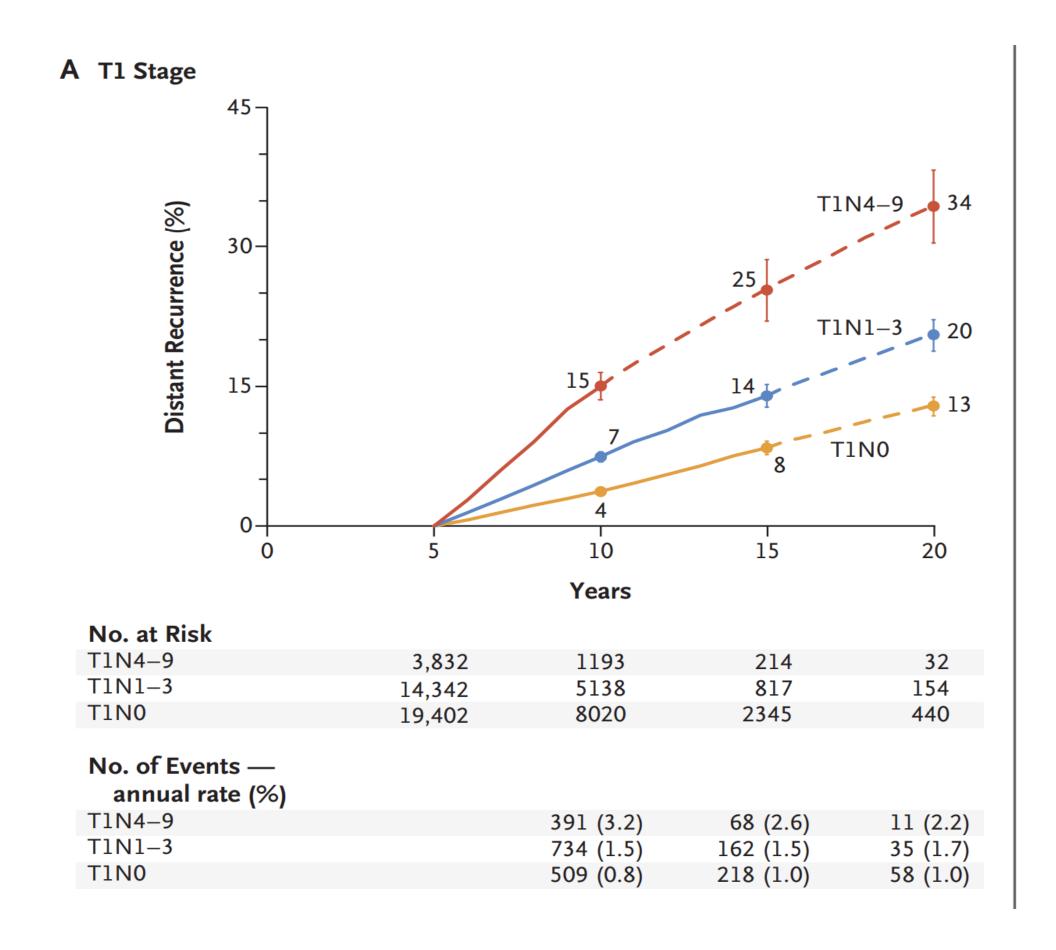
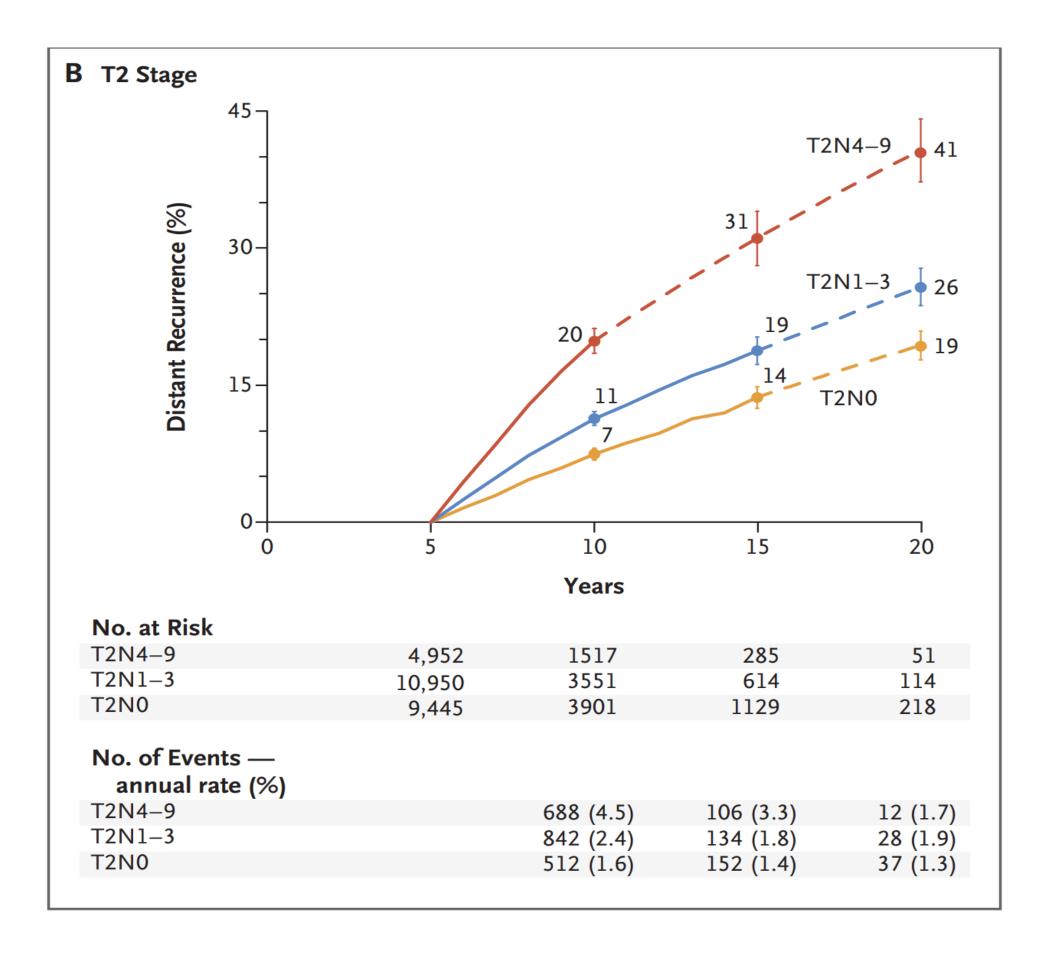

Endocrine Therapy for Early Stage Breast Cancer: Who needs more?

D. Constanza Guaqueta MDMedical OncologyMemorial Cancer Institute2023

Long-term recurrence risk after 5 years of ET


Meta-analysis of 88 trials: 62 923 women with HR+ EBC and disease-free after 5y ET



- DR increases steadily throughout 20year period
- >50% of recurrences occur after the first 5 years of treatment with ET

Long-term recurrence risk after 5 years of ET

- Tumor diameter and Nodal Status were strong determinants of recurrence
- Ki67 and Tumor garde were predictors of recurrence during the first 5 years

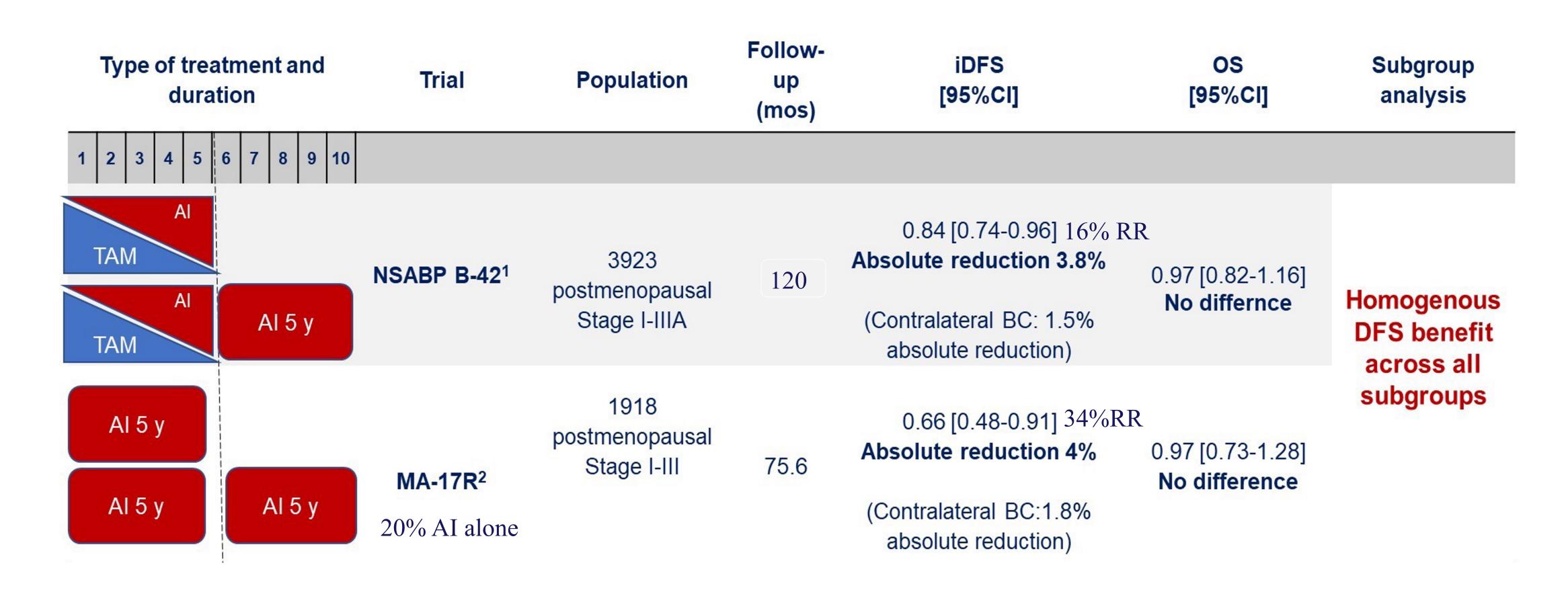
TAM-TAM or TAM-AI

Type of treatment and duration	Trial	Population	Follow- up (mos)	iDFS [95%CI]	OS [95%CI]	Subgroup analysis
1 2 3 4 5 6 7 8 9 10	0					
TAM 5 y	ATTOM ¹	6953 pre-post- menopausal Stage I-III*	108	≥10-year RR 0.75 [0.66-0.86]	≥10-year RR 0.86 [0.75-0.97]	Similar proportional risk
TAM 5 y	ATLAS ²	6846 pre-post- menopausal Stage I-III	≈120	≥10-year RR 0·75 [0·62–0·90] Absolute reduction 3.7%	BCSS 0·71 [0·58–0·88] Absolute reduction 2.8%	reduction across subgroups
TAM 5 y		5407		0.58 [0.45 to 0.76]	0.82 [0.57 to 1.19]	OS improvement
TAM 5 y	MA-17 ³	5187 postmenopausal Stage I-III	80	Absolute reduction 4.6%	No difference	in patients:N+ BC>5y tamoxifen

Benefit of extending ET with improvement in OS and IDFS across all ages (pre/postmenopausal)

TAM-TAM or TAM-AI

Table 2Outcomes for patients treated in MA.17 trial and ATLAS trial (statistically significant results are printed **bold**).


End point	MA.17 [18,20,3	MA.17 [18,20,30,31]		
	DFS HR	OS HR	DFS HR	OS HR
ITT analysis				
Follow-up 5–9 years	0.58 (7.5 yrs)	0.76 (7.5yrs)	0.90	0.97
Follow-up \geq 10 years	0.68	0.98	0.75	0.71
Follow-up ≥10 years (IPCW)	0.52 ^a	0.61	NA	NA
Analysis by Nodal Status				
Negative	0.45	1.52	0.85	NA
Positive	0.61	0.61	0.83	
Previous duration of TAM				
<5 year	0.58	1.19	0.90	NA
≥5 years	0.59	0.56	0.82	
Analysis by menopausal statu	s at breast cance	er diagnosis		
Premenopausal	0.25	0.36	0.81	NA
Postmenopausal	0.69	0.85	0.85	

ITT: intention to treat; IPCW: inverse probability of censoring weighted; HR: hazard ratio (statistically significant results are printed bold); NA: not available.

- Benefit of extended therapy with Tam was noted after 9y of therapy vs impact of AI years5-9
- Pre-menopausal patients gain
 higher benefit when switch to AI
- Node positive had higher benefit

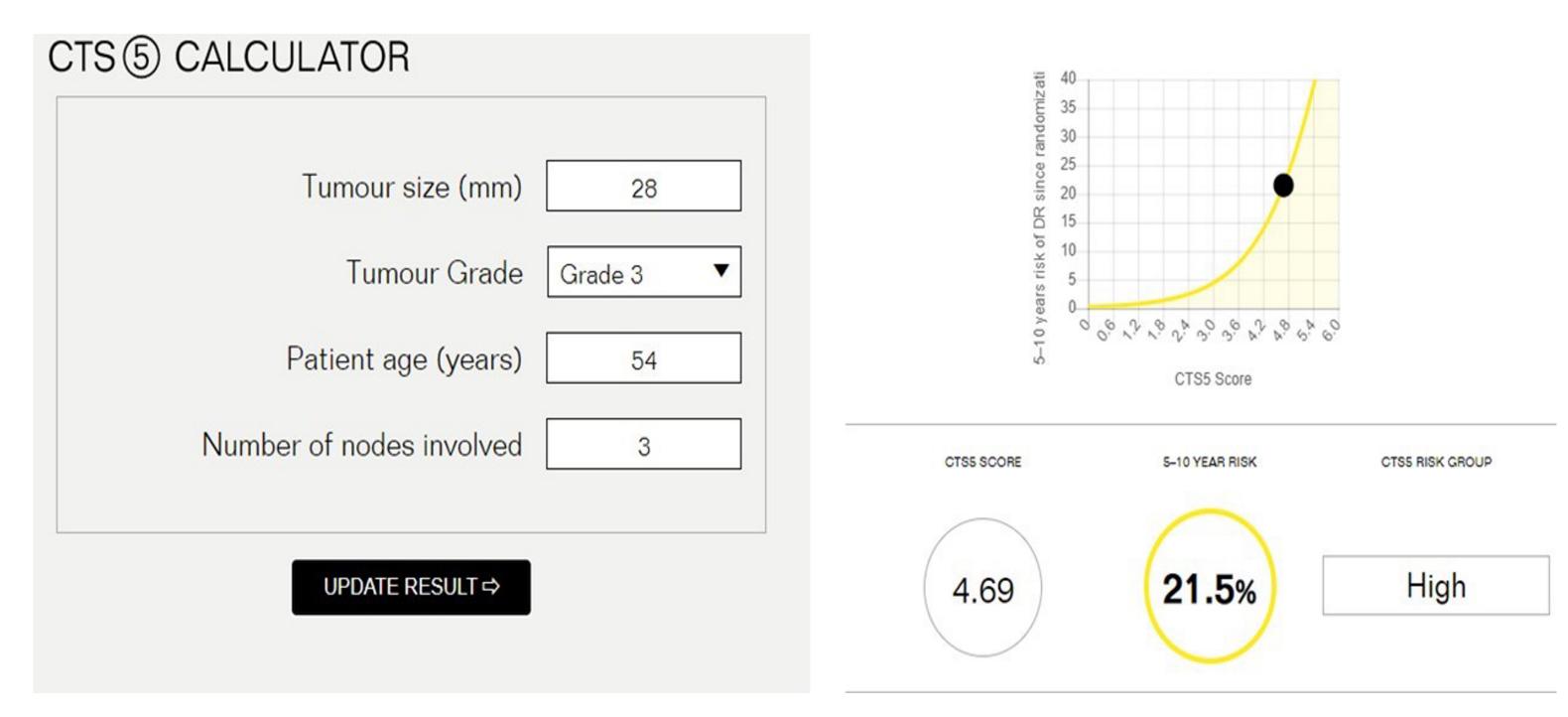
^a Analysis by IPCW, adjusting for treatment crossover.

TAM/AI - AI

Longer breast cancer free interval (time to recurrence or contralateral breast cancer) independent of nodal status, prior exposure to chemotherapy and duration of prior therapy with Tamoxifen

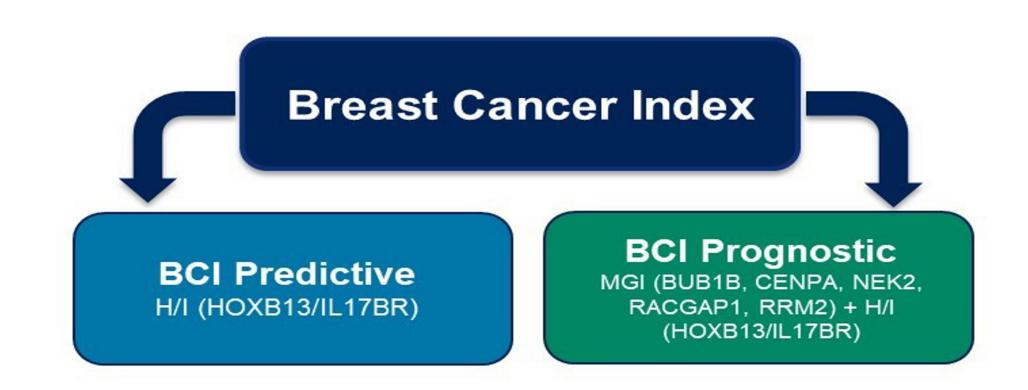
Optimal duration of AI

Type of treatment and duration	Trial	Population	Follow- up (mos)	iDFS [95%CI]	OS [95%CI]	Subgroup analysis
1 2 3 4 5 6 7 8 9 10						
Al Al 2- 2- 2.5y	IDEAL ¹	1824 Postmenopausal Stage I-III	79.2	0.92 [0.74-1.16] No difference Contralateral BC 0.39	1.04 [0.78-1.38] No difference	No prespecified
Al Al 5 y				[0.19-0.81]		subgroup
TAM	ABCSG 16 ²	3484 Postmenopausal Stage I-III	118.0	0.99 [0.85-1.15]§ No difference	1.02 [0.83-1.25]§ No difference	benefited from 10y
TAM Al Fair	DATA ³	1860 Postmenopausal Stage I-III	120	0·79 [0·62–1·02]* No difference Contralateral BC 0.50 [0.23-1.07]	0.91 [0.65-1.29]* No difference	Absolute Benefit in DFS seen in high risk
2.5 y Al 5 y	GIM-4 ⁴	2056 Postmenopausal Stage I-III	140.4	0·78 [0·65–0·93] Absolute reduction:5%	0.77 [0.60-0.98] Absolute reduction: 4%	population (N+, T>2)


Optimal duration of Extended ET with AI in postmenopausal women is on average 3y

How to approach Extended ET

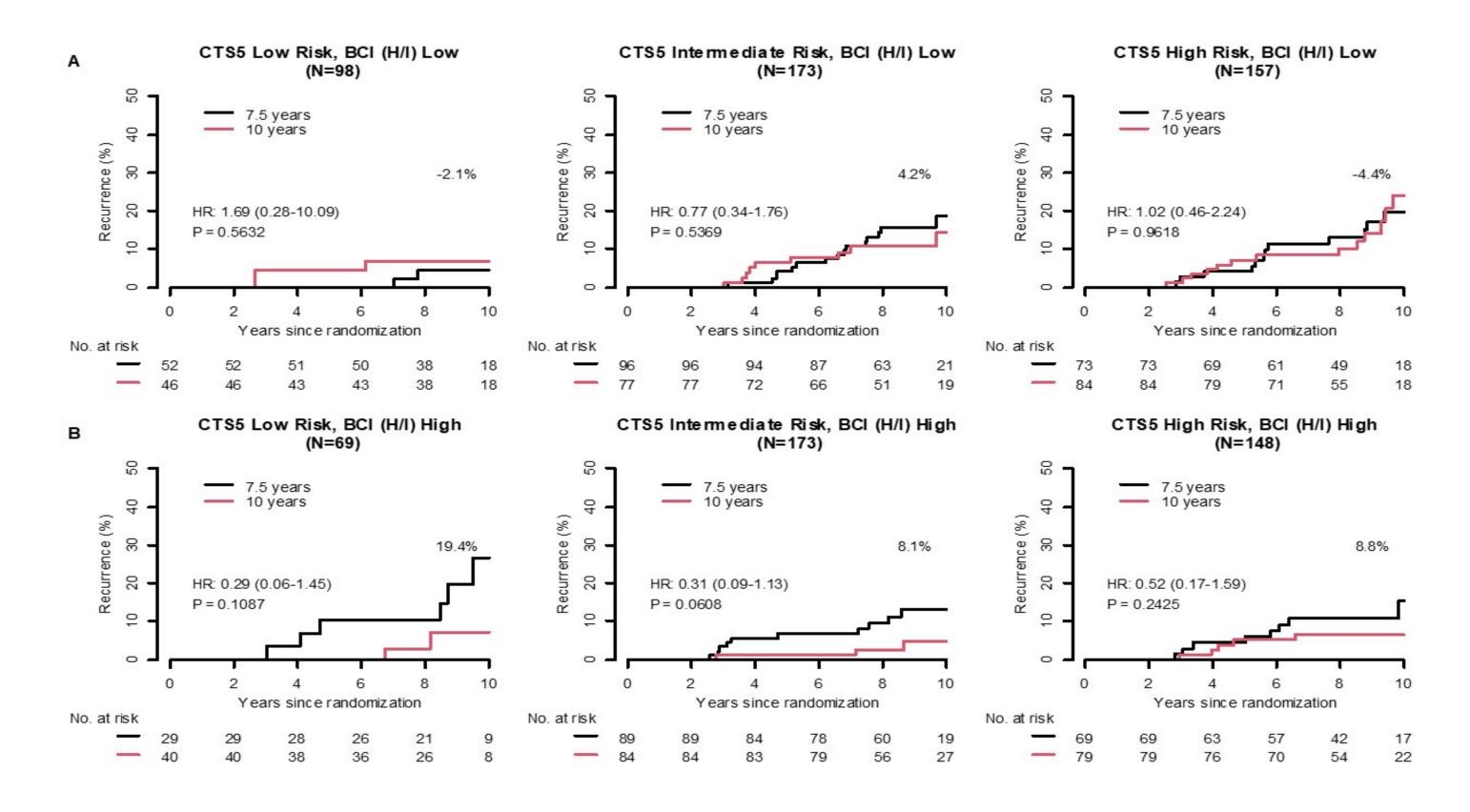
TAM 5 Y		Premenopausal patients who have become postmenopausal after TAM 5y	Als 5 Y
		 any N Patients who remained premenopausal after TAM 5y Postmenopausal patients who do not tolerate Als 	TAM 5 Y
TAM 2-3 Y	Als 2-3 Y	 N0-N1 Postmenopausal patients Premenopausal patients who have become postmenopausal after TAM 	Als 2-3 Y
N2-N3 Postmenopausal patients Premenopausal patients who have become postmeno			Als 5 Y


Predictive vs Prognostic Tools

Can we optimize the selection of patients that will benefit from ET with prognostic or predictive Tools?

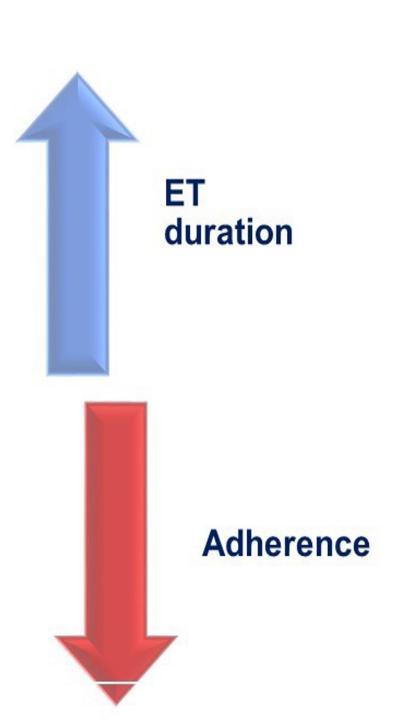
- The clinical Treatment Score post 5 years (CTS5) is an algorithm incorporating four clinicopathologic variables (nodes, age, tumor size and grade) which has been shown to be prognostic for late DR
- Initial validation using the combined patient cohorts of the ATAC and BIG-1-98 trial
- Validation of CTS5 in patient of the TEAM and the IDEAL trial.-
 - -Overestimates the risk of later DR in High Risk patients
 - -Did not predict the benefit of Extended ET

- The Breast Cancer Index (BCI) is a gene expression-based signature comprising two functional biomarker panels, the Molecular Grade index (MGI) and the two-gene ratio, HOXB13/IL17BR (H/I)⁴⁻⁷:
 - Predictive: H/I ratio, has been shown to predict endocrine response across several different treatment scenarios
 - Prognostic: Integration of MGI and H/I quantifies both the risk of late (5–10 years) and overall (0–10 years) distant recurrence



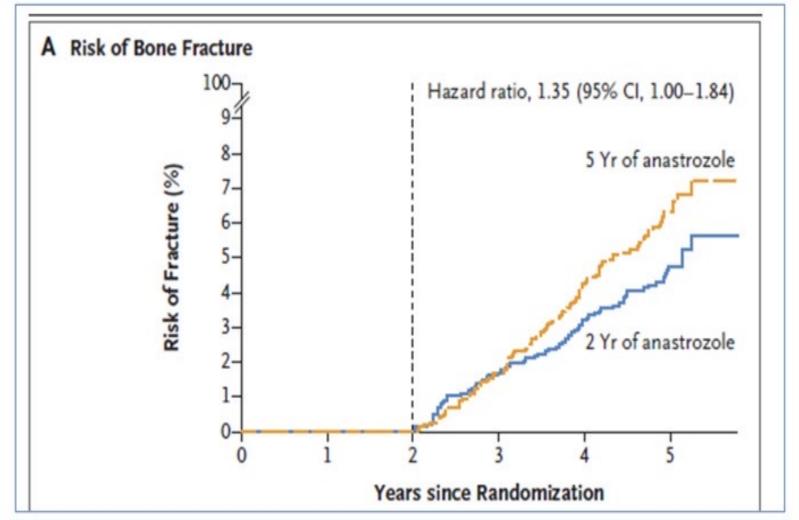
STUDY	N	BCI (H/I) AND OUTCOME
MA-17	249 Postmenopausal or premenopausal who became postmenopausal	High H/I ratio benefit from letrozole (DR OR = 0.33; 95% CI, 0.15 to 0.73; p=0.006); abs risk reduction 16.5%
Trans-aTTom	583 Postmenopausal and premenopausal	High H/I ratio benefit from tamoxifen (RFI HR = 0.35; 95%CI, 0.15-0.86; p=0.02 abs risk reduction 10.2%
IDEAL	908 73% N+	High H/I ratio benefit from letrozole (RFI HR 0.42; 95% CI 0.21-0.84; p = 0.011) abs risk reduction 10.8%
NSABP-B42	2179 40% N+	High H/I ratio benefit from letrozole (DR HR 0.29; 95% CI 0.12-0.69; p = 0.003) abs risk reduction 3.8%

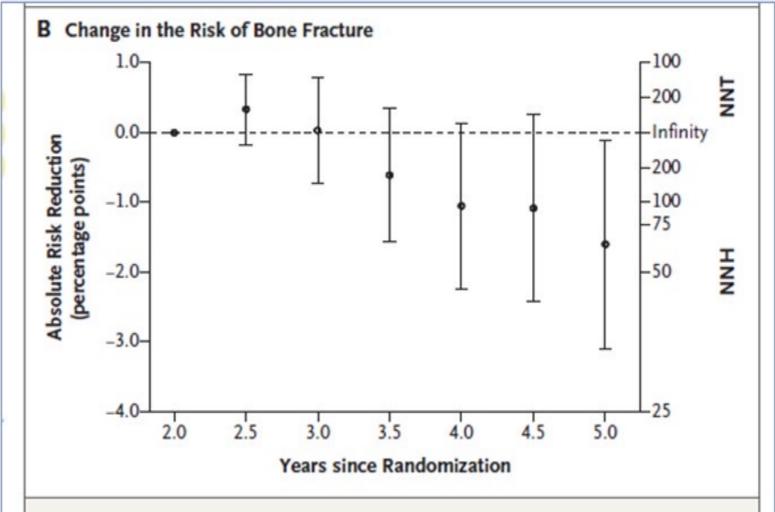
Predictive performance of breast cancer index (BCI) and clinical treatment score post-5 years (CTS5) in the IDEAL study


Results

- When re-stratifying CTS5 risk categories by BCI (H/I) or vice versa, only BCI (H/I)-High patients showed consistent absolute benefit regardless of CTS5 risk category (B).
- Conversely, CTS5-High patients did not show any benefit in the BCI (H/I)-Low group (A).

Longer duration implies a higher risk of non-adherence


Total ET duration	Trial	Adjuvant ET prior to randomization	Treatment	Adherence
	ATLAS	5 years of TAM	5 years of TAM vs observation	≈80%
	MA-17	5 years of TAM	5 years of LET vs placebo	≈80%
10 years vs 5	NSAPB B-42	5 years of ET (Al or TAM + Al)	5 years of LET vs placebo	62%
	MA-17R	4.5- 6 years of Al and prior TAM any duration	5 years of LET vs placebo	62%
	DATA	2-3 years of TAM	6 vs 3 years of ANA	67% vs 78%
7-8 years vs 5	GIM-4	2-3 years of TAM	5 vs 2-3 years of LET	63% vs 80%
	IDEAL	5 years of any ET	5 vs 2.5 years of LET	60% vs 78%
10 years vs 7.5	ABCSG 16	4-6 years of ET (AI, TAM or TAM + AI)	5 vs 2 years of anastrazole	67% vs 80%



- Higher rate of discontinuation with longer treatment duration
- Treatment-related AEs were the main reason for treatment discontinuation
- Adherence can be overestimated
 - based on patients self-reports
 - selection of patients that were adherent over the first 5 y

Cumulative risk of some toxicities increases with longer treatment

BONE FRACTURES

Bone fractures risk increased overtime

NNH decreased overtime

OTHER BONE-RELATED SYMPTOMS

	2-3-year	Control arm 2-3-year letrozole (n=983)		ed arm etrozole 977)	
	Grade 1-2	Grade 1-2 Grade 3-4		Grade 3-4	
Arthralgia	263 (27%) 22 (2%)		311 (32%)	29 (3%)	
Myalgia	65 (7%)	7 (1%)	95 (10%)	9 (1%)	
Hot flashes	119 (119 (12%)		13%)	
Alopecia	31 (31 (3%)		35 (4%)	
Osteoporosis	47 (47 (5%)		81 (8%)	
Hypertension	7 (7 (1%)		19 (2%)	
Bone fractures ^a	5 (<	5 (<1%)		1%)	
Hypercholesterolemia ^b	32 ((3%)	22 (2%)		
Cardiovascular event ^c	1 (<	1 (<1%)		6 (1%)	

Higher risk of arthralgia, myalgia and osteoporosis with longer ET

Gnant et al, N Engl J Med 2021; Del Mastro et al, ESMO 2021

NNH= number needed to harm

MonarchE: Adjuvant Abemaciclib + ET in High-Risk, Node-Positive, HR+/HER2- EBC

International, randomized, open-label phase III trial
 ITT Population (Cohorts 1 + 2)

Women or men with high-risk, node-positive, HR+/HER2- EBC; prior (neo)adjuvant CT permitted; pre- or postmenopausal; no distant metastasis; ≤16 mo from surgery to randomization; ≤12 wk of ET after last non-ET (N = 5637)

Cohort 1

≥4 positive ALN *or* 1-3 positive ALN plus histologic grade 3 and/or tumor ≥5 cm

Cohort 2

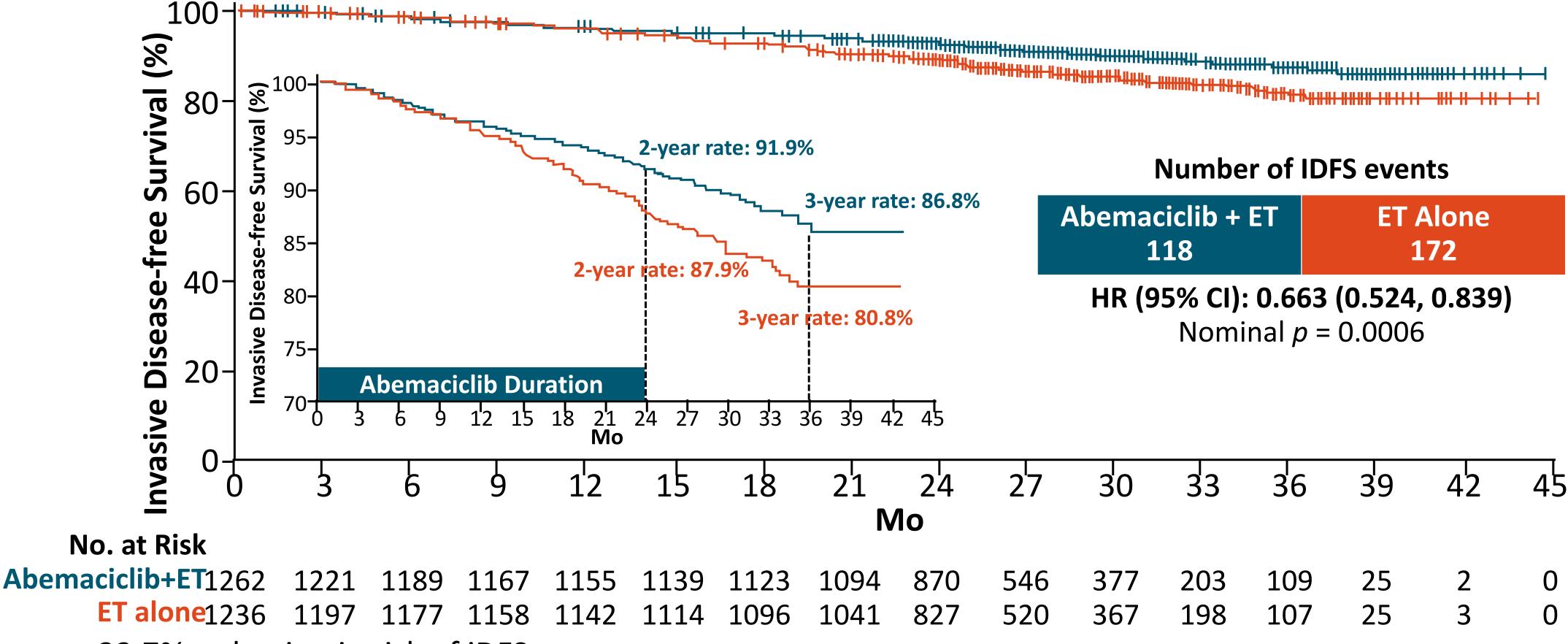
1-3 positive ALN, Ki-67 ≥20% per central testing, not grade 3, tumor size <5 cm

Stratified by prior CT, menopausal status, region

Abemaciclib 150 mg BID up to 2 yr +

ET per standard of care of physician's choice

for 5-10 yr as clinically indicated


(n = 2808)

ET per standard of care of physician's choice for 5-10 yr as clinically indicated (n = 2829)

- Primary endpoint: iDFS
 - Planned for after ~390 iDFS events (~85% power, assumed iDFS hazard ratio of 0.73, cumulative 2-sided α = 0.05)
 - Current primary outcome efficacy analysis occurred after 395 iDFS events in ITT population
- Key secondary endpoints: iDFS in Ki-67 high (≥20%) population, distant RFS, OS, safety, PRO, PK

MonarchE: IDFS in ITT Ki-67 High (≥20%) Population

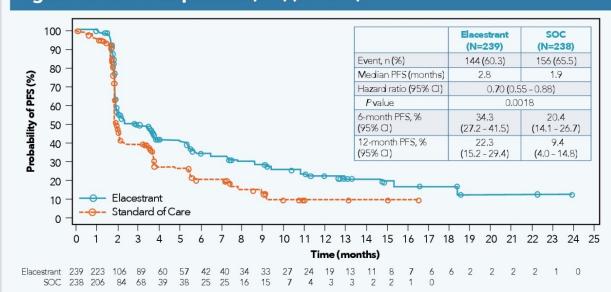
44.3% of all randomized patients had tumors with high Ki-67 index

- 33.7% reduction in risk of iDFS event
- Absolute difference in iDFS at 3 years: 6.0%

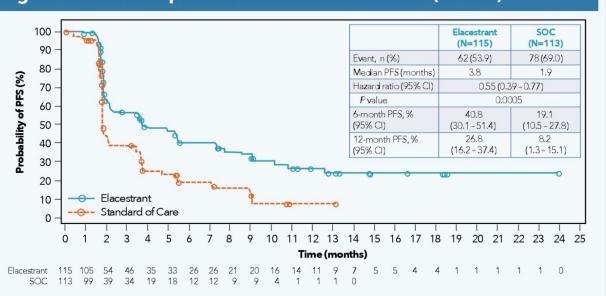
O'Shaughnessy. ESMO 2021. Abstract VP8-2021. Harbeck. Ann Oncol. 2021;32:1571.

Poster Selected for the 2022 **GRASP Advocate Choice Award**

Subgroup analysis of patients with no prior chemotherapy in EMERALD: A phase 3 trial evaluating elacestrant, an oral selective estrogen receptor degrader (SERD), vs investigator's choice of endocrine monotherapy for ER+/HER2- advanced/metastatic breast cancer (mBC)


Kaklamani V,¹ Bardia A,² Aftimos P,³ Cortes J,⁴ Lu J,⁵ Neven P,⁶ Streich G,⁵ Montero AJ,⁵ Forget F,⁵ Mouret-Reynier MA,¹⁰ Sohn JH,¹¹ Taylor D,¹² Harnden KK,¹³ Khong H,¹⁴ Kocsis J,¹⁵ Dalenc F,¹⁶ Dillon P,¹⁻ Tonini G,¹⁶ Grzegorzewski KJ,¹⁰ Bidard FC²⁰

University of Texas Health Sciences Center, Houston, TX; ²Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA; ³Institut Jules Bordet - Université Libre de Bruxelles, Brussels, Belgium; ⁴International Breast Cancer Center (IBCC), Quiron Group, Barcelona, Spain; ⁵University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ³Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ³Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ³Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Cancer Center, Los Angeles, CA, USA; ⁴Institut Jules Bordet - University Of Southern California/Norris Cancer Center, Los Angeles, CA, USA; ⁴Institut $^{\circ}$ Universitaire Ziekenhuizen (UZ) – Leuven Cancer (UZ) – Leuven Cancer Institute, Leuven, Belgium; 7 Centro Médico Austral, Buenos Aires, Argentina; 8 University, Cleveland, OH, USA; $^{\circ}$ Centre Hospitalier de l'Ardenne – Site de Libramont, Libramont, Libramont, Chevigny, Belgium; 10 Centre Jean Perrin, Clermont-Ferrand, France; 'Yonsei Cancer Center, Yonsei University Health System – Medical Oncology, Seoul, Republic of Korea; 12Université catholique de Louvain, CHU UCL Namur – Site Sainte-Elisabeth, Namur, Belgium; 13Inova Schar Cancer Institute, Fairfax, Virginia; 14Moffit Cancer Center & Research Institute, Tampa, FL, USA; 15Bács-Kiskun Megyei Kórház, Kecskemét, Hungary; ¹⁶Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France; ¹⁷University of Virginia Cancer Center, Charlottesville, VA, USA; ¹⁸Menarini Group, Florence, Italy; ¹⁹Stemline Therapeutics/Menarini Group, New York, NY, USA; ²⁰Institut Curie, Paris and Saint Cloud, France


BACKGROUND

- Endocrine therapy, with aromatase inhibitor (AI) or fulvestrant, plus cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) is the recommended first-line treatment of estrogen receptor-positive (ER+)/HER2- mBC.1-5
- Subsequent disease progression is associated with endocrine resistance, including the development of ESR1 mutations (mESR1).4
- Treatment guidelines recommend use of sequential endocrine therapy before chemotherapy, in the absence of visceral crisis or until all endocrine therapy (ET) options have been exhausted. 1-3,5
- Standard single-agent endocrine therapy (eg, fulvestrant) in patients who have received prior CDK4/6i or mTOR inhibitor is associated with poor median progression-free survival (~2 months), 6-9 highlighting a major unmet need for patients with ER+/HER2- mBC.
- Elacestrant (RAD1901) is an oral SERD that blocks ER and inhibits estradiol-dependent gene transcription induction and cell proliferation in ER+ BC cell lines with higher efficacy than fulvestrant.10
- In a phase 3 study of elacestrant in postmenopausal women with ER+/HER2-mBC (EMERALD), elacestrant significantly reduced the risk of disease progression or death by 30% in all patients and by 45% in patients with ESR1 mutation (Figure 1a & b).11
- In this analysis, we compared PFS between elacestrant and SOC in patients without prior chemotherapy in the metastatic setting.

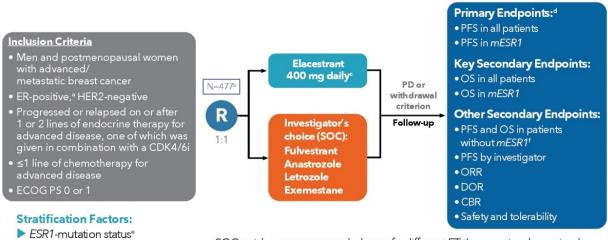

Figure 1a: PFS in all patients (ITT) (N=477)

Figure 1b: PFS in all patients with detectable mESR1 (N=228)

EMERALD STUDY DESIGN¹²

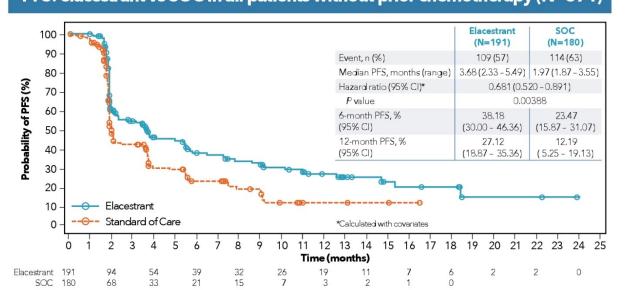
SOC guidance recommended use of a different ET than previously received (ie, fulvestrant recommended for patients who had not previously received fulvestrant, and selection of Al was based on prior Al therapy)

CDK 4/61, cyclin-dependent kinase 4/6 inhibitor; ECOG PS, Eastern Cooperative Oncology Group performance status; ER, estrogen receptor; HER2, human epidermal growth factor receptor

RESULTS

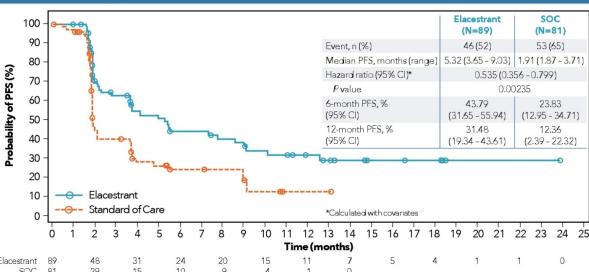
▶ Prior treatment with fulvestrant

Presence of visceral metastases

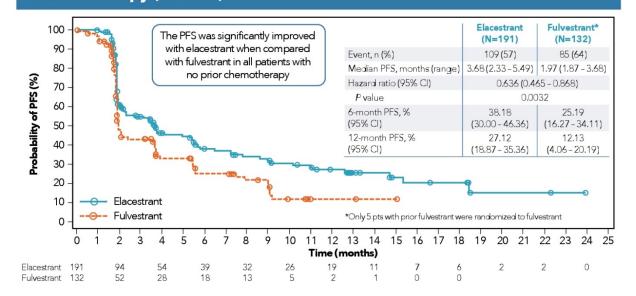

Baseline demographic and disease characteristics

Among the 477 patients enrolled in the trial, 77.8% (n=371) had not received prior chemo for mBC

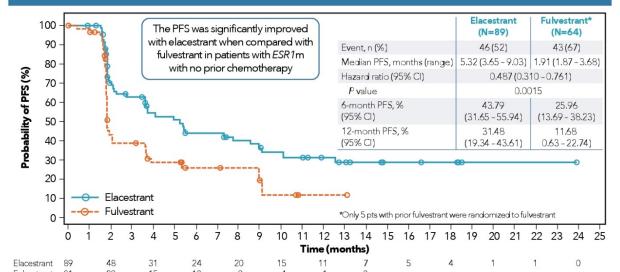
	Elace	strant	soc		
Parameter	All (N=191)	mESR1 (N=89)	All (N=180)	mESR1 (N=81)	
Median age, years (range)	64 (28-89)	64 (28-89)	64 (35-83)	63 (35-83)	
Gender, n % Female Male	185 (96.9) 6 (3.1)	89 (100) 0	180 (100) 0	81 (100) 0	
ECOG PS, n (%) 0 1	111 (58.1) 80 (41.9)	48 (53.9) 41 (46.1)	100 (55.6) 180 (44.4)	44 (54.3) 37 (45.7)	
Visceral metastasis*, n (%)	127 (66.5)	62 (69.7)	125 (69.4)	61 (75.3)	
Bone-only disease, n (%)	32 (16.8)	10 (11.2)	25 (13.9)	10 (12.3)	
Prior adjuvant therapy, n (%)	129 (67.5)	50 (56.2)	114 (63.3)	51 (63.0)	
Prior CDK4/6 inhibitor, n (%)	191 (100)	89 (100)	180 (100)	81 (100)	
Number of prior lines of endocrine therapy,** n (%) 1 2	103 (53.9) 88 (46.1)	56 (62.9) 33 (37.1)	115 (63.9) 65 (36.1)	56 (69.1) 25 (30.9)	
Number of prior lines of chemotherapy,** n (%) 0	191 (100)	89 (100)	180 (100)	81 (100)	


*Includes lung, liver, brain, pleural, and peritoneal involveme

PFS: elacestrant vs SOC in all patients without prior chemotherapy (N=371)



Among patients with ER+/HER2- mBC without prior chemotherapy, elacestrant significantly prolonged PFS compared to SOC


PFS: elacestrant vs SOC in patients with mESR1 without prior chemotherapy (N=170) 46 (52)

PFS: elacestrant vs fulvestrant in all patients without prior chemotherapy (N=323)

PFS: elacestrant vs fulvestrant in patients with mESR1 without prior chemotherapy (N=153)

Treatment-emergent adverse events (≥10% in either arm)

			soc					
	Elacestrant N=189, n (%)		Total N=175, n (%)		Fulvestrant N=129, n (%)		Aromatase inhibitor N=46, n (%)	
Preferred term	red term All Grades Grade 3/4		All Grades	Grade 3/4	All Grades	Grade 3/4	All Grades	Grade 3/4
Nausea	64 (33.9%)	2(1.1)	34 (19.4%)	-	21 (16.3%)	-	13 (28.3%)	-
Fatigue	36 (19.0%)	_	28 (16%)	-	21 (16.3%)	-	7 (15.2%)	-
Vomiting	33 (17.5%)	1 (0.5)	12 (6.9%)	-	9 (7.0%)	-	3 (6.5%)	-
Arthralgia	28 (14.8%)	-	30 (17.1%)	-	23 (17.8%)	-	7 (15.2%)	-
Decreased appetite	25 (13.2%)	1 (0.5)	13 (7.4%)	-	9 (7.0%)	-	4 (8.7%)	-
Back pain	25 (13.2%)	1 (0.5)	14 (8.0%)	-	10 (7.8%)	-	4 (8.7%)	-
Diarrhea	24 (12.7%)	-	19 (10.9%)		13 (10.1%)	-	6 (13.0%)	-
Headache	24 (12.7%)	1 (0.5)	21 (12%)	-	15 (11.6%)	-	6 (13.0%)	-
Hot flush	24 (12.7%)	-	15 (8.6%)	-	11 (8.5%)	-	4 (8.7%)	-
AST increased	23 (12.2%)	-	21 (12%)	-	16 (12.4%)	-	5 (10.9%)	1-1
Constipation	22 (11.6%)	-	11 (6.3%)		7 (5.4%)	-	4 (8.7%)	-
Dyspepsia	19 (10.1%)	_	5 (2.9%)	_	4 (3.1%)	_	1 (2.2%)	_

▶ Key treatment-related adverse events (AEs) in the no prior chemotherapy elacestrant group were nausea (25.9%), fatigue (12.7%), and hot flush (11.1%). There were no treatment-related deaths in

CONCLUSIONS

- Among patients with ER+/HER2- mBC without prior chemotherapy, elacestrant significantly prolonged PFS compared to SOC endocrine therapy and showed favorable outcomes in this subgroup.
 - 31% reduction in the risk of progression or death with elacestrant vs SOC in all patients (HR=0.681 [95% CI: 0.520 - 0.891]; P=0.00388) and prolonged median PFS
- 46% reduction in the risk of progression or death with elacestrant vs SOC in patients with mESR1 (HR=0.535 [95% CI: 0.356 - 0.799]; P=0.00235) and prolonged median PFS (5.32 vs 1.91 months).
- In exploratory subgroup analyses, elacestrant significantly reduced the risk of progression or death and prolonged median PFS vs fulvestrant in all patients (HR=0.636 [95% CI: 0.465-0.868]; mPFS 3.68 vs 1.97 months), and in patients with mESR1 (HR=0.487 (95% CI: 0.310-0.761; mPFS 5.32 vs 1.91 months).
- Elacestrant had a manageable safety profile consistent with other endocrine therapies
- Final overall survival analysis of elacestrant vs SOC endocrine therapy expected late 2022/early 2023.
- Further elacestrant combinations in earlier lines and with other targeted therapies, including CDK4/6 and mTOR inhibitors, are ongoing/planned for patients with ER+/HER2- breast cancer.

1. National Comprehensive Cancer Network, NCCN clinical practice guidelines in oncology: breast cancer, Version 2, 2022, https://www.nccn.org/pro Updated December 20, 2021. Accessed March 24, 2022; **2.** Gennari A, et al. Ann Oncol. 2021; 32:1475-1495; **3.** Burstein HJ, et al. J Clin Oncol. 2021; 39:3959-3977; **4.** Jeselsohn R, et al. Clin Cancer Res. 2014; 20:1757-1767; **5.** Moy B, et al. J Clin Oncol. 2021; 39:3959-3958; **6.** Lindeman GJ, et al. J Clin Oncol. 2021; 39 (suppl 15): abstr 1004; **7.** Turner NC, et al. Lancet Oncol. 2020; 21:1296-1308; **8.** Di Leo A, et al. Lancet Oncol. 2018; 19:87-100; **9.** André F, et al. N Engl J Med. 2019; 38020:1929-1940; **10.** Bihani T, et al. Clin Cancer Res. 2017; 23:4793-4804;

ACKNOWLEDGEMENTS:

We would like to thank the patients and their families/caregivers from 228 sites in 17 countries for participating in this trial. We would like to thank the investigators and their support staff who articipated in this work. This study was sponsored by Radius Health, Inc. and co-funded by Menarini Group, Writing/Layout support provided by Phillips Gilmore Oncolog

> $Copies \ of \ this \ poster \ obtained \ through \ Quick \ Response \ (QR) \ Code \ are \ for \ personal \ use \ only$ and may not be reproduced without permission from ASCO® or the author of this poster. ontact Kaklamani@uthscsa.edu with questions.

Take Home Message

- Extended ET should be offered for patients with higher risk of recurrence
 - 7-8y of adjuvant ET for patients at intermediate risk of recurrence
 - 10y of adjuvant ET should be consider on patients that meet High Risk Criteria
- BCI is a predictive and prognostic tool that may guide decisions on Extended ET
- Treatment duration should be informed by patient comorbidities and QOL