

Leading History Reshaping Future

Heinz-Josef Lenz

Professor of Medicine and Preventive Medicine Deputy Cancer Center Director J Terrence Lanni Chair in Cancer Research Director, USC Center for Cancer Drug Development USC/Norris Comprehensive Cancer Center Los Angeles, California

Number of Targeted Therapeutics is Rising Knowing Which Tests to Order is the Challenge

Genomic Markers in CRC

CALGB/SWOG 80405: OS by Tumor Location (*RAS* WT)

*Adjusted for biologic, protocol CT, prior adjuvant therapy, prior RT, age, sex, synchronous disease, in place primary, liver metastases. Lenz et al presented at: ESMO. 2016.

Novel Approaches (Leading)

RAS/RAF (G12C, G12D, G12V)
 2. Pan Inhibitor
 3. Metabolic Targets
 4. Novel Immune therapies for MSS CRC

Codebreak

- Sotorasib, a selective KRAS^{G12C} inhibitor, is approved in Europe, the US, and other countries • for patients with previously treated KRAS p.G12C-mutated NSCLC1-4
- In Phase 1/2 of the CodeBreaK 100 study,^{5,6} sotorasib monotherapy demonstrated: •

NSCLC

- ORR: 41% •
- Median PFS: 6.3 months

1-Year OS: 50.8% (42.8, 58.2)

0 2 4 6

Number of Patients: 174 163 141 121 101 88 77

Months

10.0. 17.8

DCR: 84%

1.0 Probability 6.0 6.0 6.0

E cont-free B 0.5 - 0.4 - 0.3 - 0.3 - 0.2 - 0.1 - 0.

0.1 -

0.0

CRC

We describe putative mechanisms of acquired resistance to sotorasib in patients with CRC from the CodeBreaK 100 study

1. Canon J, et al. Nature. 2019;575:217–23; 2. Lumakras (sotorasib). Prescribing Information. Thousand Oaks, CA, Amgen Inc., 2021; 3. Lumykras (sotorasib). Summary of Product Characteristics, Cambridge, UK, Amgen Ltd, 2021; 4. Lumykras (sotorasib). European Medicines Agency, Amsterdam, Netherlands, Amgen Inc., 2021; 5. ClinicalTrials.gov. NCT03600863. Accessed 8 June 2022; 6. Dy GK, et al. Oral Presentation at AACR Annual Meeting 2022; April 8–13, New Orleans, LA. Abstract CT008.

CI, confidence interval; CRC, colorectal cancer; DCR, disease control rate; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival.

Putative Acquired Resistance Mechanisms After Sotorasib^a

OncoKB¹

- 16/100 alterations were potentially targetable^b
- Higher incidence of secondary RAS variants in CRC versus NSCLC

RTK gene alterations were the most prevalent acquired genomic alteration in patients with CRC (12/45; 27%)

1. Chakravarty D, et al. JCO Precis Oncol. 2017, doi:10.1200/PO.17.00011.

^aMutation rate presented based on 45 evaluable patients with CRC; ^bActionability levels defined in full at <u>https://www.oncokb.org/levels</u>. Actionable variants: Level 1; *BRCA1* E352* (n = 1), *BRCA2* S196R (n = 1), *CDK12* G909* (n = 1), *PIK3CA* E542K (n = 2). Level 2; *PIK3CA* R38C (n = 1). Level 4; *ARID1A* Q1402* (n = 1), *ARID1A* R1721* (n = 1), *ARID1A* single nucleotide variant (n = 1), *CDKN2A* truncating mutation (n = 1), *EGFR* copy number variant (n = 6); *Termination or stop codon.

CRC, colorectal cancer; NSCLC, non-small cell lung cancer.

CRC patients with G12C with multiple acquired mechanisms of resistance Awad et al NEJM 2021

Drug (sponsor/collaborator)	Description	Phase Clinical trial name/ Clinicaltrials.gov identifier		
KRAS G12C inhibitors				
Sotorasib (AMG 510) (Amgen)	Vs docetaxel in previously treated locally advanced and unresectable or metastatic KRAS G12C-mutant NSCLC	Phase 3 CodeBreak 200/ NCT04303780		
	In KRAS G12C-mutant advanced nonsquamous NSCLC	Phase 2 Lung-MAP cohort/NCT04625647*		
	+/- a PD-1/PD-L1 inhibitor in KRAS G12C- mutant advanced solid tumors	Phase 1/2 CodeBreak 100/NCT03600883		
	+/- various different drugs in KRAS G12C- mutant advanced solid tumors	Phase 1 CodeBreak 101/NCT04185883		
Adagrasib (MRTX849) (Mirati Therapeutics, Inc)	+ pembrolizumab in KRAS G12C-mutant advanced NSCLC	Phase 2 KRYSTAL-7/NCT04613596		
	+/- cetuximab, afatinib, or pembrolizumab in KRAS G12C-mutant advanced solid tumors	Phase 1/2 KRYSTAL-1/NCT03785249		
	+ TNO 155 (SHP2 inhibitor) in <i>KRAS</i> G12C- mutant advanced solid tumors	Phase1/2 KRYSTAL-2/NCT04330664		
GDC-6036 (Genentech, Inc)	+/- atezolizumab, cetuximab, bevacizumab, or erlotinib in <i>KRAS</i> G12C-mutant advanced or metastatic solid tumors	Phase 1 GO42144/NCT04449874		
Exosomes engineered to deliver siRNA targeting <i>KRAS</i> G12D				
iExosomes (The University of Texas MD Anderson Cancer Center)	In KRAS G12D-mutant metastatic pancreatic cancer	Phase 1 2018-0126/NCT03608631*		
mRNA vaccine targeting <i>KRAS</i> G12C, G12D, G12V, and G13D				
mRNA-5671 (Moderna Therapeutics/Merck)	+/- pembrolizumab in <i>KRAS</i> G12C-, G12D-, G12V-, or G13D-mutant advanced/ metastatic NSCLC, CRC, or pancreatic adenocarcinoma with specific HLA subtypes	Phase 1 V941-001/NCT03948763		
T cells transduced with <i>KRAS</i> G12V–specific TCRs				
KRAS TILs (Changhai Hospital/Providence Cancer Center, Earle A. Chiles Research Institute)	In KRAS G12V-mutant advanced pancreatic cancer with a specific HLA subtype	Phase 1/2 ChanghaiH-PP06/NCT04146298		

TABLE. Clinical Development of KRAS Mutant-Specific Inhibitors

CRC, colorectal cancer; HLA, human leukocyte antigen; NSCLC, non-small cell lung cancer siRNA, small interfering RNA; TCR, T-cell receptor; TIL, tumor-infiltrating lymphocyte.

Trial is not yet recruiting participants.

KRAS or BRAF mutant CRC cells rewire glucose metabolism by upregulating GLUT1 expression

We developed a strategy for targeting KRAS or BRAF-mutant cancers by exploiting the selective high expression of GLUT1 and the high levels of reactive oxygen species (ROS) produced in these cells with vitamin C

PCM-075 in Combination with Anticancer Agents in CRC

- In the HCT116 cell line, PCM-075 was found to be synergistic in vitro with different class of drugs including:
 - the chemotherapeutic agent cisplatin
 - the active metabolite of the topoisomerase inhibitor irinotecan (SN-38)
 - the microtubule inhibitor paclitaxel

> In the HT29 xenograft model, PCM-075 was found to be:

- Synergistic with the topoisomerase inhibitor irinotecan
- Additive with the chemotherapeutic agent fluorouracil (5FU) or the angiogenesis inhibitor bevacizumab

Kras mutations are immunosuppressive through AGER inducing STAT3, TFGB, IL10 and ARG1 leading to Polarization of M2 Makrophages

KRAS^{G12C} Inhibition Enhances Immune Responses: MRTX849 and Anti-PD-1 in Syngeneic Mouse Model

- MRTX849 plus anti–PD-1 leads to:
 - Decrease in M2-polarized macrophages, and M- and G-MDSCs
 - Increased immune promoting, macrophages, dendritic cells, CD4 and NK T-cells in CT26 KRAS^{G12C} tumors
 - Durable CRs, and a survival advantage relative to either single agent therapy observed in the majority of mice
 - Antitumor adaptive immune response, observed failure of implantation when rechallenged with CT26 KRAS^{G12C} cells compared with naive mice
 Slide credit: clinicaloptions.com

Rationale for Anti-VEGF + ICI

Abbreviations: iDC, immature dendritic cell; HIF-1a, hypoxia inducible factor-1a; TAM, tumor-associated macrophages; Treg, T-regulatory cell; VEGF, vascular endothelial growth factor.

PRESENTED BY: Richard Kim M.D. References 1. Chen Y et al. J Biomed Sci. 2019;26(1):78. 2. Manegold C et al. J Thorac Oncol. 2017;12(2):194-207. 3. Saeed A et al. J Hematol Oncol. 2021;14(1):13.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Colorectal Liver Metastases- Mechanisms of Immune Resistance??

- Liver microenvironment is immunosuppressive which need to be elucidated.
- Liver metastases may induce a systemic immunosuppressive effect, thereby inhibiting antitumor immunity- ie. lower CD8+ T-cell infiltration¹.
- Liver metastasis attracts immunosuppressive macrophages that induce apoptosis of tumor antigen–specific T cells within the liver².
- Liver metastasis and accumulation of Tregs³.

PRESENTED BY: Richard Kim M.D. References: 1. Tumeh PC et al Cancer Immunol Res. 2017. 2. Yu J et al Nat Med. 2021 3. Katz, S.C. et al Ann. Surg. Oncol. 2013

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

PFS and OS by Presence and Lack of Liver Metastases in MSS MCRC

Progression Free Survival

#ASC022

ANNUAL MEETING

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

References: 1. Kim R et al. EJOC 2022 in-press.

Novel Immunotherapy Agents

balstilimab **bot**ensilimab **PD-1** Inhibitor **Fc-enhanced CTLA-4 Inhibitor** Tumor APC/NK FcγRIIIA Fc-enhanced **Botensilimab** (lgG1) **Balstilimab** (lgG4) CTLA-4 PD-1 T Cell T Cell Active in cold and IO refractory tumors:¹

- T cell priming, expansion, memory
- Treg depletion
- Complement mediated toxicity⁴

Safety and efficacy analogous to approved anti-PD-1 mAbs^{2,3}

- >650 patients treated
- X ongoing trials / X completed^{refs-clinical trials.gov}

Durable Objective Responses (N=41)

*Ongoing PR/SD. *Complete metabolic response by PET. *Progression of non-target lesions.

Safety TRAEs in ≥10% of Patients (N=41)

TRAE, n (%)	Any Grade	Grade 1-2	Grade 3
Any	31 (76)	21 (51)	10 (24)
GASTROINTESTINAL			
Diarrhea/colitis	16 (39)	12 (29)	4 (10)
Nausea	7 (17)	7 (17)	0
Vomiting	4 (10)	4 (10)	0
SKIN			
Pruritus	4 (10)	4 (10)	0
Rash	4 (10)	4 (10)	0
INVESTIGATIONS			
Alanine aminotransferase increased	5 (12)	5 (12)	0
Aspartate aminotransferase increased	4 (10)	3 (7)	1 (2)
MUSCULOSKELETAL			
Arthralgia	5 (12)	4 (10)	1 (2)
Myalgia	5 (12)	5 (12)	0
GENERAL			
Fatigue	9 (22)	8 (20)	1 (2)
Chills	7 (17)	7 (17)	0
Pyrexia	6 (15)	5 (12)	1 (2)
METABOLISM			
Decreased appetite	9 (22)	9 (22)	0

agenus

No grade 4 or 5 TRAEs No hypophysitis

Discontinuation due to a TRAE:

- 10% Bot only
- 10% Bot and Bal

irAEs (investigator-assessed):

- 46% any grade
- 17% grade 3

Median duration of treatment:

• 2.8 months (95% CI, 1.2-22.8)

No Active Liver Metastases (n=24)

*Ongoing PR/SD. *Complete metabolic response by PET.

Novel Approaches (Future)

Do we need Liquid Biopsies to Predict Metastatic Disease

Minimal Residual Disease: The Clinical Problem (Metastatic?)

Adjuvant Therapy in Stage III CC : Room for Improvement

CURRENT (TNM):

Adapted from Sargent et al, JCO 2009 Andre et al, JCO 2015

Gomez-Cuadrado, et al. 2017

Intra-tumor copy number heterogeneity in CRC at the single gland level

Curtis et al Nature Genetics 2019

Hu et al Nature Genetics 2019

Validation of metastasis driver modules

Hu...Curtis Nature Genetics 2019

Heterogeneity also exists within individual tumors

- Ding et al., Nature 2010
 - Mutations present in 5–90% of sequencing reads from one tumor
- Navin et al., Nature 2011
 - Independent subclones coexisting in a single anatomic site in breast
- Gerlinger et al., NEJM 2012
 - Two-thirds of mutations in single biopsies were not uniformly detectable throughout all sampled regions
 - Both sensitive and resistant RNA expression patterns

Kozuka et al Cancers 2021

Hu et al Nature Genetics 2019

What is Unique about CRC and what we can learn from it

CMS
 Tumor Heterogeneity
 Single Cell Classification
 NGS/RNA seq/New Targets

OS for all patients in SWOG/Alliance 80405

Lenz et al JCO 2019

OS for patients treated with Cetuximab

Lenz et al JCO 2019

In the three arms, combined effect of M2 macrophage, TGF-β, plasma cell, and memory activated CD4+ T cell signatures on OS, using optimal cut-offs

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Effect of M2 macrophage, TGF-β, plasma cell, and memory activated CD4+ T cell signatures on OS for Cet (right) and of M2 macrophages for Bev (left), using optimal cut-offs

Conclusions

- Immune signatures affect prognosis and response to standard-of-care targeted therapy
- These results provide new markers for treatment selection and for the development of novel
 active combinations including immune checkpoint inhibitors

Federico Innocenti, MD, PhD University of North Carolina at Chapel Hill

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

39

Novel Approaches

1. Novel Targets

REV-ERB agonists as a novel therapeutic approach to colorectal cancer

mCRC Clinical Trials GWAS

 First-line - Bevacizumab-based treatment: TRIBE + FIRE-3 trials (n tot = 451) PFS results in TRIBE FOLFIRI-Bevacizumab cohort, overall and females

CNDc*	Progress	Progression-free Survival		
JINFS	P-value for FE	Q Statistics	P-value for Q	TRIBE and FIRE-3 treatment
CLOCK rs3749474	0.005 (0.055)	7.276	0.064	cohorts.
BMAL1 rs2279287	0.025 (0.095)	3.312	0.346	model based on inverse-
RORA rs7164773	0.009 (0.070)	2.552	0.466	variance-weighted effect size
HTIM rs774034	0.014 (0.079)	0.152	0.985	Adjusted P-values after FDR
HTIM rs4630333	0.004 (0.055)	1.426	0.699	(taise discovery rate) are shown in narentheses
				(significant < 0.1)

2) Advanced-line - Regorafenib treatment: CORRECT trial (n = 507)

PFS results Rego vs placebo for CRY1 rs1056560

Genotype Subset		HR (95%-CI)	P-value
A/A	174	0.71 (0.52-0.97)	0.031
A/C	221	0.49 (0.36-0.66)	<0.001
c/c	93	0.38 (0.24-0.61)	<0.001
*HR estimates for Pl hazard-model	FS from unadjus	ted models using the Cox-pr	oportional

Drugging the Circadian Clock

Compound	Expected Target	Mode of Action	Source	References
SR9009	REV-ERBα (also targets REV-ERBβ)	Agonist	Thomas Burris (purchased from Sigma-Aldrich)	Solt et al., 2012
SR9011	REV-ERBα (also targets REV-ERBβ)	Agonist	Thomas Burris (purchased from Sigma-Aldrich)	Solt et al., 2012
SR12418	REV-ERBα/β	Agonist	Laura Solt & Ted Kamenecka	Amir et al., 2018
S 68435-1	REV-ERBa	Agonist	Xavier Barril (provided by Laura Solt & Ted Kamenecka)	Westermaier et al., 2017
SR29065	REV-ERBa	Agonist	Laura Solt & Ted Kamenecka	-
SR30989	REV-ERBa	Agonist	Laura Solt & Ted Kamenecka	-
T86	REV-ERBa	Agonist	Laura Solt & Ted Kamenecka	-
KL001	CRY1/2	Stabilizer	Tsuyoshi Hirota & Steve Kay (purchased from Sigma-Aldrich)	Hirota et al., 2012
SHP656	CRY1/2	Stabilizer	Synchronicity	Dong et al., 2019
SHP1703	CRY1/2	Stabilizer	Synchronicity	-
SHP1705	CRY1/2	Stabilizer	Synchronicity	-
GO289	CK2	Inhibitor	Tsuyoshi Hirota	Oshima et al., 2019
GO847	CK2	Inhibitor	Tsuyoshi Hirota	-
CX-4945 (Silmitasertib)	СК2	Inhibitor	David M. Ryckman	Pierre et al., 2011

initiative - Lenz H-J, Kay S

Discovery phase using 2D system (representative data shown for HCT 116 (MSI, KRAS mutant, BRAF wildtype cell line)

USC/Norris Translational Team Accelerator Projects initiative - Lenz H-J, Kay S Original data: Lenz Lab(unpublished)

Anti-PD1 Treatment and/or Pharmacological Targeting of the Clock Prolongs Survival and slows tumor growth in an MSI high MC38 syngeneic mouse model (Proof of Principle)

In responders, treatment with SHP or SHP+aPD1, seems to be more effective in tumor growth suppression as compared to aPD1 alone

Our Goal: Right Treatment Right Time

- Genetic Testing of Tumor at time of diagnosis and if possible again at time of growth NGS/transcriptome
- Germline Testing of patients if evidence of Predisposition
- Active Monitoring with Liquid Biopsies
- Accelerating Access to Clinical Trials
- Identification of drugable Novel Targets
- Multi Omics Approach in the future (AI)

Conclusions

- Detecting circulating tumor DNA technologies have been a tremendous progress to detect MRD and risk for recurrence. Need to increase sensitivity as about 50% of recurrences are detected with LB
- 2. Single cell technologies and understanding Tumor heterogeneity using AI are critical to potential predict presence of metastatic disease
- 3. Characterization of the TME will be the next frontier in Cancer Research to find novel therapies to prevent and treat colorectal cancer.

Immanuel Kant (Photo from a steel engraving)

The one who knows more, may decide better