78)		49.5 (24-78)
Clinical tumor stage				
cT1	15	18.7%	18	18.4%
cT2-3	65	81.3%	80	81.6%
Clinical nodal stage				
cN0	52	65.0%	65	66.3%
cN1-3	28	35.0%	33	36.7%
Pathological response (breast and axilla)				
pCR	48	60.0%	55	56.7%
Residual disease	32	40.0%	42	43.3%
formone receptor status				
Positive	56	70.0%	65	66.3%
Negative	24	30.0%	33	33.7%

Table: Comparison of the HER2DX assay population to the overall trial

on is the intellectual property of the author/presenter. Contact them at adrienne waks@dfci.harvard.edu for permission to reprint and/or distribute.

- HER2DX pCR score was predictive of pCR in HER2+ breast cancer patients treated with neoadjuvant THP.
- HER2DX pCR score predicted pCR with high accuracy in the overall population, HR+ sub-population, and HR- subpopulation.
- In a multivariable model incorporating clinico-pathologic variables (eg HR status, HER2 IHC status) and established gene expression-based classifiers (eg HER2-enriched subtype by PAM50), HER2DX pCR score was the only significant predictor of pCR status.

Dana-Farber

adrienne waks@dfci.harvard.edu Poster ID P1-04-05

groups; (C-E) HER2DX risk score groups within each pCR score category.

RESULTS-3: Performance of the HER2DX pCR score for pCR pr

among all patients (A), HR-negative patients (B), and HR-positive patients (C).

KEY POINTS:

Funded by:

Conquer Cancer,

to A Waks MD

Breast Cancer R

Winer MD Reveal Genomic

- The pCR rates in the HER2DX pCR score high, medium, and low groups were 92.6%, 63.6% respectively (OR 30.6 for comparison of high versus low groups, p<0.001).
- In univariable analysis there were multiple significant predictors of pCR status, including h score, HER2DX ERBB2 score, HER2-enriched status by PAM50, HER2 IHC status, and HR sta
- In multivariable analysis, HER2DX pCR score was the only significant predictor of pCR stat

	a second frances and			Univariable			Multivariabl	lultivariable	
	N	pCR rate	OR	95% CI	p-value	OR	95% CI		
ER2DX pCR score continuous variable)	80	•	1.05	1.03-1.08	<0.001	1.03	1.00-1.07		
ER2DX pCR score groups									
Low	31	29.0%	1				•		
Med	22	63.6%	4.3	1.34	0.014				
High	27	92.6%	30.6	6.00-156.90	< 0.001				
ER2DX ERBB2 score continuous variable)	80	•	1.05	1.02-1.08	<0.001	1.03	0.99-1.06		
ER2DX ERBB2 mRNA score									
Low	9	44.4%	1						
Med	12	16.7%	0.25	0.03-1.86	0.176		-		
High	59	71.2%	3.09	0.74-12-91	0.122				
linical tumor stage									
cT1	15	80.0%	1			-			
cT2-3	65	55.4%	0.31	0.08-1.20	0.091				
linical nodal stage									
cN-negative	52	59.6%	1			-	-		
cN-positive	28	60.7%	1.05	0.41-2.68	0.924				
AM50 HER2-enriched	1000								
Non-HER2-enriched	34	35.3%	1		-	1	-		
HER2-enriched	46	78.3%	6.6	2.45-17.81	< 0.001	1.96	0.53-7.17		
ER2 IHC status									
2+	10	30.0%	1	and and		1			
3+	68	66.2%	4.57	1.08-19.32	0.0391	1.14	0.17-7.85		
ormone receptor status	100								
Positive	56	48.2%	1			1			
Negative	24	87.5%	7.52	2.01-28.10	0.003	1.78	0.29-11.01		

	FUNDING AND ACKNOWLEDGEMENTS	DCDE O
BCRF Career Development Award	 Terri Brodeur Breast Cancer Foundation grant to A. Waks MD 	BCRF
earch Foundation grant to E.	 Susan G. Komen for the Cure grant to E. Mittendorf MD 	CANCE
We acknowledge and	I thank all the patients who participated in th	e DAPHNe trial

Current ASCO guideline

CLINICAL QUESTION 5

What neoadjuvant treatment is recommended for patients with HER2-positive disease?

Recommendations

Recommendation 5.1. Patients with node-positive or high-risk node-negative, HER2-positive disease should be offered neoadjuvant therapy with an anthracycline and taxane or non–anthracycline-based regimen in combination with trastuzumab. Pertuzumab may be used with trastuzumab in the neoadjuvant setting (Type: evidence-based, benefits outweigh harms; Evidence quality: high; Strength of recommendation: strong).

Recommendation 5.2. Patients with T1a NO and T1b NO, HER2-positive disease should not be routinely offered neoadjuvant chemotherapy or anti-HER2 agents outside of a clinical trial (Type: informal consensus; Evidence quality: intermediate; Strength of recommendation: moderate).

Strategies to Use Prognostic Outcomes in Real Time to Guide Therapy Early Stage HER2-Positive BC

NCCN. BC guidelines V5.2020.

1st Line Trastuzumab for MBC (2000)

	Trastuzumab+chemotherapy	Chemotherapy	P-value
ORR	50%	32%	<0.001
TTP	7.4 months	4.6 months	<0.001
OS	25.1 months	20.3 months	0.046

TTP, time to disease progression; ORR, objective response rate; OS, overall survival; MBC, metastatic breast cancer; adjt CTX, adjuvant chemotherap Most significant adverse events:

Trastuzumab+anthracycline: cardiac dysfunction (27%) compared to 13% in Anthracycline alone 2/3 patients assigned to chemotherapy alone crossed over upon disease progression

Slamon et al. NEJM 2001; 344(11):783-92.

1st line Pertuzumab + Trastuzumab (CLEOPATRA)

Important points:

- ~ 90% of patients did not receive trastuzumab in (neo) adjuvant setting
- ~ 50% of patients did not receive any prior (neo) adjuvant chemotherapy
- Patients with CNS metastases were excluded

Baselga et al. N Engl J Med 2012;366:109.

1st Line Trastuzumab for MBC

EMILIA: T-DM1 vs lapatinib + capecitabine

- **Better PFS** vs lapatinib plus capecitabine (median, 10 vs 6 months; HR 0.65, 95% CI 0.55-0.77);
- **Better OS** (median, 31 vs 25 months; HR 0.68, 95% CI 0.55-0.85), maintained with longer follow-up (>40 months) (crossover allowed).

Stage IV triple + breast cancer She received TDM-1 plus minus pertuzumab (2012)

The benefit of HER2 targeted therapies on OS of patients with metastatic HER2+ BC

Mendes D. et al. Br Ca Res 2015

TH3RESA: T-DM1 vs clinician's choice

Better PFS, (median, 6.2 vs 3.3 months; HR, 0.53, 95% CI 0.42-0.66).

-

- Better OS, (median, 22.7 vs 15.8 months; HR 0.68, 95% CI 0.54-0.85)

NALA study

NALA: Neratinib/Cape vs Lapatinib/Cape in HER2+ MBC With ≥ 2 Prior Lines of HER2-Targeted Therapy

International, open-label, randomized phase III trial

*BID in 2 evenly divided doses. [†]Loperamide administered at 4 mg with first neratinib dose followed by 2 mg Q4H for first 3 days, followed by 2 mg every 6-8 hrs through end of cycle 1; as needed thereafter. No ET permitted.

- Coprimary endpoints: OS, PFS (centrally confirmed)
 - Study positive if either endpoint statistically significant (OS, P < .04; PFS, P < .01)
- Secondary endpoints: PFS (locally determined), ORR, DoR, CBR, time to intervention for CNS mets, safety, PRO

Tucatinib (ONT-380) (Arry 380) Clinical Activity: Phase 1B combination trial with Trastuzumab and Capecitabine

Kaplan-Meier Plot of PFS in Tucatinib + Trastuzumab + Capecitabine Group

Murthy RK. et al. Lancet Oncology 2018

HER2 CLIMB

Key Eligibility

- HER2+ breast carcinoma
- Previous treatment with a taxane, trastuzumab, pertuzumab, and T-DM1
- ECOG PS 0-1

Capecitabine + trastuzumab + tucatinib

Capecitabine + trastuzumab + placebo

Prir •	<u>nary objectives</u> PFS
<u>Sec</u>	<u>condary</u>
<u>obj</u>	<u>ectives</u>
•	PFS (brain mets)
٠	OS
•	ORR
٠	DOR
•	CBR

St	udy Drug	Dose	Treatment Period
י Tu	ıcatinib	300 mg PO BID	Every 21 days
Ca	apecitabine	1000 mg/m2 PO BID on Days 1–14	Every 21 days
vorld Tr	astuzumab	C1 loading dose - 8 mg/kg IV C2+ 6 mg/kg IV	Every 21 days

Stratification

- History of brain metastases
- ECOG PS
- Region of the world

HER2 Climb study

Progression-Free Survival* in Patients with Brain Metastases

Alpha-controlled secondary endpoint in the HER2CLIMB trial

*PFS, defined as time from randomization to documented disease progression (assessed by blinded independent central review) or death from any cause. Analysis does not include patients with dural lesions only.

#ASCO20

Slides are the property of the outho

permission required for neuro

Murthy RK, et al. N Engl J Med 2020;382:597-609.

PRESENTED AT: 2020ASCO

PRESENTED BY: Nancy Lin, nlin@partners.org

DS8201a: ADC (Topoisomerase 1 inhibitor)

Key features: Novel payload, high potency,, high DAR, short systemic half-life payload, bystander effect

DESTINY Breast 01

trastuzumab deruxtecan (T-DXd) showed unprecedented response rate (61%) and median PFS (19 months) despite patients being heavily pretreated (median 6 lines) ->a randomized trial, DESTINY-Breast03 phase 3, comparing T-DXd to T-DM1 in patients progressing to trastuzumab and taxanes

- Primary endpoint: PFS (RECIST v 1.1 by BICR)
- Secondary endpoints: OS, ORR, DoR, CBR, PFS (investigator assessment)

DESTINY-Breast01 Case Report: 55% Regression of a Metastatic Brain Lesion

Baseline scan

- 48-year-old woman with HER2-positive (IHC 3+)/HR-negative metastatic BC
- 17 prior lines of treatment, including T-DM1, pertuzumab, trastuzumab, and lapatinib
- Prior brain lesion treatment included:
 - WBRT 5 years prior to enrollment
 - Stereotactic radiosurgery 3 years prior to enrollment
- Target lesions at baseline in brain, lymph nodes, and retroperitoneum
- Nontarget lesions in lung, pancreas, bone, and axillary lymph node

WBRT, whole-brain radiotherapy.

This presentation is the intellectual property of the author/presenter. Contact them at g.jerusalem@chuliege.be for permission to reprint

European Society for Medical Oncology (ESMO) Breast Cancer Virtual Meeting, 23-24 May 2020

DESTINY-Breast01 CNS Subgroup Conclusions

- T-DXd demonstrated efficacy in patients who had stable, treated brain metastases at baseline that was similar to its efficacy in the overall population
 - Median DOR, 16.9 months
 - Median PFS, 18.1 months
 - Progression in the brain was noted in only 8% of patients. Among 40 patients without brain lesions at baseline who had progressive disease, only 2 had new brain lesions and both were late events
- The safety profile in the CNS subgroup is consistent with the non-CNS subgroup and overall population
- Phase 3 studies in HER2-expressing BC are ongoing
 - DESTINY-Breast02: vs standard of care after T-DM1 (HER2 positive)
 - DESTINY-Breast03: vs T-DM1 (HER2 positive)
 - DESTINY-Breast04: vs chemotherapy (HER2 low^a)

a IHC 2+/ISH- or IHC 1+

17

Destiny Breast 03-PFS

Destiny Breast 03 - toxicities

10.5% developed interstitial lung disease Neutropenia Alopecia GI side effects (nausea, vomiting) No grade 4/5 AE reported

Thrombocytopenia, LFT abnormalities more common with T-DM1

Event	Trastuzumab Deruxtecan (N=257)		Trastuzumab Emtansine (N=261)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3
		number of pat	tients (percent)	
Most common drug-related adverse events				
Blood and lymphatic system disorders				
Neutropenia*	110 (42.8)	49 (19.1)	29 (11.1)	8 (3.1)
Anemia†	78 (30.4)	15 (5.8)	37 (14.2)	11 (4.2)
Leukopenia‡	77 (30.0)	17 (6.6)	20 (7.7)	1 (0.4)
Thrombocytopenia§	64 (24.9)	18 (7.0)	135 (51.7)	65 (24.9)
Gastrointestinal disorders				
Nausea	187 (72.8)	17 (6.6)	72 (27.6)	1 (0.4)
Vomiting	113 (44.0)	4 (1.6)	15 (5.7)	1 (0.4)
Diarrhea	61 (23.7)	1 (0.4)	10 (3.8)	1 (0.4)
Constipation	58 (22.6)	0	25 (9.6)	0
General disorders				
Fatigue¶	115 (44.7)	13 (5.1)	77 (29.5)	2 (0.8)
Investigations				
Aspartate aminotransferase increased	60 (23.3)	2 (0.8)	97 (37.2)	13 (5.0)
Alanine aminotransferase increased	50 (19.5)	4 (1.6)	71 (27.2)	12 (4.6)
Metabolism and nutrition disorders				
Decreased appetite	67 (26.1)	3 (1.2)	33 (12.6)	0
Skin and subcutaneous tissue disorders				
Alopecia	93 (36.2)	1 (0.4)	6 (2.3)	0
Adjudicated drug-related interstitial lung disease or pneumonitis**	27 (10.5)	2 (0.8)	5 (1.9)	0

ЭZ

Submit Article I

Trastuzumab deruxtecan versus treatment of physician's choice in patients with HER2-positive metastatic breast cancer (DESTINY-Breast02): a randomised, open-label, multicentre, phase 3 trial

Fabrice André, MD • Yeon Hee Park, MD • Sung-Bae Kim, MD • Toshimi Takano, MD • Seock-Ah Im, MD •

More ADCs are coming

www.nature.com/npjbcancer

ARTICLE OPEN

Check for updates

Phase I study of A166, an antibody-drug conjugate in advanced HER2-expressing solid tumours

Jian Zhang [0^{1,2,8}, Rujiao Liu^{1,2,8}, Shuiping Gao^{1,2}, Wenhua Li^{1,3}, Yang Chen^{1,2}, Yanchun Meng^{1,2}, Chang Liu¹, Wenyue Jin¹, Junyan Wu⁴, Ying Wang⁴, Yanrong Hao⁵, Shuli Yi⁶, Yan Qing⁶, Junyou Ge⁶ and Xichun Hu [0^{1,7} ⊠

CNS mets and T-DxD (KAMILLA)

Among 126 patients, ORR 21% median PFS 5.5 months median OS 18.9 months

Current recommended mHER2 therapy – in 2022

Martínez-Sáez and Prat

- But, also dependent on the changes in NAT and AT
- Novel combination with other ADC
- ADC/Ab + TKI still in question
- Combination with immunotherapy has not shown clear benefit

Strategies for Sequential Therapy Advanced Stage/Metastatic HER2-Positive BC (cont)

 Later-line options
 Capecitabine + neratinib

 Clinical trials should be explored
 Capecitabine + lapatinib

 Trastuzumab (+/-P) + vinorelbine
 Trastuzumab + capecitabine

Trastuzumab with other cytotoxics (gemcitabine, eribulin, liposomal doxorubicin, nab-paclitaxel, ixabepilone)

Emerging Questions

- Immunotherapy for defined groups (eg. PD-L1+, TILs), immune-enhanced engineered antibody (FcR-gamma), vaccines
- Role of CDK inhibitors for HR+ disease during maintenance therapy
- PI3K inhibition for PIK3CA mutant cases
- PARPi with trastuzumab for gBRCA mutations
- Re-use of immunoconjugates and downregulation of HER2

NCCN. BC guidelines V5.2020.

Newer agents in the horizon

Compound	MOA	Pt Population
Zw25	Biparatropic (ECD4 and ECD2) HER2 targeted antibody	HER2+ Breast and Gastric
PRS-343	Bispecific fusion protein targeting CD137 and HER2	HER2+ solid tumors
Pf-06804103	Site specific anti-HER2 ADC (NG-HER2 ADC)	HER2+ solid tumors
Neratinib w/ everolimus, palbociclib or trametinib	Pan-ERBB inhibitor + mTOR/CDK 4/6/MEK inhibitor	EGFR mut/amp, HER2 mut/amp, or HER3/4 mut solid tumors
Everolimus, Letrozole, and Trastuzumab	mTOR inhibitor + AI + Trastuzumab	HR+/HER2+ solid tumors
BTRC4017A	T cell dependent bispecific antibody	HER2+, TNBC, HR+/HER2-

Biomodular oncolytic virus

CAR-T

Thank you !!

Masataka Suzuki Igor Bado Evie Hobbs Funda Meric Angela Alexander Angela Marx Jie Willey Huiming Sun Elise Courtois Santhosh Sivajothi Bill Flynn Nicholas Navin Paul Robson Ignatio Wistuba

And so many more

Patients BCM Breast Cancer Team MDACC Breast Medical Oncology/Phase I/TMP

Baylor College of Medicine

Genentech

A Member of the Roche Group

MDAnderson Morgan Welch Inflammatory Breast Cancer **Research Program and Clinic**

MERCK

INVENTING FOR LIFE

CHAN

INITIATIVE

May 12-13, 2023 Houston Marriott Medical Center/Museum District 6508 Fannin Street | Houston, Texas

Next weekend in Houston