Evolving Treatments for the Oncology Practice How the Masters Treat Cancer: Updates in Colorectal Cancer and Anal Cancer

Cathy Eng, MD, FACP, FASCO

David H. Johnson Endowed Chair in Surgical and Medical Oncology Professor of Medicine, Hematology and Oncology

Co-Director, GI Oncology Co-Leader, Gastrointestinal Cancer Research Program Director, Young Adults Cancer Program Co-Chair, NCI GI Steering Committee August 27, 2022

<u>Contact Info</u>: <u>cathy.eng@vumc.org</u> Twitter: @cathyengmd FB: cathy eng-mdcancer www.youngadultswithcancer.com

VANDERBILT-INGRAM CANCER CENTER

GLOBOCAN 2020

Expected global incidence of CRC and anal cancer by 2040

Estimated number of new cases from 2020 to 2040.

Cancer sites	2020		2040
Colon Rectum Anus Total	1,148,515 732,210 50,865 1,931,590	┃ 67% ┃ 58% ┃ 53%	1,916,781 1,160,296 77,597 3,154,674

Sung et al: GLOBOCAN Cancer J. Clin. 2021

#ASC022

PRESENTED BY:

Cathy Eng, MD, FACP, FASCO

DYNAMIC Study Design

ACTRN12615000381583

Stratification Factors

- T stage (T3 vs T4)
- Type of participating center (metropolitan vs regional)

#ASC022

Surveillance:

- CEA \rightarrow 3-monthly for 24M, then 6-monthly for 36M
- CT C/A/P \rightarrow 6-monthly for 24M, then at 36M

PRESENTED BY: Jeanne Tie, NEJM, 2022

ctDNA Analysis: Tumor-Informed Personalized Approach

Resected ____ tumor tissue

FFPE tissue from primary tumor Targeted sequencing identifies mutation(s) <u>unique</u> to that cancer

15 recurrently mutated genes in colorectal cancer

(APC, TP53, KRAS, PIK3CA, FBXW7, BRAF, SMAD4, RNF43, POLE, CTNNB1, ERBB3, NRAS, PPP2R1A, AKT1, HRAS) ---→ Week 4 + 7 --plasma

*Kinde et al. Proc Natl Acad Sci U S A. 2011;108(23):9530-5

PRESENTED BY: Jeanne Tie

Adjuvant Treatment Delivery

Treatment Information	ctDNA-Guided N = 294	Standard Management N = 147	P-value
Adjuvant Chemotherapy received, n	45 (15%)	41 (28%)	0.0017
Chemotherapy regimen received, n Oxaliplatin-based doublet Single agent fluoropyrimidine	28/45 (62%) 17/45 (38%)	4/41 (10%) 37/41 (90%)	<.0001
Time from surgery to commencing chemotherapy, median (IQR), days	<mark>83</mark> (76, 89)	53 (49, 61)	<.0001
Treatment duration, median (IQR), weeks	<mark>24</mark> (19, 24)	24 (21, 24)	0.9318
Completed planned treatment, n	38 (85%)	32 (78%)	0.7036
Percentage of full dose delivered, median (IQR)	78 (56, 100)	84 (64, 100)	0.6194

#ASC022

Recurrence-Free Survival (RFS)

PRESENTED BY: Jeanne Tie

#ASC022

CIRCULATE-JAPAN (GALAXY Study) Results

CONSORT diagram

ctDNA May Guide Adjuvant Treatment for CRC

DFS by ctDNA dynamics from post-op-4w to 12w

dynamics	Neg > Neg	Neg > Pos	Pos > Neg	Pos > Pos
Events/N	31/660	13/32	4/62	50/84
6M-DFS	98.0%	62.5%	100%	58.3%
HR	0.8	9.2	Reference	15.8
95%CI	0.27-2.15	3.0-28.4	-	5.7-44.2
Р	0.60	<0.001	-	<0.001

Neg > Neg

Pos > Nea

Median follow-up time: 11.4 months Data cutoff: Nov 19, 2021

Landmark analysis at the post-op-12w was performed

Neg > Pos

Pos > Pos

JCO.2022.40.4 suppl.009

DFS, disease-free survival; HR, hazard ratio; CI, confidential interval DFS curve was estimated by the Kaplan-Meier method. HR and 95%CI were calculated by the Cox proportional hazard model.

NRG GI-005 (COBRA)

- Phase II To compare the rate of ctDNA clearance in "ctDNA detected" patients treated with or without adjuvant chemotherapy following resection of stage IIA colon cancer.
- Phase III To compare recurrence-free survival (RFS) in "ctDNA detected" patients treated with or without adjuvant chemotherapy following resection of state IIA colon cancer

Pl's: Van Morris, M.D., M.S. Greg Yothers, Ph.D., Scott Kopetz, M.D., Ph.D, Thom George, M.D.

Study Schema

*Patients with completely resected stages II or IIIC colon cancer who are ctDNA +ve as determined by an informed tumor ctDNA test performed outside of the trial through routine clinical care and who otherwise meet all eligibility criteria for Step 1-Registration are eligible for enrollment into Cohort B.

**Patients in Cohort A (Arm 2) who develop a ctDNA +ve assay during serial monitoring may transition to the ctDNA+ve cohort (Cohort B) and undergo a second randomization.

NCT04089631

PD-1 Blockade as Curative-Intent Therapy in dMMR (MSI-H) Locally Advanced Rectal Cancer

Patient population: Stage II and III mismatch repair deficient rectal cancer

Target Enrollment: 30 subjects

Study Design: Simon's two stage minimax design for primary endpoint of RR

Cercek et al: NEJM, 2022

Demographic and disease characteristics of the patients at baseline				
	Value (%)			
Sex				
Male	6 (33)			
Female	12 (67)			
Age, median (range)	54 (26-78)			
Race/Ethnicity				
White non-Hispanic	11 (61)			
Hispanic	1 (6)			
Black or African American	3 (17)			
Asian-Far East/Indian Subcontinent	3 (17)			
Tumor Staging				
T1/2	4 (22)			
T3, T4	14 (78)			
Nodal Staging				
Node-positive	17 (94)			
Node-negative	1 (6)			
Germline Mutation Status n=17				
MSH2, MLH1, MSH6, or PMS2	10 (59)			
Negative	7 (41)			
BRAF V600E wild type	18 (100)			
Tumor Mutational Burden (mut/Mb), mean (range)	67 (36 -106)			

Individual responses to PD-1 blockade with dostarlimab

ID	Age	Stage T	Stage N	FU (months)	Digital rectal exam response	Endoscopic best response	Rectal MRI best response	Overall response 100%
1	38	T4	N+	23.8	CR	CR	CR	cCR
2	30	Т3	N+	20.5	CR	CR	CR	cCR
3	61	T1/2	N+	20.6	CR	CR	CR	cCR
4	28	T4	N+	20.5	CR	CR	CR	cCR
5	53	T1/2	N+	9.1	CR	CR	CR	cCR
6	77	T1/2	N+	11.0	CR	CR	CR	cCR
7	77	T1/2	N+	8.7	CR	CR	CR	cCR
8	55	Т3	N+	5.0	CR	CR	CR	cCR
9	68	Т3	N+	4.9	CR	CR	CR	cCR
10	78	Т3	N-	1.7	CR	CR	CR	cCR
11	55	Т3	N+	4.7	CR	CR	CR	cCR
12	27	Т3	N+	4.4	CR	CR	CR	cCR
13	26	Т3	N+	0.8	CR	CR	CR	cCR
14	43	Т3	N+	0.7	CR	CR	CR	cCR

EA2201: Phase II Study of Neoadjuvant Nivolumab plus Ipilimumab +/- Short Course Radiation in MSI-H Rectal Tumors

- Rectal adenocarcinoma
- T3-4Nx or TxN+ disease based on imaging

- MSI-H/dMMR based on IHC or PCR
- Integral biomarker
- ECOG PS 0-2

NCT04751370: PI: Kristen Ciombor and co-PI: Cathy Eng

Randomized clinical trial of resection of primary tumor versus no resection prior to systemic therapy in patients with colon cancer and synchronous unresectable metastases

- Tx naïve colorectal CA with synchronous metastases not amenable to curative therapy
- Resectable primary tumor, without tumorrelated symptoms or diagnostic findings requiring urgent surgery
- No extensive peritoneal metastases
- ECOG performance status of 0-2

#ASC022

• \geq 18 years of age

Department of Visceral-, Thoracic and Vascular Surgery

Administered Chemotherapy

	СТх	PTR + CTx
	(N=206)	(N=187)
No chemotherapy administered	13 (6.4%)*	45 (24.1%)
1 st line chemotherapy [#]		
Fluoropyrimidine mono	15 (7.9%)	18 (12.7%)
Irinotecan doublet	64 (33.7%)	41 (28.9%)
Oxaliplatin doublet	105 (55.3 %)	73 (51.4%)
Chemotherapy triplet	3 (1.6%)	5 (3.5%)
Other	2 (1.1%)	3 (2.1%)
Chemo + Bevacizumab	82 (43.2%)	55 (38.0%)
Chemo + EGFR-Antibody	33 (17.4%)	38 (26.8%)
Chemo + Bev + EGFR-Antibody	1 (0.5%)	0
No antibody	74 (38.9%)	49 (34.5%)
Number of cycles of 1 st line CTx regimen given [§]	7.8 (± 6.3)	7.4 (± 5.7)

*Missing information for 3 pts.

Missing information for CTx: 1 pt., for PTR+CTx: 2 pts.§ Mean, SD

PRESENTED BY:

#ASC022

Department of Visceral-, Thoracic and Vascular Surgery

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Jürgen Weitz, MD

SYNCHR • NOUS & CCRe-IV

Primary Endpoint: Overall Survival (ITT)

2022 ASCO

PRESENTED BY: Jürgen Weitz, MD

#ASC022

Department of Visceral-, Thoracic and Vascular Surgery

Panitumumab plus mFOLFOX6 versus Bevacizumab plus mFOLFOX6 as first-line treatment in patients with *RAS* wild-type metastatic colorectal cancer: results from the phase 3 PARADIGM trial

<u>Takayuki Yoshino¹</u>, Jun Watanabe², Kohei Shitara¹, Kentaro Yamazaki³, Hisatsugu Ohori⁴, Manabu Shiozawa⁵, Hirofumi Yasui⁴, Eiji Oki⁶, Takeo Sato⁷, Takeshi Naitoh⁸, Yoshito Komatsu⁹, Takeshi Kato¹⁰, Masamitsu Hihara¹¹, Junpei Soeda¹¹, Kouji Yamamoto¹², Kiwamu Akagi¹³, Atsushi Ochiai¹⁴, Hiroyuki Uetake¹⁵, Katsuya Tsuchihara¹⁶, Kei Muro¹⁷

¹Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ²Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan; ³Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan; ⁴Division of Medical Oncology, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan; ⁵Division of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan; ⁶Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; ⁷Research and Development Center for Medical Education, Department of Clinical Skills Education, Kitasato University School of Medicine, Sagamihara, Japan; ⁸Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan; ⁹Division of Cancer Chemotherapy, Hokkaido University Hospital Cancer Center, Sapporo, Japan; ¹⁰Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan; ¹¹Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Ltd., Tokyo, Japan; ¹²Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan; ¹³Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan; ¹⁴Pathology Division, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan; ¹⁷Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan

#ASCO22

PRESENTED BY: Takayuki YOSHINO, MD, PhD

Meta-Analysis of PEAK, FIRE-3 and CALGB 80405: OS

#ASC022

Cathy Eng, MD, FACP, FASCO

PARADIGM Trial Design

Phase 3, randomized, open-label, multicenter study (NCT02394795)

Stratification factors

- Institution
- Age: 20–64 vs 65–79 years
- Liver metastases: present vs absent

DCR, disease control rate; DOR; duration of response; ECOG, Eastern Cooperative Oncology Group; ETS, early tumor shrinkage; mCRC, metastatic colorectal cancer; OS, overall survival; PFS, progression free survival; RR, response rate; R0, curative resection; WT, wild type.

^aAdjuvant fluoropyrimidine monotherapy allowed if completed > 6 months before enrollment. ^bUntil disease progression, unacceptable toxicity, withdrawal of consent or investigator's judgement or curative intent resection. ^CPrimary tumor in descending colon, sigmoid colon, rectosigmoid, and rectum.

#ASC022

PRESENTED BY:

Takayuki YOSHINO, MD, PhD

Median follow-up time: 61 months

^aPanitumumab arm (2 patients [pts] with Stage 3 and 2 pts with previous chemotherapy), Bevacizumab arm (3 pts with Stage 3, one pt with previous chemotherapy and one pt with prostate cancer with rectal invasion). ^bRandomized pts who received at least one dose of study treatment and satisfied the eligibility criteria. ^cRandomized pts who received at least one dose of study treatment.

PRESENTED BY: Takayuki YOSHINO, MD, PhD

#ASC022

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

21

Baseline Patient Characteristics

	Left-sided Population		Overall Population		
Characteristic	Panitumumab + mFOLFOX6 (n=312)	Bevacizumab + mFOLFOX6 (n=292)	Panitumumab + mFOLFOX6 (n=400)	Bevacizumab + mFOLFOX6 (n=402)	
Age category, n (%)					
20–64 years	138 (44.2)	127 (43.5)	164 (41.0)	168 (41.8)	
65–79 years	174 (55.8)	165 (56.5)	236 (59.0)	234 (58.2)	
Sex, female, n (%)	104 (33.3)	91 (31.2)	148 (37.0)	134 (33.3)	
ECOG performance status, n (%)					
0	261 (83.7)	231 (79.1)	328 (82.0)	319 (79.4)	
1	51 (16.3)	61 (20.9)	71 (17.8)	83 (20.6)	
Primary tumor location, n (%) ^a					
Left-sided	312 (100.0)	292 (100.0)	312 (78.0)	292 (72.6)	
Right-sided	0	0	84 (21.0)	103 (25.6)	
Number of metastatic organs, n (%)					
1	155 (49.7)	147 (50.3)	196 (49.0)	194 (48.3)	
≥2	157 (50.3)	145 (49.7)	204 (51.0)	208 (51.7)	
Metastatic site, n (%)			075 (00.0)		
Liver	225 (72.1)	206 (70.5)	275 (68.8)	278 (69.2)	
Liver as only site of metastasis	90 (28.8)	89 (30.5)	105 (26.3)	113 (28.1)	
Prior treatment, n (%)					
Primary tumor resection	185 (59.3)	193 (66.1)	239 (59.8)	272 (67.7)	
Radiotherapy	2 (0.6)	2 (0.7)	2 (0.5)	3 (0.7)	
Adjuvant chemotherapy ^b	17 (5.4)	16 (5.5)	22 (5.5)	20 (5.0)	

^a 4 patients receiving panitumumab and 7 patients receiving bevacizumab had multiple primary lesions in both the left-sided and right-sided. ^b Adjuvant fluoropyrimidine monotherapy allowed if completed > 6 months before enrollment.

#ASC022

Primary Endpoint-1; Overall Survival in Left-sided Population

PRESENTED BY:

Takayuki YOSHINO, MD, PhD

#ASC022

ANNUAL MEETING

23

Subgroup Analyses of Overall Survival in Left-sided Population

Subgroup		Events/Patients			
		Panitumumab ⊥	Bevacizumab ⊥	(95% CI)	
		mFOLFOX6	mFOFLFOX6		
	Overall*	218/312	230/292	0.82 (0.68–0.99)	
A mo	20-64 yr	95/138	95/127	0.86 (0.65–1.15)	
Age	65-79 yr	123/174	135/165	0.80 (0.63–1.02)	
Sav	Male	147/208	164/201	0.76 (0.61–0.95)	
Sex	Female	71/104	66/91	1.00 (0.71–1.40)	
	0	182/261	179/231	0.87 (0.70–1.07)	
ECOG PS	1	36/51	51/61	0.70 (0.46–1.08)	
No. of organs with	0-1	91/155	100/147	0.81 (0.61–1.08)	
metastasis	≥2	127/157	130/145	0.81 (0.64–1.04)	
	No	56/87	59/86	0.91 (0.63−1.32)	
Liver metastasis	Yes	162/225	171/206	0.79 (0.63–0.97)	
Ormana with matastasis	Liver only	52/90	65/89	0.71 (0.49–1.02)	
Organs with metastasis	Other	166/222	165/203	0.87 (0.70–1.07)	
	No	101/127	81/99	1.02 (0.76–1.37)	
Primary tumor resection	Yes	117/185	149/193	0.69 (0.54–0.89)	
			0		
				Panitumumab Better Bevacizumab Better	

*Stratified Hazard Ratio is shown with 95.798% CI.

#ASC022

PRESENTED BY: Takayuki YOSHINO, MD, PhD

Other Efficacy Outcome: Depth of Response and RR

Horizontal dotted line at 30% indicates response per RECIST v1.1.

#ASC022

	Left-sided Population				
	Panitumumab + mFOLFOX6 (n=288)	Bevacizumab + mFOLFOX6 (n=268)			
Median, %	-59.4	-43.6			

Depth of response was assessed in patients with measurable lesions at baseline.

PRESENTED BY: Takayuki YOSHINO, MD, PhD

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

25

	Left-sided Population		
Parameter	Panitumumab + mFOLFOX6 (n=308)	Bevacizumab + mFOLFOX6 (n=287)	
Response rate, % (95% CI)	80.2 (75.3–84.5)	68.6 (62.9–74.0)	
Difference, % (95% CI)	11.2 (4.4–17.9)		
DCR, % (95% CI)	97.4 (94.9–98.9)	96.5 (93.7–98.3)	
Median DOR, ^a months (95% CI)	13.1 (11.1–14.8)	11.2 (9.6–13.1)	
R0 rate, ^ь % (95% Cl)	18.3 (14.1–23.0)	11.6 (8.2–15.9]	

VOLFI: Randomized Phase II study of mFOLFOXIRI + panitumumab vs. FOLFOXIRI in treatment-naïve with RAS wild-type mCRC: AIO (AIO-KRK-0109)

- Primary endpoint: ORR
- **Open-label**, 2:1 randomized phase II study
- Study population: Adults with previously untreated non-resectable mCRC (randomization period 6/2011-1/2017)

VOLFI: Randomized Phase II study of mFOLFOXIRI + panitumumab vs. FOLFOXIRI in treatment-naïve with *RAS* wildtype mCRC: AIO (AIO-KRK-0109)

TRIPLETE trial

Stratification factors:

- ECOG Performance Status (0-1 vs 2)
- Primary tumor location (right vs left)
- Metastatic spread (liver-only vs not liver-only)

57 participating centers From September 2017 to September 2021

Response and Resection Rate

	FOLFOX/Pan N = 213	mFOLFOXIRI/Pan N = 218	OR [95%Cl], p
Complete Response	7%	7%	
Partial Response	69%	66%	
Response Rate	76%	73%	0.87 [0.56-1.34], <mark>p=0.526</mark>
Stable disease	17%	18%	
Progressive Disease	5%	5%	
Not Assessed	2%	4%	
R0 Resection Rate	29%	25%	0.81 [0.53-1.23], p= <mark>0.317</mark>

Progression Free Survival

Conclusions

- mFOLFOXIRI plus panitumumab should NOT be recommended as upfront therapy for RAS and BRAF wt mCRC patients
- ✓ Our results indirectly support patients' selection according to primary tumor site beside RAS and BRAF mutational status to improve the efficacy of anti-EGFR-based regimens.
- ✓ When the use of targeted agents is optimized in a clinically and molecularly selected population, there is no added value from the intensification of the associated chemotherapy backbone.

MSI-S Colorectal Cancer: BRAF MT

Updated Overall Survival: ENCO/CETUX vs Control

ANCHOR CRC: a single-arm, phase 2 study of encorafenib, binimetinib plus cetuximab in treatment-naïve BRAF^{V600E}-mutant mCRC

Progression Free Survival for Stage 1: ANCHOR

2020

VIRTUAL

- World GI Congress ESMO 2021: Stage 2 update
- N=92

WORLD CONGRESS ON

Cancer

Gastrointestinal

- The investigator-assessed cORR was 47.8% (95% confidence interval [CI] 37.3-58.5). There were no meaningful differences in cORR in subgroup analysis. The DCR was 88%.
- Regarding survival, median PFS was 5.8 months (95% CI 4.6-6.4) and median OS was 17.2 months (95% CI 14.1-NE

Phase I/II trial of encorafenib, cetuximab, and nivolumab in patients with microsatellite stable, *BRAF*^{V600E} metastatic colorectal cancer

Abstract #351993

Van K. Morris¹, Christine M. Parseghian¹, Michelle Escano¹, Benny Johnson¹, Kanwal Pratap Singh Raghav¹, Arvind Dasari¹, Ryan Huey¹, Michael J. Overman¹, Jason Willis¹, Michael S. Lee¹, Robert A. Wolff¹, Bryan K. Kee¹, John Paul Y.C. Shen¹, M. Pia Morelli¹, Alda Tam², Wai Chin Foo³, Lianchun Xiao⁴, Scott Kopetz¹

Departments of ¹Gastrointestinal Medical Oncology, ²Interventional Radiology, ³Pathology, & ⁴Biostatistics

University of Texas – MD Anderson Cancer Center, Houston TX

Study Design

Pts with MSS, *BRAF*^{V600E} metastatic CRC, AND

- 1-2 prior lines of systemic therapy

#GI22

- ECOG PS 0-1

ASCO Gastrointestinal

Cancers Symposium

 <u>No</u> prior (1) BRAF, MEK, ERK; (2) anti-EGFR; or (3) immune checkpoint therapies

PRESENTED BY: Van Morris, MD

Study Treatment:

Encorafenib 300 mg PO daily

Cetuximab 500 mg/m² IV every 14 days Nivolumab 480 mg IV every 28 days

Primary endpoints:

- Radiographic response (RECIST 1.1)
- Safety/tolerability (CTCAE v5)

Secondary endpoints:

- Progression-free survival
- Overall survival
- Duration of response
- Disease control rate
- Time to response

Survival outcomes: encorafenib + cetuximab + nivolumab

Progression-free survival

Overall survival

• ORR = 50%

Median follow-up time: 16.3 months (95% CI, 6.9 – NA) Median duration of response: 7.7 months (95% CI, 3.8 – NA)

Encorafenib + cetuximab: median PFS 4.2 months (95% CI, 3.7-5.4), median OS 8.4 months (95% CI, 7.5-11.0)¹

¹Kopetz S et al, NEJM 2019

ASCO[•] Gastrointestinal Cancers Symposium

PRESENTED BY: Van Morris, MD Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Conclusions

- Encorafenib + cetuximab + nivolumab is safe and well tolerated for participants with MSS, BRAF^{V600E} metastatic CRC.
- The predefined efficacy endpoint for encorafenib + cetuximab + nivolumab has been met for participants with MSS, *BRAF^{V600E}* metastatic CRC: ORR is 50%, and median PFS is 7.4 months.
- These results compare favorably relative to encorafenib + cetuximab (without immunotherapy) as reported in the BEACON study.
- SWOG 2107 is a randomized phase II study that will activate across the United States in 2022 to evaluate encorafenib + cetuximab with or without nivolumab in this population.

SWOG 2107

Pts with MSS, BRAF^{V600E} metastatic CRC, AND

- 1-2 prior lines of systemic therapy
- ECOG PS 0-1
- <u>No</u> prior (1) BRAF, MEK, ERK; (2) anti-EGFR; or (3) immune checkpoint therapy

ASCO[•] Gastrointestinal Cancers Symposium

Phase III Breakwater Trial

Treatment period Arm A \rightarrow Encorafenib + cetuximab (N=290) Arm B* Encorafenib + cetuximab + mFOLFOX6 \rightarrow Randomization 1:1:1 OR Monitoring period Screening period Encorafenib + cetuximab + FOLFIRI (N=290) Control Arm (standard-of-care chemotherapy) Arm C Investigators' choice: mFOLFOX6 ± bevacizumab, \rightarrow FOLFIRI ± bevacizumab, FOLFOXIRI ± bevacizumab, OR $CAPOX \pm bevacizumab$ (N=290)

KRAS G12C Mutation Inhibitors

Sotarasib: KRAS G12C Previously Treated mCRC

Phase 3: Sotorasib + Panitumumab

Patients

- > 1 prior line of treatment for mCRC
- KRAS G12C MT
- ECOG PS 0-2
- N=193
- *Not yet recruiting NCT05198934

Adagrasib in Patients With Other GI Tumors:^a Best Tumor Change From Baseline and Duration of Treatment

Best Tumor Change From Baseline (n=17)^{b,c}

- Response rate:
 - Biliary tract cancer: 50% (4/8), including 2 unconfirmed PRs
 - GEJ and small bowel cancer: 1 PR each
- DCR: 100% (17/17 patients)

- Median DOR: 7.85 months
- Median PFS: 7.85 months (95% CI 6.90–11.30)
- Treatment ongoing in 65% (11/17) of patients

DCR, disease control rate; DOR, duration of response; GEJ, gastro-esophageal junction; PR, partial response; SD, stable disease; TTR, time to response.

^aExcluding CRC and PDAC; ^bEvaluable population (n=17) excludes 1 patient who withdrew consent prior to the first scan; ^cAll results are based on investigator assessments; ^d1 patient with appendiceal cancer and 1 patient with esophageal cancer had maximum % change from baseline of 0; ^eAt data cut-off, 2 patients had unconfirmed PR.

Data as of 10 Sept 2021 (median follow-up: 6.3 months).

Ongoing Phase I and III Trials: Mirati and Eli-Lilly

Incidence of Anal Cancer

Rising in annual incidence by 2.7%

Estimated New Cases in 2022	9,440	5-Year Relative Survival
% of All New Cancer Cases	0.5%	70.1%
Estimated Deaths in 2022	1,670	2012-2018
% of All Cancer Deaths	0.3%	

https://seer.cancer.gov/statfacts/html/anus.html; Eng et al: JCO, 2022

VANDERBILT-INGRAM CANCER CENTER

Ongoing Pending Trials: Locally Advanced Disease

EA2182 (NCT04166318) A Randomized Phase II Study of <u>De</u>-Intensified <u>ChemoRadiation for Early-Stage Anal Squamous Cell Carcinoma (DECREASE)</u>

*Cycle = 4 weeks (28 days)

Eng et al: JCO, in press, 2022

VANDERBILT-INGRAM CANCER CENTER

Premise for Immunotherapy in Metastatic Anal Cancer

Efficacy of Immune Checkpoint Inhibition in Previously Treated Metastatic SCCA

Drug	Phase	Ν	Dose	Primary endpoint	Secondary Endpoints
ETCTN NCI9673: Nivolumab (Part A)	Π	34	3 mg/kg IV q2 wks	ORR: 24% (2CR's)	PFS: 4.1M OS: 11.5M
Pembrolizumab (KN-158)	1/11	112	200 mg IV q3 wks	ORR:11% (No CR's)	PFS: 2.0M OS: 11.9M
Retifanlimab (POD1UM-202)	Π	94	500 mg IV q4 wks	ORR: 14% (1CR)	PFS: 2.3M OS:10.1M

Morris et al: Lanc Onc, 2017; Marabelle et al: Lancet Gastro and Hep, 2022;; Rao et al: Annals of Onc, 2020

Immunotherapy Trials in Anal Cancer

Localized Disease			Advand	ed Disease	Treatment	Trial Number	Phase
Neoadjuvant	Concomitant	Adjuvant	First-Line	≥Second-Line			
		NCI-EA2165			Nivolumab + IMRT	NCT03233711	Ш
1	INTERACT-ION				Ezabenlimab + mDCF + IMRT	NCT04719988	II
RADIANCE				Durvalumab + IMRT	NCT04230759	II	
	CORINTH	20			Pembrolizumab + IMRT	NCT04046133	I/II
	BrUOG 276				ADXS11-001 + IMRT	NCT01671488	I/II
			POD1UM-303		Retifanlimab + CP	NCT04472429	III
			NCI-EA2176		Nivolumab + CP	NCT04444921	III
		-	SCARCE		Atezolizumab + mDCF	NCT03519295	II
			SPARTANA		Spartalizumab + mDCF + SBRT	NCT04894370	I/II
				VolaTIL	Atezolizumab + UCPVax	NCT03946358	II
			NCI-2015-01004	Nivolumab + ISA101	NCT02426892	II	
			NCI-2018-00914	Durvalumab + INO311	NCT03439085	II	
			NCI-20-C-0104	M7824 + PRGN-2009	NCT04432597	I/II	
		-	NCI9673	Nivolumab + Ipilimumab	NCT02314169	II	
		1	DUET-2	XmAb20717	NCT03517488	Ι	
				HESTIA	Nivolumab + HPVST cells	NCT02379520	I
			-	CARACAS	Avelumab + Cetuximab	NCT03944252	II
				NCI-2017-00501	Atezolizumab + Bevacizumab	NCT03074513	II

LBA 3508: Atezolizumab plus modified DCF (docetaxel, cisplatin, and 5-fluorouracil) as first-line treatment for metastatic or locally advanced squamous cell anal carcinoma (SCCA). A SCARCE-PRODIGE 60 randomized phase II study

<u>Stefano Kim</u>,¹ François Ghiringhelli, Christelle de la Fouchardière, Eric François, Denis Smith, Emmanuelle Samalin, Daniel Lopez-Trabada Ataz, Aurélia Parzy, Jérôme Desramé, Nabil Baba Hamed, Bruno Buecher, David Tougeron, Oliver Bouché, Benoist Chibaudel, Farid El Hajbi, Marie-Line Garcia-Larnicol, Aurélia Meurisse, Dewi Vernerey, Simon Pernot, Christophe Borg

¹Clinical Investigational Center CIC-1403, University Hospital of Besançon; University of Bourgogne-Franche Comté, Besançon, France

Atezolizumab plus modified DCF (docetaxel, cisplatin, and 5-fluorouracil) for metastatic or locally advanced squamous cell anal carcinoma (SCCA): A randomized phase II study (SCARCE-PRODIGE 60)

Stratification: age (<65 vs ≥65 years), stage (synchronous metastatic vs metachronous metastatic vs locally advanced unresectable disease without metastasis)

Kim et al: ASCO, 2022

Primary endpoint – 1-year PFS rate

Kim et al: ASCO, 2022

Platinum +/- Immune Checkpoint Inhibitors in Other Squamous Cell Cancers

Phase III: Carboplatin + Paclitaxel (Nab) +/-Pembrolizumab in Squamous NSCLC (KN407) Platinum +/- Pembrolizumab in Cervical Cancer 24M OS = 50.4% and 40.4% (KN826)

Ongoing Pending Trials: Metastatic Anal Cancer

EA2165 (NCT03233711): A Randomized Phase III Study of Nivolumab After Combined Modality Therapy (CMT) in High-Risk Anal Cancer

Completed enrollment; final data pending

Eng et al: JCO 2022

NCI9673 (Part B): Randomized Phase II ETCTN Study of Nivolumab +/- Ipilimumab in Metastatic SCCA of the Anal Canal:

Patients with metastatic squamous cell carcinoma of the anal canal
- Treated with ≥ 1 prior therapy for metastatic disease
- No prior immune therapies received as part of cancer treatment

Primary endpoint: PFS Secondary endpoints: OS, RR, and SAE's Exploratory correlatives to be collected

NCT02314169

Phase II evaluation of the triple combination of PDS0101, M9241, and bintrafusp alfa in patients with HPV-16 positive malignancies NCT04287868

- HPV 16 E6/E7 vaccine + immunocytokine (IL-12) + bifunctional fusion protein of TGF-ß+ PD-L1
- Allowed IO-naïve and refractory patients
- N=56 (actively enrolling)
- 5 cervical, 2 vaginal/vulvar, 4 anal, 3 oropharyngeal SCCA
- Grade 3 SAE's (29%): Hematuria, elevation in transaminases
- Grade 4: Neutropenia
- RR = 71% (83% IO naïve; 63% IO refractory)
 - 1CR, 9 PR's (Anal CA = 2)
 - *Early data: Median follow-up only 5M
- Other combo trial: Bintrafusp alfa + M9241+ entinostat (NCT04708470)

EA2176: Phase 3 Clinical Trial of Carboplatin and Paclitaxel +/-Nivolumab in Treatment-Naive Metastatic Anal Cancer Patients NCT04444921

Co-Pl's: A. Benson, K. Ciombor

Journal of Clinical Oncology®

An American Society of Clinical Oncology Journal

eview

5

DOI: 10.1200/JCO.21.02566 Journal of Clinical Oncology

Published online June 01, 2022.

PMID: 35649196

SPECIAL SERIES: PRECISION MEDICINE AND IMMUNOTHERAPY IN GI MALIGNANCIES Anal Cancer: Emerging Standards in a Rare Disease

Cathy Eng, MD¹; Kristen K. Ciombor, MD, MSCl¹; May Cho, MD²; Jennifer A. Dorth, MD³; Lakshmi N. Rajdev, MD⁴; David P. Horowitz, MD⁵; Marc J. Gollub, MD⁶; Alexandre A. Jácome, MD, PhD⁷; Natalie A. Lockney, MD⁸; Roberta L. Muldoon, MD⁹; Mary Kay Washington, MD, PhD¹⁰; Brittany A. O'Brian, BS¹; Amala Benny, BS¹; Cody M. Lebeck Lee, MD¹¹; AI B. Benson III, MD¹²; Karyn A. Goodman, MD, MS¹³; and Van Karlyle Morris, MD¹⁴

The social stigma surrounding an anal cancer diagnosis has traditionally prevented open discussions about this disease. However, as recent treatment options and an increasing rate of diagnoses are made worldwide, awareness is growing. In the United States alone, 9,090 individuals were expected to be diagnosed with anal cancer in 2021. The US annual incidence of squamous cell carcinoma of the anus continues to increase by 2.7% yearly, whereas the mortality rate increases by 3.1%. The main risk factor for anal cancer is a human papillomavirus infection; those with chronic immunosuppression are also at risk. Patients with HIV are 19 times more likely to develop anal cancer compared with the general population. In this review, we have provided an overview of the carcinoma of the anal canal, the role of screening, advancements in radiation therapy, and current trials investigating acute and chronic treatment–related toxicities. This article is a comprehensive approach to presenting the existing data in an effort to encourage continuous international interest in anal cancer.

J Clin Oncol 00. © 2022 by American Society of Clinical Oncology

Check for upd

Acknowledgements:

- ECOG and NCI-CTEP:
 - Al Benson (Northwestern)
 - Van Morris, MD (MD Anderson Cancer Center)
 - Kristin Ciombor, MD (Vanderbilt-Ingram Cancer Center)
 - Peter O'Dwyer (ECOG Chair)
 - Howard Streicher (NCI)
- International Rare Cancers Initiative (IRCI)
- Thank you to our anal CA patients, caregivers, and our national patient advocates
- In memory:
 - Michelle Longabaugh, RN, author, blogger, friend, and NCI patient advocate

