

June 24-26, 2022 The Roosevelt Hotel New Orleans, LA

New Orleans Summer Cancer Meeting

CONFERENCE CHAIRMAN Edgardo S. Santos Castillero, MD, FACP

De Novo AML: An Era of Novel Agents

Alexis M. Cruz-Chacon, MD FACP Hematology and Medical Oncology Adult Blood and Marrow Transplantation

Where It All Began!

GLINT EASTWOOD THE CO-Starring also starring directed by SERGIO LEONE

Keating. Haematol Blood Transfus. 1990;33:593.

Traditional Approaches to AML therapy

1. Scheinberg DA et al. In: DeVita VT, Jr. et al, eds. Cancer: Principles and Practice of Oncology. 5th ed. Philadelphia, PA: Lippincott-Raven; 1997:2293-2321. 2. https://medlineplus.gov/acutemyeloidleukemia.html.

AML Treatment Landscape: PAST

Outcome of Patients With AML after Intensive Therapy

Disease and Risk Group	CR (%)	Crude OR (95% CI)	Adjusted OR* (95% CI)
All patients			
De novo AML	75	1	1
MDS-sAML	59	0.47 (0.32 to 0.67)	0.55 (0.35 to 0.85)
Non-MDS-sAML	54	0.39 (0.25 to 0.60)	0.48 (0.29 to 0.81)
tAML	61	0.51 (0.33 to 0.77)	0.58 (0.34 to 0.99)
Favorable riskt			
De novo AML	91	NA	NA
MDS-sAML	0	NA	NA
Non-MDS-sAML	100	NA	NA
tAML	100	NA	NA
Intermediate risk			
De novo AML	79	1	1
MDS-sAML	62	0.44 (0.27 to 0.71)	0.49 (0.29 to 0.82)
Non-MDS-sAML	57	0.35 (0.20 to 0.62)	0.53 (0.28 to 0.97)
tAML	75	0.81 (0.41 to 1.58)	0.66 (0.30 to 1.42)
Adverse risk			
De novo AML	63	1	1
MDS-sAML	57	0.79 (0.35 to 1.75)	0.73 (0.31 to 1.68)
Non-MDS-sAML	35	0.32 (0.12 to 0.83)	0.33 (0.12 to 0.90)
tAML	43	0.44 (0.21 to 0.91)	0.43 (0.18 to 1.02)

Granfeldt Østgård. JCO. 2015;33:3641.

Older patients do poorly with Intensive Therapy

Age group	Complete remission rate (with "3&7"- like regimens)	Early mortality	Disease- free survival	Long-term overall survival	Median survival
<60 years	70%	10%	45%	30%	24 months
≥60 years	45%	>25%	<20%	10%	10 months

100 40 90 80 30 Mortality Incidence 70 20 60 50 10 40 30 - WHO I A WHO II -WHO III-I 20 55.64 65-14 15.84 20:34 35.44 45-54 -98A 20 10 Age <50 yrs 50-54 yrs 55-59 yrs 60-64 yrs 65-69 yrs 70-74 yrs

CR rates with Intensive Therapy according to Age and PS (percentage)

- Poor organ function / comorbidities
- Antecedent hematologic disorders
- Unfavorable risk factors

Percentage of Cases/Deaths

80+ yrs

75-79 yrs

Treatments options for older patients with AML (≥65 years) Ineligible for Intense Therapy

Regimen	CR/CRi, %	mOS, Mos	OS Rate, %
Azacitidine ^[2]	27.8	10.4	At 1 yr: 46.5
Decitabine ^[3]	17.8	7.7	NR

1. Dombret. Blood. 2015;126:291. 2. Kantarjian. JCO. 2012;30:2670.

Timeline of Genetic and Molecular Landscape in AML

FLT3 -ITD MLL -PTD MYST3-CREBBP NPM1-MLF1 NUP98-HOXA9 PICALM-MLLT10 WT1 FUS-ERG BCOR GATA2 MLL-ELL RUNX1-MECOM SF3B1 CBFB-MYH11 SRSF2 MLL-MLLT3 U2AF1 DDX41 PTPN11 ZRSR2 GATA2/MECOM MLL-MLLT4 DNMT3A ASXL2 NF1 CEBPA DEK-NUP214 FLT3-TKD EZH2 STAG1 IDH2 RAD21 MLL-MLLT1 NUP98-NSD1 KRAS RUNX1-RUNX1T1 RUNX1 ASXL1 SMC1A NRAS PML-RARA KIT CBL IDH1 SMC3 BCR-ABL TP53 MLL-MLLT10 NPM1 TET2 STAG2 1990 2000 2005 2010 2015 1985 1995

Prognostic relevance of individual mutations in AML

Mutation	Frequency in CN-AML	Mode of action	Prognosis
NPM1	30-45%	Nucleolar component	Favorable
DNMT3A	34%	De novo DNA methylation	Inconclusive
FLT3-ITD	28-34%	Receptor tyrosine kinase for FLT3 ligand	Unfavorable
<i>FLT3-</i> TKD	11-14%	Receptor tyrosine kinase for FLT3 ligand	Neutral
IDH1 and IDH2	15-30%	Conversion of isocitrate to α -ketoglutarate	Favorable
TET2	10%	Conversion of 5 methylcytosine to 5-hydroxy- methylcytosine, mediating demethylation	Inconclusive
ASXL1	5-16%	Epigenetic regulation by interaction with PRC2	Unfavorable
CEBPA	10-18%	Hemopoietic transcription factor	Favorable
RAS	25% NRAS,	G-Protein associated with	Neutral
	15% KRAS	receptor tyrosine kinases	
KIT	20-30% of	Receptor tyrosine kinase	Unfavorable
	CBF AML	for stem cell factor	
MLL-PTD	5-10%	20-30% of CBF AML	Unfavorable
RUNX1	5-13%	Hemopoietic transcription factor	Unfavorable

CLINICAL RELEVANCE: Prognostic value, Therapeutic targets, Markers for MRD

Where we are Know!

ive NCCN Guidelines Version 2.2022 Acute Myeloid Leukemia (Age ≥18 years)

RISK STRATIFICATION BY GENETICS IN NON-APL AML^{1,2}

Risk Category*	Genetic Abnormality
Favorable	t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i> inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i> Biallelic mutated <i>CEBPA</i> Mutated <i>NPM1</i> without <i>FLT3</i> -ITD or with <i>FLT3</i> -ITD ^{Iow†}
Intermediate	Mutated <i>NPM1</i> and <i>FLT3</i> -ITD ^{high†} Wild-type <i>NPM1</i> without <i>FLT3</i> -ITD or with <i>FLT3</i> -ITD ^{low†} (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i> [‡] Cytogenetic abnormalities not classified as favorable or adverse
Poor/Adverse	t(6;9)(p23;q34.1); <i>DEK-NUP214</i> t(v;11q23.3); <i>KMT2A</i> rearranged t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i> inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); <i>GATA2,MECOM(EVI1)</i> -5 or del(5q); -7; -17/abn(17p) Complex karyotype, [§] monosomal karyotype Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD ^{high†} Mutated <i>RUNX1</i> ¶ Mutated <i>RUNX1</i> ¶ Mutated <i>ASXL1</i> ¶

¹ Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129:424-447. ² Frequencies, response rates, and outcome measures should be reported by risk category, and, if sufficient numbers are available, by specific genetic lesions indicated.

AML Treatment Landscape: PRESENT

SINCE 2017, WE HAVE SEEN THE FDA APPROVAL OF MORE THAN 8 NEW DRUGS FOR AML

FUTURE OF AML CARE

Better approaches to induction in fit patients. Better options for challenging subgroups: Older, tAML, sAML, TP53 Better therapeutic options for R/R disease

Case 1 and 2: Older Patient with t-AML or AML-MRC

- 65-year-old female presents with pancytopenias
 - History of breast CA S/P adjuvant chemotherapy 2 years ago
 - CBC: WBC 1.2K, Hb 8.0 gm/dL, PLT 40K, ANC 200
 - BM: AML 60% blasts, Abnormal karyotype with -7, -5
 - No major comorbid illnesses, ECOG PS 0-1
- 69-year-old male presents with monocytosis and thrombocytopenia
 - History of MDS S/P 12 months of HMA therapy
 - CBC: WBC 30K, 45% atypical monocytes, PLT 30K
 - BM: AML, Complex karyotype
 - NGS panel shows ASXL1, SRSF2, TET2, and RUNX1 mutations
 - No major comorbid illnesses, ECOG PS 0-1

Liposomal Cytarabine and Daunorubicin (CPX-351)

STATUS

- Approved for first line treatment of older patients with newly diagnosed t-AML and AML-MRC (August 2017)
- THERAPEUTIC TARGET: Cytotoxic therapy (liposomal cytarabine + daunorubucin 5:1 molar ratio)
- DOSING
 - Induction: daunorubicin 44 mg/m2 and cytarabine 100 mg/m2 liposome IV over 90 min on d 1, 3, and 5
 - Consolidation: daunorubicin 29 mg/m2 and cytarabine 65 mg/m2 liposome IV over 90 min on d 1 and 3
 - AEs: Prolonged neutropenia and thrombocytopenia; Less GI sides effects, mucositis and weight loss

1. Tardi. Leuk Res. 2009;33:129. 2. Feldman. JCO. 2011;29:979. 3. Lim. Leuk Res. 2010;34:1214.

CPX-351 in Older Patients With ND AML

Phase III trial of CPX-351 vs 7+3 in patients aged 60-75 yr with newly diagnosed high-risk or secondary AML

5-Yr Median OS

Lancet. Lancet Haematol. 2021;8:e481.

CPX-351 in Older Patients With Newly Diagnosed AML OS by Baseline Subgroups

	CPX-351 g	Iroup	7+3 group			Hazard ratio
	n/N	Median overall survival, (95% CI) months	n/N	Median overall survival, (95% CI) months		(95% CI) for death
Age						
60-69 years	76/96	9.59 (6.01-12.62)	91/102	6-87 (4-63-8-84)		0.73 (0.54-0.99)
70–75 years	48/57	8.87 (4.73-12.19)	54/54	5.62 (3.29-7.52)		0.52 (0.34-0.77)
AML subtype						
Therapy-related AML	23/30	12.17 (7.43-27.37)	30/33	5.95 (2.92-8.48)		0.54 (0.31–0.94)
AML with antecedent CMML	9/11	9.33 (1.94-23.98)	11/12	2.28 (0.72-3.98)		0.40 (0.16–1.01)
AML with antecedent MDS						
With previous HMA	43/50	5.65 (3.55-7.75)	52/55	7.43 (5.55-9.40)		0.96 (0.64–1.45)
Without previous HMA	16/21	15.74 (5.55–26.32)	19/19	5.13 (1.74-11.07)	_	0.45 (0.23-0.88)
De novo AML with MDS karyotype	33/41	9.66 (5.32-25.23)	33/37	7.36 (2.89–13.77)		0.72 (0.44–1.17)
ECOG PS						
0	26/37	14.72 (7.00–33.58)	41/45	8.41 (5.13-11.07)		0.55 (0.33-0.90)
1	84/101	9.33 (6.37-11.60)	82/89	5.55 (3.58-7.36)		0.67 (0.49–0.91)
2	14/15	3.98 (1.61-6.24)	22/22	5.13 (2.53-9.40)		1.09 (0.55-2.13)
Karyotype						
Favourable or intermediate	52/71	14.72 (9.07-20.96)	55/63	8.41 (5.13-11.07)		0.65 (0.45-0.96)
Poor	63/72	6.42 (4.96-9.66)	81/83	5.16 (3.19-7.33)		0.66 (0.47-0.92)
White blood cells						
<20×10 ⁹ cells per L	103/131	10.61 (7.69–13.01)	120/131	6.64 (5.13-8.18)		0.64 (0.49-0.83)
≥20×10 ⁹ cells per L	21/22	3.60 (1.48-7.49)	24/24	3.42 (1.41-7.26)		0.83 (0.46–1.52)
Platelets						
≤50×10 ⁹ cells per L	85/95	7.43 (4.96-9.66)	85/91	5.55 (3.35-7.33)		0.77 (0.57–1.04)
>50×10 ⁹ cells per L	39/58	14.72 (9.33-26.71)	58/63	7.43 (4.99–10.87)	_ -	0.49 (0.33-0.75)
FLT3 mutation status						
FLT3 wild type	92/115	8.87 (5.65-12.35)	109/118	5.82 (4.04-7.82)		0.65 (0.49-0.87)
FLT3 mutation	18/22	10.25 (5.62–14.95)	21/21	4.60 (1.61–10.32)		0.51 (0.27–0.96)
Previous HMA treatment						
Yes	53/62	5·65 (3·55-7·75)	67/70	5-98 (4-63-7-75)		0.82 (0.57–1.18)
No	71/91	11.33 (9.17–18.69)	78/86	5-62 (3-88-8-80)		0.60 (0.43-0.83)
Overall study population	124/153	9-33 (6-37-11-86)	145/156	5-95 (4-99-7-75)		0.70 (0.55-0.91)
				0.1	1.0	10.0
					$\leftarrow \rightarrow$	
					Favours CPX-351 Favours 7+3	

Lancet. Lancet Haematol. 2021;8:e481.

Case 3: Unfit Older Patient with AML

- 70-year-old male presents with fatigue and weight loss
 - CBC: WBC 22K, Hb 7.2 gm/dL, PLT 30K
 - BM: AML 65% blasts, Complex karyotype
 - NSG panel with RUNX1 and ASXL1
 - History of CAD S/P CABGx2 and uncontrolled DM-II
 - PS of ECOG 2

Venetoclax

STATUS

- Approved in combination with azacitidine or decitabine or low-dose cytarabine for newly diagnosed AML in adults ≥75 years or who have comorbidities that preclude use of intensive induction chemotherapy (November 2018)
- THERAPEUTIC TARGET: Inhibitor of anti-apoptotic protein BCL-2

DOSING

- Ramp-up phase: 100 mg orally on d 1, 200 mg on d 2, 400 mg on d 3;
- 400 mg (with HMA) or 600 mg (with low-dose cytarabine) on d 4 and beyond
- AEs: Prolonged neutropenia

Venetoclax - a BCL2 specific inhibitor

Venetoclax binds directly to BCL-2 protein, displacing pro-apoptotic proteins and restoring the apoptotic process.

Venetoclax + HMA for Unfit Elderly patients with AML

Regimen	CR/CRi, %	mOS, Mos	OS Rate, %
Azacitidine ^[2]	27.8	10.4	At 1 yr: 46.5
Decitabine ^[3]	17.8	7.7	NR
Venetoclax + HMA ^[1]	67	17.5	At 1 yr: 59 At 2 yrs: 46

Patients at risk

All patients 145133124115102 89 73 53 25 16 15 13 12 VEN 400 mg 60 56 52 48 45 38 30 20 8 3 3 3 3 3 3 2 VEN 800 mg 74 69 64 59 50 44 38 29 13 10 10 10 9 4 1 VEN 1200 mg 11 8 8 8 7 7 5 2 3 4

Venetoclax + LDAC in Untreated Older AML Patients

VIALE-A: Venetoclax plus Azacitidine

	No. of Treatment Cycles, Median (Range)	Median Time to CR/CRi, mo (Range)	CR + CRiª by Initiation of Cycle 2, N (%)
AZA + VEN (n = 286)	7.0 (1.0-30.0)	1.3 (0.6-9.9)	124 (43.4)
AZA + PBO (n = 145)	4.5 (1.0-26.0)	2.8 (0.8-13.2)	11 (7.6)

Case 3 with a Twist: Fit Older Patient with AML

- 67-year-old female presents with fatigue and weight loss
 - CBC: WBC 22K, Hb 7.2 gm/dL, PLT 30K
 - BM: AML 65% blasts, Complex karyotype
 - NSG panel with RUNX1 and ASXL1
 - History of HTN controlled with meds, PS ECOG 0
 - Received Venetoclax plus AZA- Achieved CR1
 - HLA-identical sibling identified

NEXT STEP?

Outcomes with Allo-HCT vs Maintenance Venetoclax + AZA Following Response to Initial Venetoclax + AZA

- HCT vs HCT deferred • P = .002
- HCT deferred vs not HCT candidate survived 60 d P = .035

HCT

Not HCT candidate, survived ≥ 60 d from diagnosis

291

Case 4: Patient with Favorable-Risk AML

- 62-year-old male with fatigue and myalgias
 - CBC: WBC 1.2K, Hb 8.0 gm/dL, PLT 50K
 - BM: AML 30% blasts
 - Abnormal karyotype: inv(16)(p13.1q22)
 - NGS panel with NPM1 mutation
 - No major comorbid illnesses, ECOG PS 0-1

Gemtuzumab ozogamycin

STATUS

- Re-approved in Newly diagnosed CD33+ AML in adults, R/R CD33+ AML in adults (September 2017)
- THERAPEUTIC TARGET: Monoclonal antibody against CD33 linked to a chemotherapy drug

DOSING

- Induction: 3 mg/m2 (up to one 4.5-mg vial) on d 1,
 4, and 7 in combination with daunorubicin and cytarabine
- AEs: VOD/SOS

GO acts like a **homing signal**, bringing the chemo drug into the leukemia cells, where it kills them

Gemtuzumab Ozogamicin Reemergence

- ALFA-0701 (ND, aged 50-70 yr)¹
 - $-7+3 \pm GO (3 \text{ mg/m}^{2 d} 1, 4, 7)$
 - Median OS improved
- MRC AML16 (untreated, older)²
 - LDAC ± GO at 3 mg/m²
 - OS improved
- Meta-analysis 5 RCTs (N = 3325)³
 - No improvement in CR rate
 - OS improved
 - Best results in favorable risk

Response to Gemtuzumab Ozogamicin by Cytogenetic Risk³

Case 4: Patient with Favorable-Risk AML

- 62-year-old male with fatigue and myalgias
 - CBC: WBC 1.2K, Hb 8.0 gm/dL, PLT 50K
 - BM: AML 30% blasts
 - Abnormal karyotype: inv(16)(p13.1q22)
 - NGS panel with NPM1 mutation
 - No major comorbid illnesses, ECOG PS 0-1
- Received 7+3 induction plus GO Achieved CR1

NEXT STEP?

QUAZAR: Oral AZA Maintenance improves OS and RFS

AZA, azacitidine; mut, mutated; NPM1, Nucleophosmin 1.

What about Post-transplant Maintenance with HMAs?

CC-486 Maintenance after Stem Cell Transplantation in Patients with Acute Myeloid Leukemia or Myelodysplastic Syndromes

Marcos de Lima¹*, Betul Oran², Richard E. Champlin², Esperanza B. Papadopoulos³, Sergio A. Giralt³, Bart L. Scott⁴, Basem M. William⁵, Joel Hetzer⁶, Eric Laille⁶, Becky Hubbell⁶, Barry S. Skikne⁶, Charles Craddock⁷

Oral AZA maintenance post-HCT (N = 30)¹

 Well tolerated, low rates of relapse, disease progression, and GVHD

REGULAR ARTICLE

orig

Solood advances

A phase 3 randomized study of 5-azacitidine maintenance vs observation after transplant in high-risk AML and MDS patients

Effect of rhG-CSF Combined With Decitabine Prophylaxis on Relapse of Patients With High-Risk MRD-Negative AML After HSCT: An Open-Label, Multicenter, Randomized Controlled Trial

187 patients with high-risk AML/MDS in CR randomized to post-HCT AZA vs observation²

No difference in RFS between the two study arms

G-CSF and decitabine vs no intervention in 204 patients with high-risk AML post-HCT³

Lower relapse rate in the decitabine arm (HR = 0.32; *P* < .01)

1. de Lima M et al. Biol Blood Marrow Transplant. 2018;24:2017-2024. 2. Oran B et al. Blood Adv. 2020;4:5580-5588. 3. Gao L et al. J Clin Oncol. 2020;38:4249-4259.

Case 5: Patient with AML and FLT3 mutation

- 62-year-old female presents with fatigue and fever
 - CBC: WBC 80K, Hb 7.5 gm/dL, PLT 21K
 - BM: AML 85% blasts, Normal female karyotype
 - NGS panel shows FLT3-ITD mutation (AR 0.8) and NPM1
 - No major comorbid illnesses, ECOG PS 0-1

Midostaurin

STATUS

- Approved plus chemotherapy in adults with ND FLT3-mutation–positive AML (April 2017)
- **THERAPEUTIC TARGET:** Inhibitor of FLT3 protein

DOSING

- 50 mg orally twice daily with food on d 8-21 of each induction cycle with cytarabine and daunorubicin and on d 8-21 of each consolidation cycle with high-dose cytarabine
- AEs: Nausea/Vomiting, Headache, Upper respiratory tract infection

RATIFY: Midostaurin Plus Chemotherapy for AML With FLT3 Mutation

All Patients¹

Transplanted Patients²

However, efficacy is limited, and patients develop resistance³

Other FLT3 Inhibitors Studied for ND FLT3-Positive AML

- Approved by the FDA for relapsed/refractory AML¹
- Combination with induction/consolidation chemotherapy active and well tolerated²
- **PrECOG 0905:** Being compared with midostaurin for frontline *FLT3*-positive AML³
- Approved in Japan
- OS benefit in R/R AML⁴
- QuANTUM-First: Phase III trial studying quizartinib plus chemotherapy vs chemotherapy plus placebo as induction and consolidation therapy in patients with newly diagnosed AML⁵

Perl. NEJM. 2019;381:1728.
 Pratz. Blood 2020; 136 (Supplement 1): 16
 NCT03836209
 Cortes. Lancet Oncol. 2019;20(7):984.
 NCT02668653

Case 5: Patient with AML and FLT3 mutation

- 62-year-old female presents with fatigue and fever
 - CBC: WBC 80K, Hb 7.5 gm/dL, PLT 21K
 - BM: AML 85% blasts, Normal female karyotype
 - NGS panel shows FLT3-ITD mutation (AR 0.8) and NPM1
 - No major comorbid illnesses, ECOG PS 0-1
- 7+3 plus midostaurin Achieved CR1
- MUD identified and patient underwent Allo-HCT

NEXT STEP?

Post-HCT Maintenance options in FLT3 AML

Midostaurin: RATIFY¹

Figure 1: Landmark analysis of DFS during the 12 cycles of maintenance, censoring pts at the time they completed the planned maintenance or discontinued study drug early.

Figure 2: Landmark analysis of DFS for the 104 pts who completed all planned maintenance, starting from the last dose of study drug.

No difference in DFS. Data not conclusive.

Sorafenib: SORMAIN²

Reduction in risk of relapse and death.

BMT-CTN 1506 Morpho Trial³

Gilteritinib vs. Placebo

Larson. ASH 2017. Abstract 145.
 Burchert. 2020. J Clin Oncol 38:2993.
 Levis. ASH 2019. Abstract 732.

Case 6: Patient with AML and IDH1 mutation

• 70-year-old female presents with fatigue and fever

- CBC: WBC 2.0K, Hb 7.5 gm/dL, PLT 22K
- BM: AML 60% blasts with MLD, Normal karyotype
- NGS panel shows IDH1 and DNMT3A mutations
- History of HTN and DM-II, ECOG PS 1-2

Ivosidenib

STATUS

- Approved as single agent for R/R AML with IDH1 mutation (July 2018) or ND AML with IDH1-mutation in adults ≥75 years or who have comorbidities that preclude the use of intensive induction chemotherapy (May 2019)
- Approved in combination with azacitidine for ND AML with IDH1 mutation in adults ≥75 years or who have comorbidities that preclude use of intensive induction chemotherapy (May 2022).
- THERAPEUTIC TARGET: Inhibitor of IDH1 protein
- DOSING
 - 500 mg orally daily (May take 3-4 cycles to respond)
 - AEs: Differentiation Syndrome within first 2 cycles

Mutation in IDH1 gene – Produces IDH1 protein IDH1 protein affect maturation of blood cells

Ivosidenib for ND IDH1-mutant AML

Ivosidenib plus AZA for ND IDH1-mutant AML

• AGILE trial:

- Ivosidenib/AZA vs AZA/placebo
- OS: 24 months vs 7.9 months
- CR rate: 47% vs 11%
- CR/CRi/CRp: 54% vs 12%

Approved by FDA on May 25, 2022

Enasidenib plus AZA for ND IDH2-mutant AML

- Open-label, phase 1b/2 trial
- Enasidenib 100 mg/day plus SC azacitidine 75 mg/m²/day for 7 days

	Enasidenib plus azacitidine (n=68)	Azacitidine only (n=33)	p value
Overall response*	50 (74%; 95% Cl 61–84)	12 (36%; 95% Cl 20–55)	0.0003
Complete remission	37 (54%; 95% Cl 42–67)	4 (12%; 95% Cl 3–28)	<0.0001
Complete remission or complete remission with partial haematological recovery	39 (57%)	6 (18%)	0.0002
Complete remission with incomplete blood count or platelet recovery	6 (9%)	6 (18%)	
Partial remission	4 (6%)	2 (6%)	
Morphological leukaemia-free state	3 (4%)	0	
Stable disease	13 (19%)	16 (48%)	
Disease progression	1 (1%)	1 (3%)	
Not evaluable or missing data	4 (6%)	4 (12%)	
Time to first response, months	1.9 (1.1-3.9)	3.6 (1.9-4.4)	
Time to complete remission, months	5.4 (3.8-7.6)	4.4 (3.8-5.6)	
Duration of response, months	24∙1 (95% CI 10∙0–NR)	9·9 (95% Cl 5·5–13·6)	
Duration of complete remission, months	NR (95% Cl 7·7–NR)	12·7 (95% Cl 11·7–NR)	

Data are n (%; 95% Cl), n (%), median (IQR), or median (95% Cl). Data cutoff Aug 20, 2019. NR=not reached. *Overall response defined as proportion of patients with complete remission, complete remission with incomplete blood count or platelet recovery, partial remission, or morphological leukaemia-free state.

Table 2: Haematological responses in the randomised phase 2 study portion

Back to VIALE-A: Venetoclax plus AZA effective in different Molecular Subgroups: FLT3, IDH1, IDH2 Mutated AML

	/ X /	/ X /	i	X /
Molecular marker				
FLT3	19/29 (65.5)	19/22 (86.4)		0.66 (0.35-1.26)
IDH1	15/23 (65.2)	11/11 (100.0)		0.28 (0.12-0.65)
IDH2	15/40 (37.5)	14/18 (77.8)		0.34 (0.16–0.71)
IDH1 or IDH2	29/61 (47.5)	24/28 (85.7)		0.34 (0.20-0.60)
TP53	34/38 (89.5)	13/14 (92.9)		0.76 (0.40–1.45)
NPM1	16/27 (59.3)	14/17 (82.4)		0.73 (0.36–1.51)
AML with myelodysplasia-related	changes			
Yes	56/92 (60.9)	38/49 (77.6)	F₩	0.73 (0.48–1.11)
No	105/194 (54.1)	71/96 (74.0)	┝╌╋╌┥╎	0.62 (0.46-0.83)
Bone marrow blast count				
<30%	46/85 (54.1)	28/41 (68.3)	⊦ ₩	0.72 (0.45-1.15)
30 to <50%	36/61 (59.0)	26/33 (78.8)	⊢ ∎i	0.57 (0.34–0.95)
≥50%	79/140 (56.4)	55/71 (77.5)	⊢ _ ₩4 ¦	0.63 (0.45-0.89)
		C	0.1 1.0]	.0.0
			← →	
			Azacitidine plus Azacitidine plus	
			Venetoclax Better Placebo Better	

Novel Triplets with Venetoclax/HMA backbone plus targeted agents showing promising activity in Newly Diagnosed AML

A Role for Doublet and Triplet Therapy in *IDH1*-Mutant AML? Ivosidenib and Venetoclax ± AZA

- N = 25 patients with ND AML, R/R AML, or MDS/MPN¹
- IVO + VEN ± AZA is active against *IDH1*-mutated myeloid malignancies, with an acceptable and expected toxicity profile and high rates of MRD-negative CRc in AML

Case 7: Patient with AML and TP53 mutation

- 60-year-old male with fatigue and SOB in last 3 weeks
 - CBC: WBC 1.3K, Hb 8.2 g/dL, PLT 54K, ANC 250
 - Normal renal and liver function. LDH 500
 - History of HL 10 years ago and remains on memission
 - BM: AML 32% blasts, MDS panel with complex karyotype
 - NGS panel shows TP53 and ASXL1 mutations
 - ECOG PS 0-1, HTN
 - HLA-identical sibling identified

AML with TP53 mutation is Chemo-resistant

- TP53 Mutations occur in 10-20% AML
- More common in: t-AML, MDS/AML, Complex karyotype
- Outcomes poor in multi-hit state = Higher VAF

AML with TP53 mutation: Outcomes with Ven/HMA

Mutation	No.	Aza +venetoclax (cCR%)	Azacitidine (cCR%)
IDH1/2		75.4	10.7
FLT3		72.4	36.4
NPM1		66.7	23.5
TP53		55.3	0
cCR=compo	osite com	nlete remission includ	les CR/CRi

- Phase 1b AZA + Venetoclax: Median DOR 5.6 months, median OS 7.2 months
- 10-day Decitabine/venetoclax: Median OS 5.2 months
- Real world data of CPX-351 vs Venetoclax/AZA: No clear winner

- Venetoclax requires intact TP53 protein function to trigger optimal BAX/BAK mediated apoptosis⁵.
- Concurrent targeting of multiple pathways –
 CCL2/MCL1 overcomes resistance in TP53 deficient cells⁵.

AML with TP53 mutation: Resistant despite use of HCT

Tandem 2022:²

- Systematic review and meta-analysis
- N = 460 TP53 AML patients from 6 studies were evaluated who underwent HSCT
- Poor outcomes after HCT in *TP53* AML
- 2-year OS of 15.3%

Magrolimab (5F9) is a novel Macrophage Immune Checkpoint Inhibitor Targeting CD47¹

Additional external "eat me" signals can be provided by cancer-specific antibodies

 Promising early phase results in combination with azacytidine in TP53 mutant AML.

	All AML (N = 43), n (%)	<i>TP53-</i> Mutant AML (n = 29), n (%)
ORR	27 (63)	20 (69)
CR	18 (42)	13 (45)
CRi	5 (12)	4 (14)
PR	1 (2)	1 (3)
MLFS	3 (7)	2 (7)
SD	14 (33)	8 (28)
PD	2 (5)	1 (3)

0

Eprenetapopt (APR-246) in TP53 mutated myeloid malignancies

- APR-246 was developed as a first in class small molecule reactivator of p53 protein function in TP53 mutant cells.
- Recent work has also uncovered TP53 independent activity through triggering of ferroptosis.
- Early phase trials in combination with azacitidine showed promise in AML/MDs.
- A phase III placebo controlled trial conducted in TP53 mutated MDS: APR-246 + AZA vs AZA did not meet the not meet the primary endpoint of CR.
- APR-548, a next generation molecule is in development.

Current Treatment Options for De Novo AML

However, Work Needs to Be Done to Expose Patients to Effective Therapy

ASH 2021: Real-world analysis of 629 newly diagnosed AML patients from a comprehensive health system in the Midwest United States, including metropolitan and rural populations (2011-2018)¹

- 66% of patients aged ≥75 years did not receive any chemotherapy or alternative treatment
- Only 13% of patients had evidence of a genomic report, although it has been used for prognostication for at least the last decade

ASH 2021: Assessment of EMR data from 2,133 AML patients to determine the effect of COVID-19 on AML care²

- Compared with the pre-COVID-19 cohort, post-COVID-19 patients were significantly less likely to receive HCT
- Longer HCT waiting times suggest the pandemic affected access to timely transplantation

