

"DLBCL and Hodgkin Lymphoma"

Eduardo M. Sotomayor, MD

Director, TGH Cancer Institute Professor, USF Morsani College of Medicine University of South Florida

FDA Approvals for Relapsed/Refractory DLBCL (2017-2023)

Bispecific Antibodies....a game changer in DLBCL

Cross-linking results in targeted activation of local T-cells and T-cell-mediated killing of CD20+ B-cells (independently of TCR-mediated recognition)

Bispecific Antibodies in B-cell NHL

The Original: Proof of Concept	The New Onesand more to come			
Blinatumomab ¹	Epcoritamab ²	Mosunetuzumab ³	Glofitamab⁴	Odronextamab⁵
BiTE® α -Target single-chain antibody (scFv) Linker α -CD3 single-chain antibody (scFv)	CD20 CD3		High avidity binding to CD20 on B cells CD3 T-cell engagement reduces toxicity	
CD3 (scFV) x CD19 (scFV)	DuoBody- CD3 x CD20 BsAb	CD3 x CD20 Knobs-in-hole Fc BsAb	CD3 (Fab) x CD20 (Fab x2) Fc BsAb	CD3 x CD20 Common LC Fc BsAb

- Numerous bispecific antibody structures exist
- Properties of the BsAbs vary by construct
- Distinguishing features of BsAbs include:
 - Off-the-shelf rapid access, relative ease of delivery 6,7
 - Adaptable lack of persistence and ability to modulate dosing may improve tolerability⁶

1. Queudeville M, et al. Onco Targets Ther. 2017;10:3567-3578. 2. Clausen MR, et al. J Clin Oncol. 2021;39(suppl 15):7518. 3. Budde LE, et al. Blood. 2018;132(suppl 1):399. 4. Hutchings M, et al. Blood. 2020;136(suppl 1):45-46. 5. Bannerji R, et al. Blood. 2020;136(Suppl_1):42-43. Presented at: ASH 2020. Abstract 400. 6. Husain B, et al. BioDrugs. 2018;32(5):441-464. 7. Schuster S. SurvivorNet. Bispecific antibodies: an off-the-shelf approach to treating lymphoma. Accessed June 23, 2022. https://www.survivornet.com/articles/bispecific-antibodies-an-off-the-shelf-approach-to-treating-lymphoma/

CAR-T and Bispecific Abs: Activation of Endogenous T-cells

<u>Ex vivo</u> modification/activation of endogenous T-cells by "engineering" to unleash their full potential: "Tour de force"

<u>In vivo activation of endogenous</u> T-cells by monoclonal antibodies that also create a "bridge" to target cells, unleashing their full potential

Characteristic	Bispecific Antibodies	CAR T-Cell Therapy
Preparation	"Off the shelf"	In vitro manufacturing (3-4 wks)
Dosing	Repetitive (Lack of persistence and ability to modulate dosing may improve tolerability)	Single (Persistence is associated with some long-lasting side effects)
Side Effects incidence and Grade	Less	Greater

CAR-T and Bispecific Antibodies in DLBCL:

How to use... and sequence them (...a matter of debate)

- Let's look at the data:
 - "Curative" versus non-curative modality
- Factors that would influence their use and/or sequencing:
 - GOAL of Treatment
 - Product-related factors
 - Patient-related factors
 - Tumor-related factors

Pivotal Anti-CD19 CAR T Cell Therapy Trials: Third Line DLBCL

Locke. Lancet Oncol. 2019;20:31. Jacobson. ASH 2020. Abstr 1187. Jaeger. ASH 2020. Abstr 1194. Abramson. Lancet. 2020;396:839.

NCT03391466. NCT03570892. NCT03575351.

CD19 CAR T-cell Therapy: A new SOC in Early Relapsed DLBCL

TRANSFORM: Median EFS²

ZUMA-7: Median EFS¹

1. Locke. NEJM. 2022;386:640. 2. Kamdar.. Lancet. 2022;399:10343.

CD19 CAR T-cells in DLBCL

- Anti-CD19 CAR T-cells have shown significant efficacy as third line and more recently as second line treatment for patients with relapsed/refractory DLBCL.....
 - It is estimated that 30-40 percent of patients with relapsed/refractory DLBCL might be cured!
 - Remaining 60 percent of patients: Unmet need
- Cost, manufacture time, side effects, progression while waiting for engineered T cells and mechanisms of resistance remain a significant challenge....

Bispecifics Antibodies in Diffuse large B-cell lymphoma

Glofitamab for R/R Large B cell lymphoma (3L):

Phase 2 Pivotal Results

Dickinson M et Al. N Eng J Med 2022.

Epcoritamab for R/R DLBCL: Phase 2 Pivotal Study EPCORE

CRS all: 49.7% Grade <u>></u>3: 2.5%. Mainly during C1

CAR-T and Bispecific Antibodies in DLBCL:

How to use... and sequence them (...a matter of debate)

- Let's look at the data:
 - "Curative" versus non-curative modality
- Factors that would influence their use and/or sequencing:
 - GOAL of Treatment
 - Product-related factors
 - Patient-related factors
 - Tumor-related factors

CAR-T and Bispecific Abs in DLBCL:

Factors that would influence their use and/or

sequencing

Treatment Goal:

- Curative Modality

- CAR T-cells: Yes (30-40%)
- Bi-specific : Unknown yet

Product Factors:

- Availability (Clinical trials vs. commercial)
- Regulatory entities approval/indications
- <u>Need for specialized center</u>:
 - CAR T: Yes
 - Bispecifics: No
- Potential administration in outpatient setting
 - CAR T: No (yet?)
 - Bispecifics: Yes (IV and SC)

Patient Factors

- Age, comorbidities
- Prior treatments
- Patient preference:
 - One treatment: CAR T
 - Multiple treatments: Bispecifics

- Cost

Tumor Factors:

- Rapidly growing tumor
 - "Off the shelf": Bi-specifics
 - Need for some therapy for disease control : CAR T-cells
- Tumor antigen density
- Tumor antigen escape
- Tumor Microenvironment

Mosunetuzumab for Untreated Elderly DLBCL ineligible

for anthracycline based CIT

Baseline Characteristics

Untreated DLBCL (n=54) Eligible if:

- Age > 80
- Age 60-79 if: impairment > 1 ADL, instrumental ADL, inability to tolerate full dose CHOP

<u>Results</u>

Best response, n (%) [95% Cl]	N=54
ORR	30 (56) [41–69]
CR	23 (43) [29–57]
Response at EOT, n (%) [95% CI]	N=54
ORR	24 (44) [31–59]
CR	19 (35) [23–49]

CRS grade1-2: 26%, No G≥3 GRS, tocilizumab use 0%

Olszewski et Al. ASH 2022

Sequencing of CAR T-cells and Bispecifics in R/R DLBCL

- <u>CAR T-cells first...then Bispecifics</u>
 - Plenty of data....
 - Several clinical trials have shown the efficacy and safety of Bispecifics after CAR T failures

Figure 1: PFS since first progression (months) after CAR T cells therapy according to type of treatment.

Erbella, et al. ASH 2022 Abstract #553

Sequencing of CAR T-cells and Bispecifics in R/R DLBCL

- Bi-specific first...then CAR T-cells
 - Data is emerging....
 - <u>ASH 2022:</u> French <u>Descar</u> T Registry: CAR T-cell therapy remain effective in pts with R/R B-cell NHL after Bispecific antibodies exposure. Crochet, G. et.al
 - Retrospective study. 28 pts, 23 with DLBCL
 - Mainly Glofitamab: ORR:53.6%; CR: 25%. 6mo PFS: 17.4% mDOR: 2.7months. All pts progressed and went to receive bridge therapy
 - After CAR T-cells: ORR: 91.6%; CR: 45.8%
 - Median follow up 12.3 mo: 1-year PFS:37.2; OS:53.5%
 - No new toxicity signals were identified

<u>R/R DLBCL: Changing the Treatment Paradigm</u> with CAR T cells and Bispecifics

Advanced Hodgkin Lymphoma: Frontline Treatment

NCCN Guidelines in Stage III-IV Classical Hodgkin (Version 2.2023)

Preferred regimen: ABVD × 2 cycles^a (Category 1)

Preferred regimen: BV+AVD (Category 1) (use with caution in patients aged >60 years; contraindicated in those with neuropathy)

Useful in certain circumstances:

Escalated BEACOPP (in select patients if IPS \geq 4, aged <60 years)

ALL RECOMMENDATIONS CATEGORY 2A UNLESS OTHERWISE INDICATED

^a ABVD is preferred based on the toxicity profile and quality of data. National Comprehensive Cancer Network. Hodgkin Lymphoma (Version 2.2023). Accessed February 2, 2023. https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf

Stage III-IV cHL

(aged \geq 18 years)

Restage with FDG-PET/CT (RATHL)

All cycles with BV+AVD include growth factor support

Echelon-1: OS per Investigator at 6-Year Follow-up

<u>Checkpoint blockade Abs in Frontline HL</u> <u>Phase 2 CheckMate 295: Nivo + AVD</u>

- Responses were assessed using the IWG 2007 criteria
- Median duration of follow-up: 11.1 months (clinical cutoff: August 31, 2017)
- Bleomycin was excluded due to potential overlapping pulmonary toxicity

Phase 2 CheckMate 295: Nivo + AVD End of Treatment Response and PFS

1. Ramchandren R, et al. J Clin Oncol. 2019;37(23):1997-2007. 2. Ansell S, et al. Hematol Oncol. 2019;37(S2):146-147.

<u>Checkpoint blockade Abs in Frontline HL:</u> <u>Phase 2 Pembro → AVD</u>

response criteria

pembrolizumab monotherapy

^a The protocol recommended but did not require that patients with positive interim PET-CTs after 2 cycles of AVD chemotherapy transition to escalated BEACOPP

Allen PB, et al. Blood. 2021;137(10):1318-1326.

Phase 2 Pembro → AVD: Response and PFS

^a In 2 patients with early unfavorable stage cHL who received 4 cycles of AVD, diagnostic CT scans substituted for PET4, as permitted by protocol at EOT. ^b Coronal fused PET-CT images of a 23-year-old woman with cHL. ^cOS is identical and not shown.

Allen PB, et al. Blood. 2021;137(10):1318-1326.

Checkpoint blockade Trials in Frontline HL: Safety

	Nivolumab-AVD (n=51) ^{1,a}		Pembrolizumab-AVD (n=30) ^{2,b}	
IRAES, II (70)	Any grade	Grade 3-4	Any grade	Grade 3-4
Hematologic				
Neutropenia	28 (55)	25 (49)	4 (13)	3 (10)
WBC count decreased	7 (14)	1(2)	-	-
Leukopenia	-	-	6 (20)	0
Lymphopenia	-	-	4 (13)	1 (3)
Febrile neutropenia	5 (10)	5 (10)	-	-
Anemia	5 (10)	2 (4)	9 (30)	0
Immune-related AEs				
Rash	3 (6)	0	6 (20)	0
IRR	1 (2)	0	5 (17)	0
Hypothyroidism/thyroiditis	9 (18)	0	2 (10)6	0
Hyperthyroidism	4(8)	0	3 (10)-	0
ALT increased	2 (4)	2 (4)	1 (3)	1 (3)
AST increased	1 (2)	1 (2)	1 (3)	1 (3)
Other ^a				
Nausea	18 (35)	1(2)	5 (17)	0
ALT increased	4 (8)	2 (4)	6 (20)	0
AST increased	-	-	5 (17)	0
Hypertension	-	-	8 (27)	0
IRR	16 (31)	0	-	-
Fatigue	13 (25)	0	4 (13)	0

 $^\circ$ TRAEs in \ge 5% of patients. $^\flat$ Hematologic and other TRAES in >1 patient. $^\circ$ Reported as thyroid disorders. d Nonimmune related.

1. Ramchandren R, et al. J Clin Oncol. 2019;37(23):1997-2007. 2. Allen PB, et al. Blood. 2021;137(10):1318-1326.

Frontline BV+ AVD or BV+Nivo+AD in cHL

- Part B: TN stage IIA (bulky)/IIB/III/IV cHL
- Part C: TN stage I/II nonmediastinal cHL

Frontline BV+ AVD or BV+Nivo+AD in cHL: Efficacy and Safety

Responses	Part B (N=57)
ORR, % (95% CI) ª	93 (83.0-98.1)
CR	88 (76.3-94.9)
PR	5 (1.1-14.6)
Patients with DOR of ≥12 mo, %	93
95% Cl	(81.7-97.2)
Patients with DOCR of ≥12 mo, %	92
95% Cl	(80.0-96.9)

Part B 57(0) 56(0) 56(0) 56(0) 53(2) 51(3) 51(3) 50(3) 33(4) 13(4) 9(4) 8(4) 3(4)

^a Per LYRIC per investigator assessment.

Lee H, et al. ASH 2022. Abstract 314.

Safety, n (%)	Part B (N=57)
Grade ≥3 TEAEs	29 (51)
Any SAE	8 (14)
Any immune-mediated AE	20 (35)
Dose modifications Delay Reduction Elimination	42 (74) 16 (28) 14 (25) 22 (39)

- Nausea (65%), fatigue (47%), and peripheral sensory neuropathy (42%) were the most frequently reported TEAEs
 - Peripheral sensory neuropathy was primarily low grade (4% grade ≥3)

No TEAEs led to death, and no cases of febrile neutropenia were reported

- Most common SAEs were pneumonitis (5%) and pyrexia (5%), and all cases resolved fully
- Most common immune-mediated AEs were hypothyroidism (9%), pneumonitis (5%), and maculo-papular rash (5%)

S1826 Intergroup Study: Frontline Nivo+AVD or BV+AVD in advanced stage cHL (closed to accrual 12/1/2022)

^a G-CSF is mandatory in BV+AVD arm, optional in N+AVD arm

THANK YOU !

esotomayor@tgh.org