

Colorectal Cancer: Chemotherapy Combinations Targeted Therapy and Immunotherapy

Axel Grothey, MD Director, GI Cancer Research West Cancer Center and Research Institute University of Memphis Memphis, TN, USA

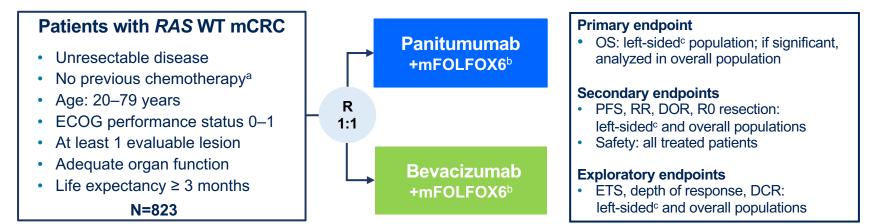
Chemotherapy Combinations

PARADIGM SUNLIGHT

Panitumumab plus mFOLFOX6 versus Bevacizumab plus mFOLFOX6 as first-line treatment in patients with *RAS* wild-type metastatic colorectal cancer: results from the phase 3 PARADIGM trial

<u>Takayuki Yoshino1</u>, Jun Watanabe², Kohei Shitara¹, Kentaro Yamazaki³, Hisatsugu Ohori⁴, Manabu Shiozawa⁵, Hirofumi Yasui⁴, Eiji Oki⁶, Takeo Sato⁷, Takeshi Naitoh⁸, Yoshito Komatsu⁹, Takeshi Kato¹⁰, Masamitsu Hihara¹¹, Junpei Soeda¹¹, Kouji Yamamoto¹², Kiwamu Akagi¹³, Atsushi Ochiai¹⁴, Hiroyuki Uetake¹⁵, Katsuya Tsuchihara¹⁶, Kei Muro¹⁷

¹Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ²Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan; ³Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan; ⁴Division of Medical Oncology, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan; ⁵Division of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan; ⁶Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; ⁷Research and Development Center for Medical Education, Department of Clinical Skills Education, Kitasato University School of Medicine, Sagamihara, Japan; ⁶Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan; ⁹Division of Cancer Chemotherapy, Hokkaido University Hospital Cancer Center, Sapporo, Japan; ¹⁰Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan; ¹¹Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Ltd., Tokyo, Japan; ¹²Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan; ¹³Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan; ¹⁴Pathology Division, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan; ¹⁷Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan



#ASCO22 PRESENTED BY: Takayuki YOSHINO, MD, PhD

PARADIGM Trial Design

Phase 3, randomized, open-label, multicenter study (NCT02394795)

Stratification factors

- Institution
- Age: 20–64 vs 65–79 years
- Liver metastases: present vs absent

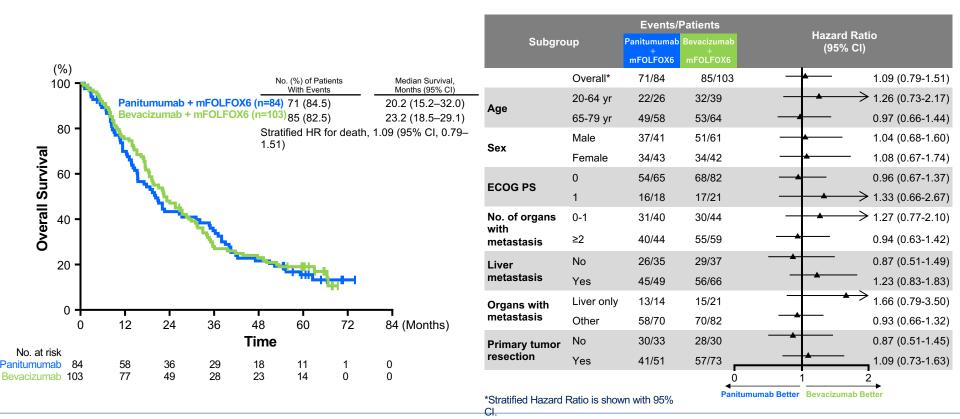
DCR, disease control rate; DOR; duration of response; ECOG, Eastern Cooperative Oncology Group; ETS, early tumor shrinkage; mCRC, metastatic colorectal cancer; OS, overall survival; PFS, progression free survival; RR, response rate; R0, curative resection; WT, wild type.

^aAdjuvant fluoropyrimidine monotherapy allowed if completed > 6 months before enrollment. ^bUntil disease progression, unacceptable toxicity, withdrawal of consent or investigator's judgement or curative intent resection. ^cPrimary tumor in descending colon, sigmoid colon, rectosigmoid, and rectum.



PRESENTED BY: Takayuki YOSHINO, MD, PhD

Primary Endpoint-1; Overall Survival in Left-sided Population



PRESENTED BY: Takayuki YOSHINO, MD, PhD

OS and Subgroup Analysis in Right-sided Population

Takavuki YOSHINO, MD, PhD

PRESENTED BY:

2022 ASCO

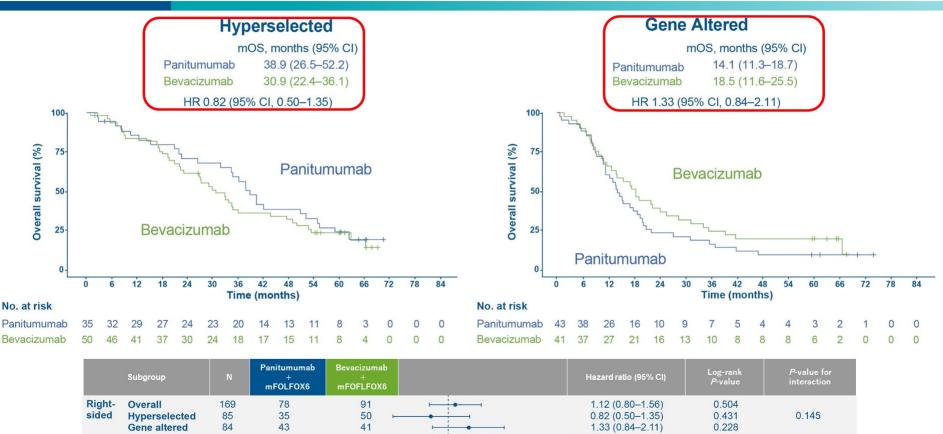
ANNUAL MEETING

#ASC022

Negative hyperselection of patients with *RAS* wild-type metastatic colorectal cancer for panitumumab: A biomarker study of the phase III PARADIGM trial

Kohei Shitara¹, Kei Muro², Jun Watanabe³, Kentaro Yamazaki⁴, Hisatsugu Ohori⁵, Manabu Shiozawa⁶, Hirofumi Yasui⁴, Eiji Oki⁷, Takeo Sato⁸, Takeshi Naito⁹, Yoshito Komatsu¹⁰, Takeshi Kato¹¹, Kazunori Yamanaka¹², Junpei Soeda¹³, Ikuo Mori¹³, Masamitsu Hihara¹³, Kouji Yamamoto¹⁴, Riu Yamashita¹⁵, Kiwamu Akagi¹⁶, Atsushi Ochiai¹⁷, Hiroyuki Uetake¹⁸, Katsuya Tsuchihara¹⁵, Takayuki Yoshino¹

¹Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ²Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan; ³Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan; ⁴Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan; ⁵Division of Medical Oncology, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan; ⁶Division of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan; ⁷Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; ⁸Research and Development Center for Medical Education, Department of Clinical Skills Education, Kitasato University School of Medicine, Sagamihara, Japan; ⁹Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan; ¹⁰Division of Cancer Chemotherapy, Hokkaido University Hospital Cancer Center, Sapporo, Japan; ¹¹Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan; ¹²Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, Tokyo, Japan; ¹³Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Ltd, Tokyo, Japan; ¹⁴Department of Biostatistics, Yokohama City University School of Medicine, Yokohama, Japan; ¹⁵Division of Translational Informatics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan; ¹⁶Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan; ¹⁷Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan; ¹⁸National Hospital Organization, Disaster Medical Center, Tokyo, Japan


Shitara et al., ASCO GI 2023

Number of genetic alterations ctDNA

Gene alteration,	Overall population (N=733)		Left-sided m	CRC (n=554)	Right-sided mCRC (n=169)	
n (%)	Panitumumab (n=368)	Bevacizumab (n=365)	Panitumumab (n=287)	Bevacizumab (n=267)	Panitumumab (n=78)	Bevacizumab (n=91)
BRAF (V600E)	43 (11.7)	36 (9.9)	17 (5.9)	8 (3.0)	26 (33.3)	27 (29.7)
KRAS	22 (6.0)	23 (6.3)	11 (3.8)	15 (5.6)	9 (11.5)	6 (6.6)
PTEN	23 (6.3)	17 (4.7)	12 (4.2)	8 (3.0)	10 (12.8)	9 (9.9)
HER2 amplification	19 (5.2)	14 (3.8)	16 (5.6)	11 (4.1)	3 (3.8)	2 (2.2)
EGFR (ECD)	12 (3.3)	7 (1.9)	7 (2.4)	3 (1.1)	5 (6.4)	3 (3.3)
NRAS	10 (2.7)	3 (0.8)	6 (2.1)	2 (0.7)	1 (1.3)	0
MET amplification	3 (0.8)	2 (0.5)	3 (1.0)	2 (0.7)	0	0
<i>RET</i> fusion	2 (0.5)	2 (0.5)	0	2 (0.7)	2 (2.6)	0
NTRK1 fusion	1 (0.3)	1 (0.3)	0	1 (0.4)	1 (1.3)	0
ALK fusion	0	1 (0.3)	0	0	0	1 (1.1)

Shitara et al., ASCO GI 2023

Survival outcomes in the right-sided population analyzed for ctDNA

Shitara et al., ASCO GI 2023

1.0 Panitumumab better Bevacizumab better

3.0

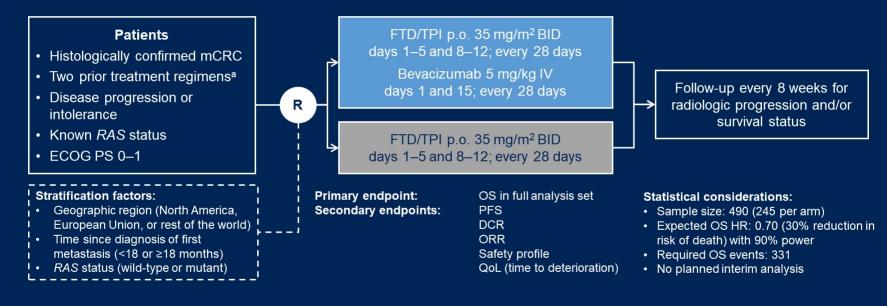
5.0

0.5

Trifluridine/tipiracil plus bevacizumab for third-line treatment of refractory metastatic colorectal cancer The phase 3 randomized SUNLIGHT study

<u>Josep Tabernero</u>¹, Gerald W. Prager², Marwan Fakih³, Fortunato Ciardiello⁴, Eric Van Cutsem⁵, Elena Elez¹, Felipe Melo Cruz⁶, Lucjan Wyrwicz⁷, Daniil Stroyakovskiy⁸, Zsuzsanna Pápai⁹, Pierre-Guillaume Poureau¹⁰, Gabor Liposits¹¹, Chiara Cremolini¹², Igor Bondarenko¹³, Dominik Paul Modest¹⁴, Karim A. Benhadji¹⁵, Ronan Fougeray¹⁶, Catherine Leger¹⁶, Nadia Amellal¹⁶, and Julien Taieb¹⁷

¹Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain; ²Medical University Vienna, Vienna, Austria; ³City of Hope Comprehensive Cancer Center, Duarte, USA; ⁴Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; ⁵University Hospitals Leuven and KU Leuven, Herent, Belgium; ⁶Núcleo de Pesquisa e Ensino da Rede São Camilo, Sao Paulo, Brazil; ⁷Maria Sklodowska-Curie National Cancer Research Institute, Warsaw, Poland; ⁸Moscow City Oncological Hospital #62, Moscow, Russian Federation; ⁹Duna Medical Centre, Budapest, Hungary; ¹⁰Institut de Cancérologie, Brest, France; ¹¹University of Southern Denmark, Odense, Denmark; ¹²University of Pisa, Pisa, Italy; ¹³Dnipropetrovsk Medical Academy, Dnipro, Ukraine; ¹⁴Charité Universitătsmedizin, Berlin, Germany; ¹⁶Taiho Oncology, Inc., Princeton, USA; ¹⁶Servier International Research Institute, Suresnes, France; ¹⁷Université Paris-Cité, (Paris Descartes), Georges Pompidou European Hospital, SIRIC CARPEM, Paris, France.

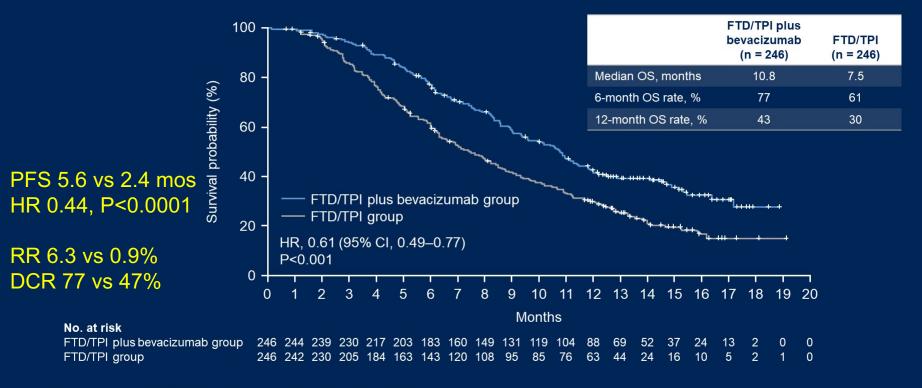


PRESENTED BY: Prof. Josep Tabernero
Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

SUNLIGHT study design

• An open-label, randomized, phase 3 study in patients with refractory mCRC (NCT04737187)

^a Prior treatment must have included a fluoropyrimidine, irinotecan, oxaliplatin, an anti-VEGF monoclonal antibody (not necessarily bevacizumab), and/or an anti-EGFR monoclonal antibody for patients with *RAS* wild-type and could have included (neo)adjuvant chemotherapy if disease had recurred during treatment or within 6 months of the last administration of (neo)adjuvant therapy. BID, twice daily; DCR, disease control rate; ECOG PS, Eastern Cooperative Oncology Group performance status; EFGR, epidermal growth factor receptor; FTD/TPI, trifluridine/tipiracil; HR, hazard ratio; IV, intravenous; mCRC, metastatic colorectal cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; p.o., orally; QoL, quality of life; R, randomization; VEGF, vascular endothelial growth factor.


ASCO[•]Gastrointestinal Cancers Symposium

PRESENTED BY: Prof. Josep Tabernero

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

OS in full analysis set (primary endpoint)

Cl, confidence interval; FTD/TPI, trifluridine/tipiracil; HR, hazard ratio; OS, overall survival.

#GI23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

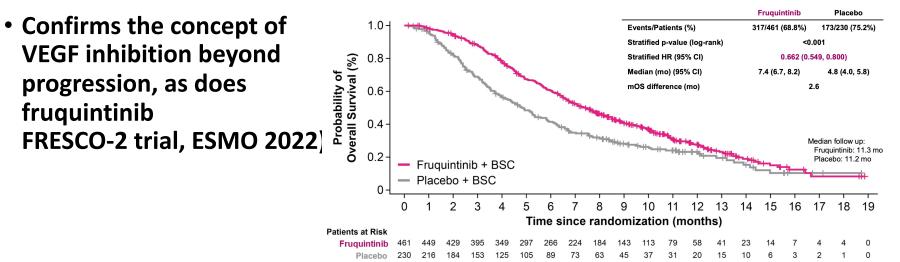
OS by prespecified subgroup

FTD/TPI plus		FTD/TPI plus			
bevacizumab group	FTD/TPI group	bevacizumab group	FTD/TPI group		HR
No. of events/total no.		Median OS	(95% CI)		
97/158	121/157	10.6 (9.0–11.8)	7.0 (6.0–8.5)	i	0.61 (0.47–0.80)
0/8	4/8	NE	6.0 (4.2–NE)	_ • i	<0.01 (<0.01–NE)
51/80	58/81	10.7 (8.5–14.2)	8.5 (6.3–10.7)	_ - -→	0.70 (0.48–1.02)
65/104	82/105	10.8 (8.8–12.5)	6.1 (5.1–7.4)		0.52 (0.37–0.72)
83/142	101/141	10.8 (9.0–12.1)	8.6 (7.2–10.6)		0.70 (0.53–0.94)
103/171	128/170	10.6 (9.0–11.3)	7.5 (6.3–8.6)		0.62 (0.48-0.81)
45/75	55/76	11.9 (9.0–14.9)	7.1 (5.9–10.9)	i	0.64 (0.43–0.96)
				1	
108/184	120/169	10.7 (9.3–12.2)	8.2 (6.7–9.3)		0.65 (0.50–0.85)
40/62	63/77	10.8 (8.5–11.9)	6.2 (5.2-8.0)		0.59 (0.40-0.87)
70/119	74/106	10.8 (8.8–14.5)	9.3 (7.7–11.6)		0.74 (0.53–1.02)
78/127	109/140	10.8 (9.0–11.9)	6.3 (5.4–7.5)	i	0.54 (0.41–0.73)
79/124	85/112	10.7 (9.0–11.4)	6.9 (6.0–9.0)	- - !	0.62 (0.46–0.85)
69/122	98/134	10.8 (9.0–14.6)	7.8 (6.5–9.4)	!	0.62 (0.45–0.84)
89/146	94/129	10.7 (8.5–12.1)	7.5 (6.3–9.3)		0.65 (0.48–0.87)
59/100	89/117	11.0 (9.4–12.9)	7.2 (6.0-8.8)	-+-i	0.69 (0.42-0.81)
30/68	48/69	15.1 (12.1–NE)	8.1 (6.3–9.7)	I	0.40 (0.25-0.63)
118/178	135/177	9 0 (8 3–10 8)	7.1 (6.0-8.5)		0.72 (0.56-0.92)
148/246	183/246	10.8 (9.4–11.8)	7.5 (6.3-8.6)	- + · ·	0.62 (0.50-0.77)
	Devacizumab group No. of events 97/158 0/8 51/80 65/104 65/104 83/142 103/171 45/75 108/184 40/62 70/119 78/127 79/124 69/122 89/146 59/100 30/68 118/178	bevacizumab group FTD/TPI group No. of events/total no. 97/158 121/157 0/8 4/8 51/80 58/81 65/104 82/105 83/142 101/141 103/171 128/170 45/75 55/76 70/119 74/106 78/127 109/140 79/124 85/112 69/122 98/134 89/146 94/129 59/100 89/117 30/68 48/69 118/178 135/177	bevacizumab group FTD/TPI group bevacizumab group No. of events/total no. Median OS 97/158 121/157 10.6 (9.0–11.8) 0/8 4/8 NE 51/80 58/81 10.7 (8.5–14.2) 65/104 82/105 10.8 (8.8–12.5) 83/142 101/141 10.8 (9.0–12.1) 103/171 128/170 10.6 (9.0–11.3) 45/75 55/76 11.9 (9.0–14.9) 0 70/119 74/106 10.8 (8.5–11.9) 70/119 74/106 10.8 (8.8–14.5) 78/127 79/124 85/112 10.7 (9.0–11.4) 69/122 89/146 94/129 10.7 (8.5–12.1) 59/100 30/68 48/69 15.1 (12.1–NE) 118/178 30/68 48/69 15.1 (12.1–NE) 118/178	bevacizumab group FTD/TPI group bevacizumab group FTD/TPI group No. of events/total no. Median OS (95% Cl) 97/158 121/157 10.6 (9.0–11.8) 7.0 (6.0–8.5) 0/8 4/8 NE 6.0 (4.2–NE) 51/80 58/81 10.7 (8.5–14.2) 8.5 (6.3–10.7) 65/104 82/105 10.8 (8.8–12.5) 6.1 (5.1–7.4) 83/142 101/141 10.8 (9.0–12.1) 8.6 (7.2–10.6) 103/171 128/170 10.6 (9.0–11.3) 7.5 (6.3–8.6) 45/75 55/76 11.9 (9.0–14.9) 7.1 (5.9–10.9) 108/184 120/169 10.7 (9.3–12.2) 8.2 (6.7–9.3) 40/62 63/77 10.8 (8.5–11.9) 6.2 (5.2–8.0) 70/119 74/106 10.8 (9.0–11.9) 6.3 (5.4–7.5) 79/124 85/112 10.7 (9.0–11.4) 6.9 (6.0–9.0) 69/122 98/134 10.8 (9.0–14.6) 7.8 (6.5–9.4) 79/124 85/112 10.7 (8.5–12.1) 7.5 (6.3–9.3) 69/146 94/129 10.7 (8.5–12.1) 7.5 (6.3–	bevacizumab group FTD/TPI group bevacizumab group FTD/TPI group No. of events/total no. Median OS (95% Cl)

0.0 0.5 1.0 1.5 2.0

CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group performance status; FTD/TPI, trifluridine/tipiracil; HR, hazard ratio; NE, not evaluable; OS, overall survival.

ASCO[°] Gastrointestinal Cancers Symposium


PRESENTED BY: Prof. Josep Tabernero

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

My Conclusions from SUNLIGHT

- TAS-102 plus BEV is the new SOC for patients with mCRC when TAS-102 is considered
 - Study confirms data from prior phase 2 studies
 - TAS-102 plus BEV is already listed in NCCN guidelines as CAT 2A
- Combination should be used before regorafenib


Targeted Therapies BRAF KRAS G12C HER-2

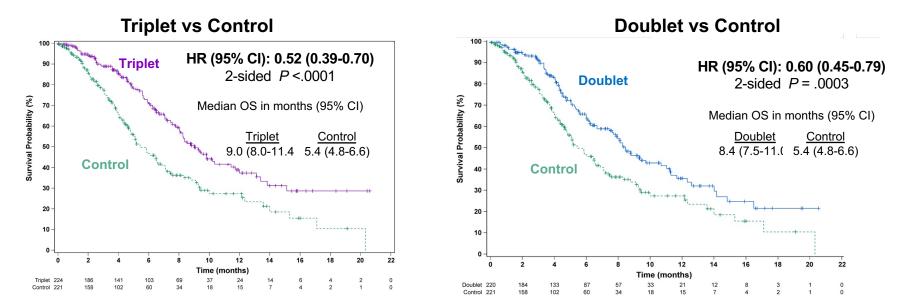
Overview of Precision Medicine Approaches in GI Cancers

GI Cancer	Negative predictive markers	Positive predictive markers	Cancer-agnostic markers
Gastroesophageal		HER-2 PD-L1 FGFR2b CLDN-18.2	
CRC	RAS mutations BRAF V600E Sidedness (HER-2)?	HER-2 BRAF V600E MSI-H/ MMR-D KRAS G12C	MSI-H/ MMR-D POLe/d TMB? NTRK fusions
Biliary cancers (IHCC!)		IDH-1 FGFR fusions HER-2 BRAF V600E	RET fusions BRAF V600E KRAS G12C? NRG1 fusions?
Pancreas cancer		BRCA (-like)	
HCC		(AFP high)	

BEACON: Phase 3 in 2nd/ 3rd Line BRAF V600E mut mCRC

Patients with *BRAF*^{V600E} mCRC with disease progression after 1 or 2 prior regimens; ECOG PS of 0 or 1; and no prior treatment with any RAF inhibitor, MEK inhibitor, or EGFR inhibitor

Randomization was stratified by ECOG PS (0 vs. 1), prior use of irinotecan (yes vs. no), and cetuximab source (US-licensed vs. EU-approved)

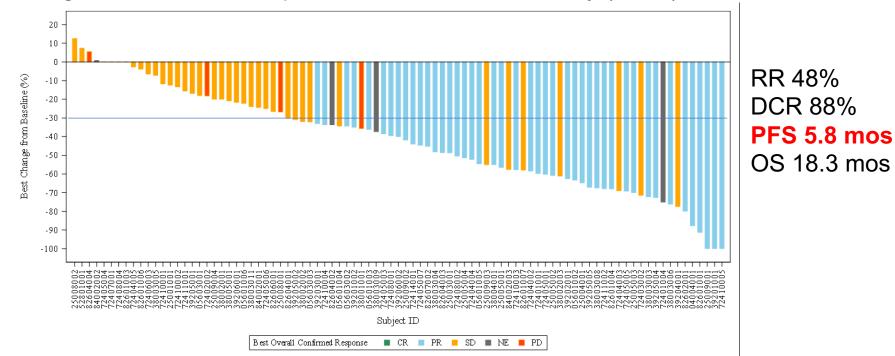

Secondary Endpoints: Doublet vs Control and Triplet vs Doublet - OS & ORR, PFS, Safety

QOL Assessments: EORTC QOL Questionnaire (QLQ C30), Functional Assessment of Cancer Therapy Colon Cancer, EuroQol 5D5L, and Patient Global Impression of Change).

Kopetz et al., NEJM 2019

Primary

BEACON: Overall Survival and Objective Response Rate



Objective Response Rate (first 331 randomized patients)

Confirmed Response by BICR	Triplet N = 111	Doublet N = 113	Control N = 107
Objective response rate	26%	20%	2%
(95% CI)	(18–35)	(13–29)	(<1-7)
P value vs control	<.0001	<.0001	

Kopetz S, Grothey A, et al. ESMO 2019. Abstract LBA-006; Kopetz S, Grothey A, et al. N Engl J Med. 2019;381:1632-1643.

ANCHOR CRC, Phase 2 study in FIRST LINE BRAF^{V600E} mCRC

Van Cutsem et al., ASCO 2021;

JCO 2023

Investigator's assessment, patients evaluable for efficacy (N=92)

3 patients have been excluded from the efficacy analysis as the BRAF mutation was not confirmed/indeterminate by central lab

The 4 subjects with the best percentage change from baseline equal to 0% have their Best Overall Confirmed Response equal to Stable Disease (SD).

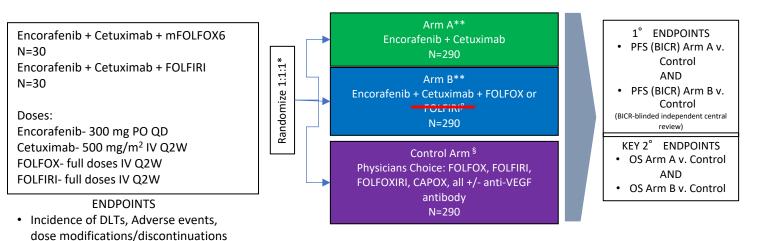
Two subjects (38003012 and 72406001) with BOCR equal to NE are not presented in the plot because they don't have post-baseline tumor diameters.

One subject (72402001) with BOCR equal to PD is not presented in the plot because 1 target lesion was not evaluable and sum of longest diameters cannot be calculated at the unique post-baseline evaluation.

Frontline BRAF V600E Phase III RCT

BREAKWATER Study Schema

Safety Lead-in (completed)

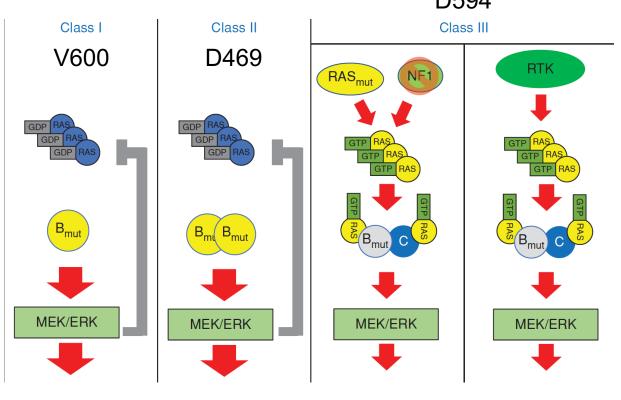

Patients with *BRAF* V600E mutant, MSS/pMMR mCRC with 0 -1 prior regimens in the metastatic setting

due to AFs

PK including drug-drug interactions

Phase 3

Patients with *BRAF* V600E mutant, MSS/pMMR mCRC and no prior systemic therapy in the metastatic setting

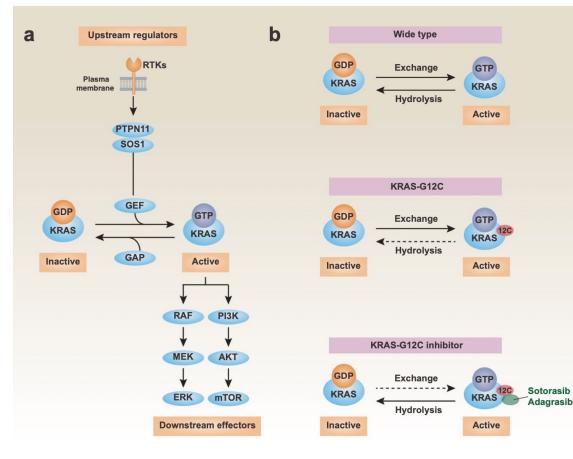


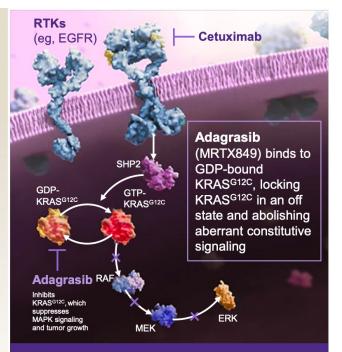
*Stratified by: ECOG PS 0 v. 1, Region US/Canada v. Europe v. ROW

**Same dosing as SLI; $^\beta\text{FOLFOX}$ or FOLFIRI based on SLI results; $\,^\$$ No crossover

ClinicalTrials.gov Identifier: NCT04607421

BRAF Mutations: Kinase Activity and RTK Signaling Dependency

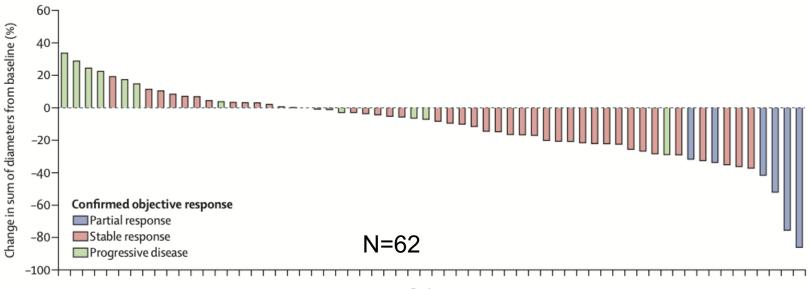



Class I mutations: V600E/K/D/R/M

Class II mutations: P367L/S, G464V/E, G469A/V/R, L485W, N486_A489delinsK, N486_P490del, E586K, L597Q/R/S/V, T599TT/TS, T599I/K, K601E/N/T, K601_S602delinsNT, BRAF kinase duplication, BRAF kinase domain fusions

<u>Class III mutations:</u> D287H, V459L, G466A/E/V, S467L, G469E, N581I/S/T, **D594A/G/H/N**, F595L, G596D/R

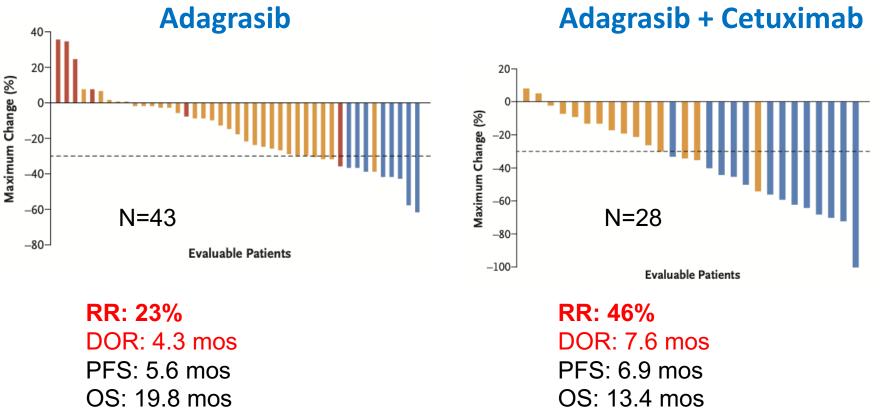
KRAS G12C Inhibitors (3-4% of mCRC)



EGFR signaling is implicated in feedback reactivation, providing a rational co-targeting strategy for KRAS-mutant CRC

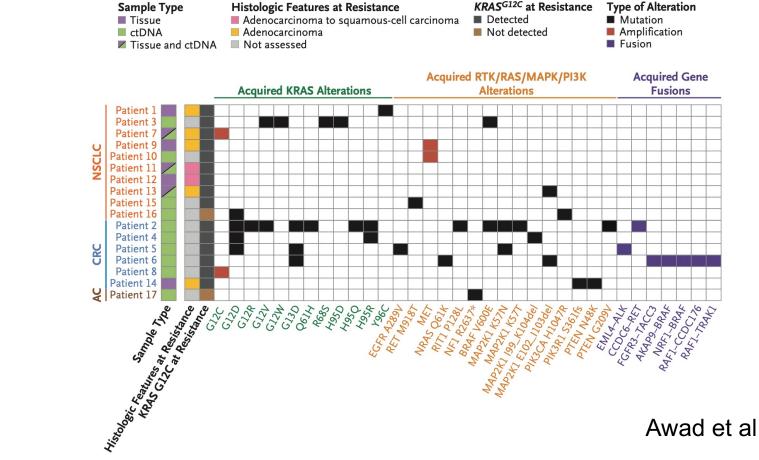
Liu et al, Cancer Gene Therapy 2021

Sotorasib Single agent – CodeBreak 100



Patients

RR: 9.7% (6 pts) PFS: 4.0 mos OS: 10.6 mos


Fakih et al. Lancet Oncol 2021

KRYSTAL-1:

Yaeger et al. NEJM 2022

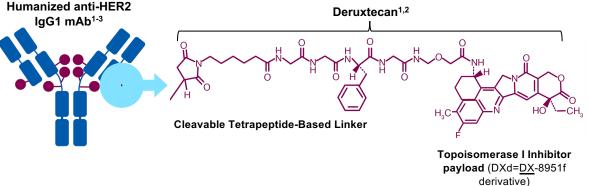
Acquired Resistance Mechanisms on Adegrasib

Awad et al., NEJM 2021

Key Clinical Trials in HER2+ mCRC

Trial	Regimen	Ν	ORR, %	Median PFS, mo	Median OS, mo
HERACLES-A ¹	Trastuzumab + lapatinibª	27	30 (14-50)	4.8 (3.7-7.4)	10.6 (7.6-15.6)
MyPathway (<i>KRAS</i> wt subgroup) ²	Trastuzumab + pertuzumab ^a	43	40 (25-56)	5.3 (2.7-6.1)	14 (8-NE)
TRIUMPH ³	Trastuzumab + pertuzumab ^a	17 (tissue)	35 (14-62)	4 (1.4-5.6)	_
TAPUR⁴ (no <i>RAS</i> data)	Trastuzumab + pertuzumab ^a	28	25 (11-45)	4 (2.6-6.3)	25 (6-NE)
MOUNTAINEER ⁵ (Cohorts A + B)	Trastuzumab + tucatinib	86	38 (28-39)	8.2 (4.2-10.3)	24.1 (20.3-36.7)
DESTINY-CRC01 ^{6,b} (Cohort A)	T-DXd	54	45 (32-60)	6.9 (4.1-8.7)	15.5 (8.8-20.8)
HERACLES-B ^{7,c}	T-DM1 + pertuzumab	30	10 (0-28)	4.8 (3.6-5.8)	_

^a In NCCN guidelines. ^b ORR in subgroup with prior HER2 rx 43.8% (19.8-70.1); without prior HER2 rx 45.9% (29.5-63.1). ^c Did not meet primary endpoint. T-DM1 had 0% response rate in MATCH Arm Q⁸ and MSKCC Basket Trial.⁹

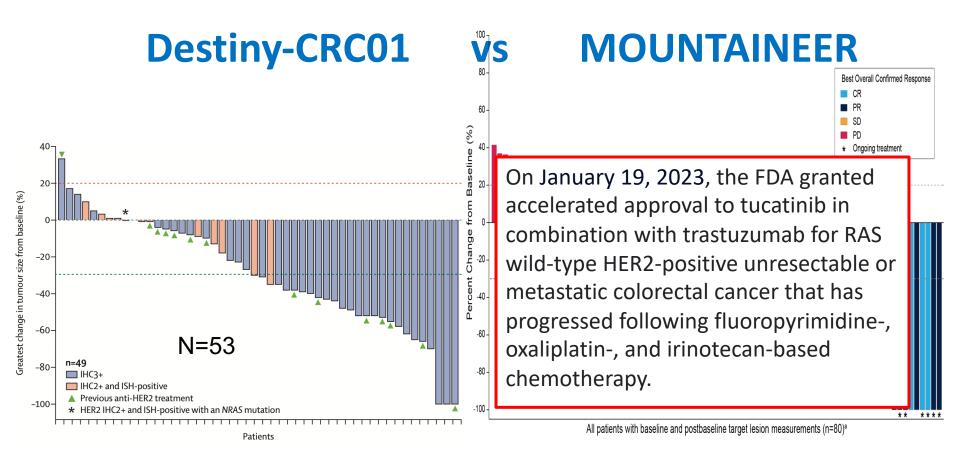

1. Sartore-Bianchi A et al. Lancet Oncol. 2016;17:738-746. 2. Meric-Bernstam F et al. Lancet Oncol. 2019;20:518-530. 3. Nakamura Y et al. ESMO 2019. Abstract 1057. 4. Gupta R et al. ASCO GI 2020. Abstract 132. 5. Strickler J et al. ESMO GI 2022. Abstract LBA 2. 6. Yoshino T et al. Nat Com 2023 in press

7. Sartore-Bianchi A. ESMO 2019. Abstract 3857. 8. Jhaveri KL et al. Ann Oncol. 2019;30:1821-1830. 9. Li BT et al. J Clin Oncol. 2018;36:2532-2537.

T-DXd is an ADC Designed to Deliver an Antitumor Effect

T-DXd is an ADC with 3 components:

- A humanized anti-HER2 IgG1 mAb with the same amino acid sequence as trastuzumab
- A topoisomerase I inhibitor payload, an exatecan derivative
- A tetrapeptide-based cleavable linker



Payload mechanism of action: topoisomerase I inhibitor
High potency of payload
High drug to antibody ratio ≈ 8
Payload with short systemic half-life
Stable linker-payload
Tumor-selective cleavable linker
Membrane-permeable payload

The clinical relevance of these features is under investigation.

ADC, antibody-drug conjugate; HER2, human epidermal growth factor receptor 2; mAb, monoclonal antibody.

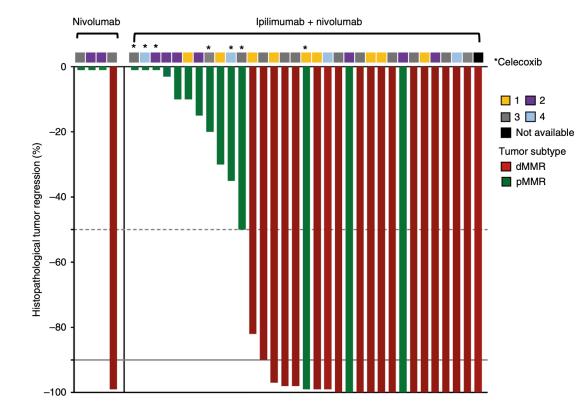
1. Nakada T, et al. Chem Pharm Bull (Tokyo). 2019;67(3):173-185. 2. Ogitani Y, et al. Clin Cancer Res. 2016;22(20):5097-5108. 3. Trail PA, et al. Pharmacol Ther. 2018;181:126-142.

Median # of prior lines: Destiny: 4, MOUNTAINEER: 2 Prior anti-HER-2 therapy: Destiny: 30%, MOUNTAINEER: 0%

Siena et al., Lancet Oncol 2021 Strickler et al., ESMO GI 2022

Immunotherapy

Neoadjuvant IO


Novel IO combinations in MSS CRC

Neoadjuvant therapy in rectal cancer by MMR status

	No. of patients (%)			
Outcome	dMMR	pMMR		
FOLFOX as initial treatment	n = 21	n = 63		
Progression of disease	6 (29)	0		
Response or stable disease	15 (71)	63 (100)		
Chemoradiation as initial treatment	n = 16	n = 48		
Progression of disease	0	0		
Complete pathologic response	2 (13)	8 (17)		

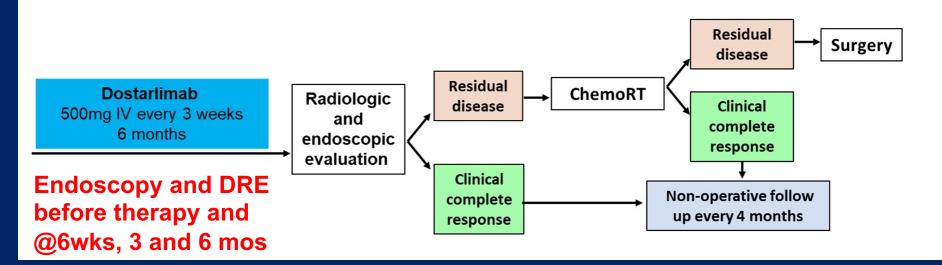
Cercek et al, Clin Cancer Res 2020

Rectal Ca: Neoadjuvant IO Therapy

41 pts with rectal cancer treated with Nivo and Nivo/Ipi (35 assessable for response) Path response in: 20/20 dMMR (12 pCR) 4/15 pMMR

Chalabi et al., Nat Med 2020

#ASC022


Late breaking abstract PD-1 blockade as curative-intent therapy in mismatch repair deficient locally advanced rectal cancer

Andrea Cercek, MD Head, Colorectal Cancer Section Co-Director Center for Young Onset Colorectal and Gastrointestinal Cancers Memorial Sloan Kettering Cancer Center

PRESENTED BY: Andrea Cercek, M.D.

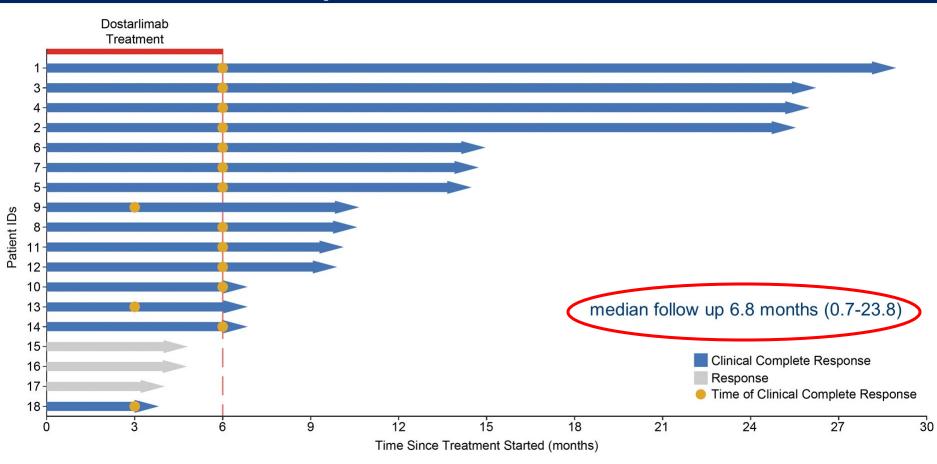
Patient population: Stage II and III mismatch repair deficient rectal cancer

Target Enrollment: 30 subjects

Target RR: 25%

Study Design: Simon's two stage minimax design

NCT04165772


Demographic and disease characteristics of the patients at baseline				
	Value (%)			
Sex				
Male	6 (33)			
Female	12 (67)			
Age, median (range)	54 (26-78)			
Race/Ethnicity				
White non-Hispanic	11 (61)			
Hispanic	1 (6)			
Black or African American	3 (17)			
Asian-Far East/Indian Subcontinent	3 (17)			
Tumor Staging				
T1/2	4 (22)			
T3, T4	14 (78)			
Nodal Staging				
Node-positive	17 (94)			
Node-negative	1 (6)			
Germline Mutation Status n=17				
MSH2, MLH1, MSH6, or PMS2	10 (59)			
Negative	7 (41)			
BRAF V600E wild type				
Tumor Mutational Burden (mut/Mb), mean (range)	67 (36 -106)			

Individual responses to PD-1 blockade with dostarlimab

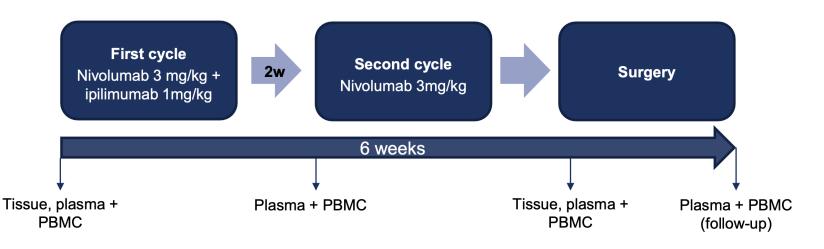
Patients who completed 6-months of dostarlimab

ID	Age	Stage T	Stage N	FU (months)	Digital rectal exam response	Endoscopic best response	Rectal MRI best response	Overall response
1	38	T4	N+	23.8	CR	CR	CR	cCR
2	30	Т3	N+	20.5	CR	CR	CR	cCR
3	61	T1/2	N+	20.6	CR	CR	CR	cCR
4	28	T4	N+	20.5	CR	CR	CR	cCR
5	53	T1/2	N+	9.1	CR	CR	CR	cCR
6	77	T1/2	N+	11.0	CR	CR	CR	cCR
7	77	T1/2	N+	8.7	CR	CR	CR	cCR
8	55	Т3	N+	5.0	CR	CR	CR	cCR
9	68	Т3	N+	4.9	CR	CR	CR	cCR
10	78	Т3	N-	1.7	CR	CR	CR	cCR
11	55	Т3	N+	4.7	CR	CR	CR	cCR
12	27	Т3	N+	4.4	CR	CR	CR	cCR
13	26	Т3	N+	0.8	CR	CR	CR	cCR
14	43	Т3	N+	0.7	CR	CR	CR	cCR

Duration of response

Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: the NICHE-2 study

<u>M. Chalabi</u>¹, Y. Verschoor, J. Van den Berg, K. Sikorska, G. Beets, A. Van Lent, C. Grootscholten, A. Aalbers, N. Buller, H. Marsman, E. Hendriks, P. Burger, T. Aukema, S. Oosterling, R. Beets-Tan, T.N. Schumacher, M.E. Van Leerdam, E.E. Voest, J.B. Haanen

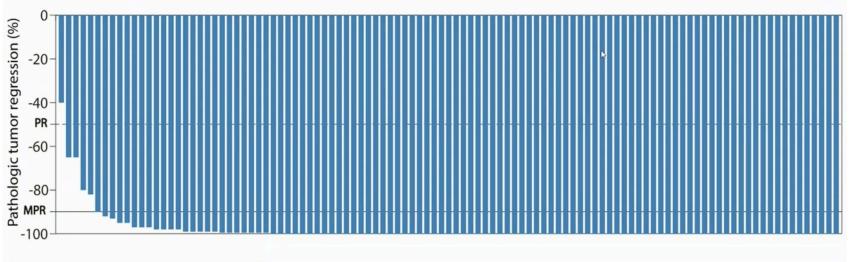

¹Dept. of Gastrointestinal Oncology, Netherlands Cancer Institute Amsterdam, the Netherlands September 11th 2022

NICHE-2 study design

MSI-H/ dMMR colon cancers cT3 and/or N+ per radiology No obstruction, no perforation

Investigator-initiated, non-randomized multicenter* study

*6 participating hospitals in the Netherlands PBMC = peripheral blood mononuclear cells



Myriam Chalabi, MD PhD

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Neoadjuvant Nivo/Ipi in dMMR early stage colon cancer 68% right-sided, 63% cT4a/b; 31% Lynch

Major pathologic response in 95% of patients; 67% pCR N=107

1 dose of Nivo/Ipi -> 1 dose of Nivo -> surgery

Chalabi et al., ESMO 2022

My Conclusions for Neoadjuvant/ Definitive IO Therapy in MSI-H/ dMMR CRC

- Upfront, definitive IO therapy has emerged as SOC in MSI-H/ dMMR rectal cancer
 - Hard to beat 14/14 cCR...
 - FOLFOX does not work well, if at all
 - Matches results in advanced disease and consistent with prior studies
- But:
 - Follow up still short (median: 6.8 mos)
 - What is the best IO therapy? PD-1 single agent? Combo? Duration?
 - Will it always lead to NOM? Role of radiation?
- In locally advanced MSI-H/ dMMR colon cancer, I would also favor IO therapy as neoadjuvant treatment, but cancer should still be resected

Results from a phase 1a/1b study of botensilimab (BOT), a novel innate/adaptive immune activator, plus balstilimab (BAL; anti-PD-1 antibody) in metastatic heavily pretreated microsatellite stable colorectal cancer (MSS CRC)

Authors: Anthony B. El-Khoueiry, MD¹, Marwan G. Fakih, MD², Michael S. Gordon, MD³, Apostolia M. Tsimberidou, MD, PhD⁴, Andrea J. Bullock, MD, MPH⁵, Breelyn A. Wilky, MD⁶, Jonathan C. Trent, MD, PhD⁷, Kim A. Margolin, MD, FACP, FASCO⁸, Daruka Mahadevan, MD, PhD⁹, Ani S. Balmanoukian, MD¹⁰, Rachel E. Sanborn, MD¹¹, Gary K. Schwartz, MD¹², Bruno Bockorny, MD⁵, Justin C. Moser, MD³, Joseph E. Grossman, MD¹³, Waldo Ortuzar Feliu, MD¹³, Katherine Rosenthal, RN, MSN, OCN, CCRP¹³, Steven J. O'Day, MD¹³, Heinz-Josef Lenz, MD, FACP¹, Benjamin L. Schlechter, MD¹⁴

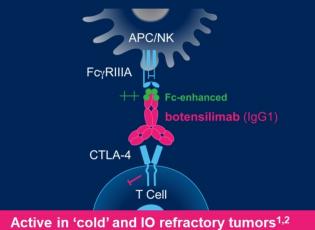
¹University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA, ²City of Hope Comprehensive Cancer Center, Duarte, CA, USA, ³Honor Health Research and Innovation Institute, Scottsdale, AZ, USA, ⁴The University of Texas MD Anderson Cancer Center, Houston, TX, USA, ¹Beth Israel Deaconess Medical Center, Boston, MA, USA, ¹University of Control Cancer Center, Aurora, CO, USA, ³Nyvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA, ⁹Providence Saint John's Cancer Institute, Santa Monica, CA, USA, ⁴The University of Exas Health Sciences Center at San Antonio, San Antonio, San Antonio, TX, USA, ¹⁰De Angeles, CA, USA, ¹¹Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA, ¹²Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA, ¹³Agenus Inc., Lexington, MA, USA, ¹⁰Dane-Farber Cancer Institute, Boston, MA, USA

Presented by: Anthony B. El-Khoueiry, MD

#GI23

University of Southern California Norris Comprehensive Cancer Center Los Angeles, California, United States

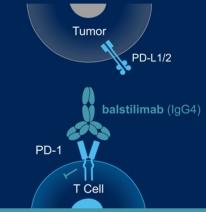
January 21, 2023 Abstract Number: LBA8



PRESENTED BY: Anthony B. El-Khoueiry, MD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Active in 'Cold' and IO Refractory Tumors

botensilimab Fc-enhanced CTLA-4 Inhibitor



- >300 patients treated across 4 trials

- ↑ Treg depletion
- ↓ Complement mediated toxicity

#GI23

balstilimab PD-1 Inhibitor

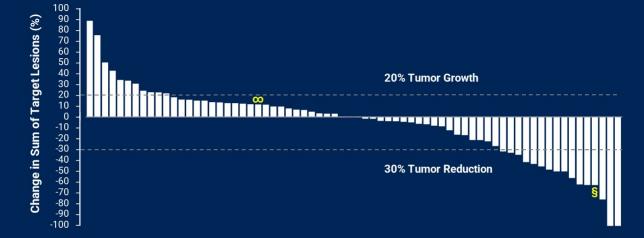
Safety and efficacy analogous to approved anti-PD-1 mAbs^{5,6}

- >750 patients treated; 10 ongoing trials / 2 completed
- Complete blocker of PD-1-PD-L1/2 interactions
- Enhanced T cell activation and effector function

1. El-Khoueiry AB. SITC 2021 Annual Meeting. Poster #479. 2. Wilky B. SITC 2022 Annual Meeting. Oral #778. 3. Waight et al. Cancer Cell. 2018;33(6): 1033-1047. 4. Levey D. SITC 2022. Annual Meeting. Oral #470. 5. O'Malley, et al. Gynecol Oncol. 2021; 163: 274-280. 6. O'Malley et al, J Clin Oncol. 2022; 40(7): 762-771.

ASCO[•]Gastrointestinal Cancers Symposium

PRESENTED BY: Anthony B. El-Khoueiry, MD



agenus

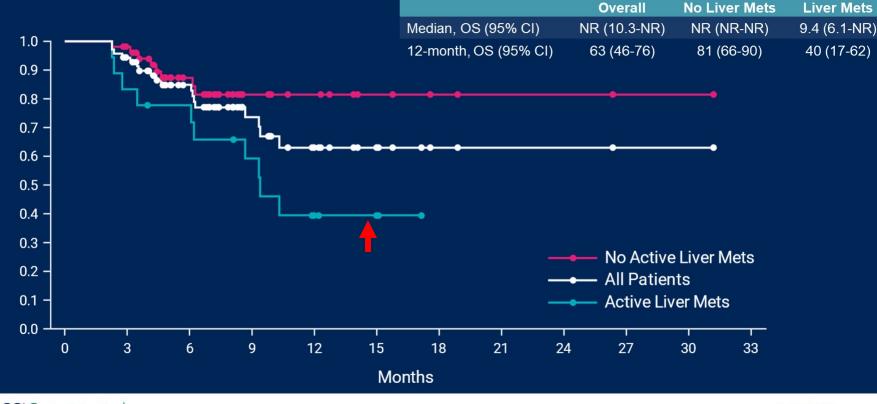
Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Deep Objective Responses

Median prior lines: 4 Prior IO: 31% RAS mut: 59% BRAF mut: 3%

Efficacy	N=70
ORR*, % (95% CI)	23 (14-34)
BOR, n (%)	
CR	1 (1)
PR	15 (21)
SD	37 (53)
DCR (CR + PR + SD), % (95% CI)	76 (64-85)
Median, OS (95% CI)	NR (10.3-NR)
Median PFS, months (95% CI)	4.1 (2.8-5.5)
Median F/U, months (Min, Max)	7 (2, 31)

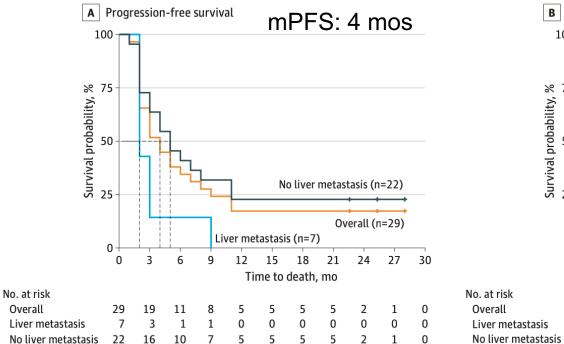
*Includes unconfirmed responses. 🚾 Resected target lesions showed complete pathologic response. § Response by iRECIST.

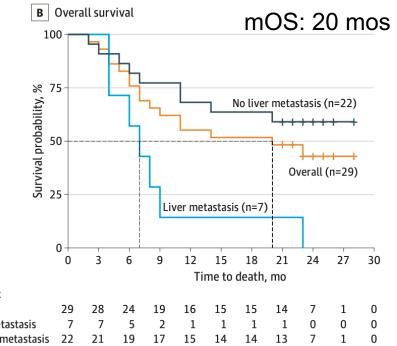


Overall Survival

Efficacy evaluable population, N=70

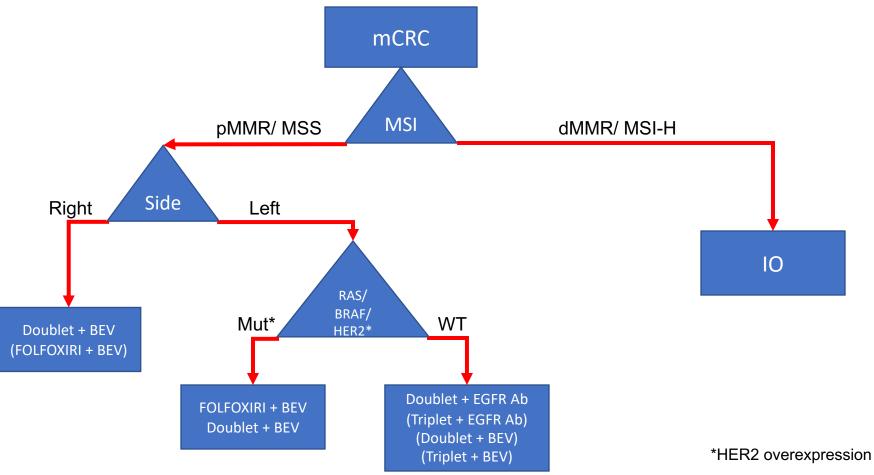
agenus


ASCO Gastrointestinal **Cancers Symposium**


#GI23 Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

PRESENTED BY: Anthony B. El-Khoueiry, MD

Phase 1 study Rego/Nivo/Ipi in MSS mCRC


RR: No liver mets (22): 36%, Liver mets (7): 0%

Fakih et al., JAMA Oncol 2023

My Conclusions from B&B study

- BAL-BOT shows interesting activity in metastatic MSS/pMMR CRC without liver metastases
 - Reminiscent of data generated with Rego/Nivo (+/- Ipi) and Pembro/Lenvatinib (Note: Phase 3 LEAP-17 negative! – press release April 7, 2023)
- Observed activity passed my personal benchmark for IO in later line mCRC: >20% RR with durability of response >9 months
- More data and randomized comparison needed to see if time-related endpoints can be met
- We need to find a way to make CRC liver metastases respond to IO therapy -> high unmet need!

Optimized first-line therapy for mCRC

The Present and the Future

Where we are now		Where we will go
Early stage colon cancer		
Adjuvant therapy	Duration and intensity based on traditional TNM staging	 ctDNA as MRD marker to select patients for adjuvant therapy to identify high-risk patients with distinct
	No targeted agents or immunotherapy	 molecular profile for targeted intervention to serve as endpoint in adjuvant trials Neoadjuvant IO therapy for locally advanced cancers
Advanced CRC		
Palliative therapy	Chemotherapy as backbone	 Identify more patients suitable for targeted therapies Characterize markers of secondary resistance Immunotherapy for MSS/ pMMR cancers Define the role of tumor microbiota in oncogenesis as prognostic and predictive marker as target for therapeutic intervention
	Targeted agents based on molecular profile and sidedness	
	Immunotherapy only for MSI-H/ dMMR cancers	

The Present and the Future

Where we are now		Where we will go
Early stage rectal cancer		
Neo-Adjuvant therapy	Ongoing shift from radio- chemotherapy followed by surgery and post-op adj Tx to TNT	 Firm establishment of TNT as SOC Best sequencing strategy TBD ? SCRT vs LC-chemo-rads
	Increased use of short- course radiation therapy	
	Even in cCR surgery considered SOC	 Non-operative management as SOC in suitable cases Role of imaging, endoscopy and serial ctDNA testing to monitor response and in follow-up TBD
	Molecular markers largely ignored for treatment decisions	Neoadjuvant or definitive IO therapy is SOC in dMMR/MSI-H rectal cancers

MOC Question:

The SUNLIGHT trial investigated the addition of bevacizumab to TAS-102 (trifluridine/ tipiracil) in refractory mCRC.

Which of the following statements is not true?

- A. The addition of bevacizumab improved OS
- **B.** The addition of bevacizumab improved PFS
- C. The addition of bevacizumab improved OS only in bevacizumab-naïve patients
- D. The response rate of TAS-102 plus bevacizumab was less than 10%
- E. The addition of bevacizumab to TAS-102 led to an almost 40% reduction in death events on the study