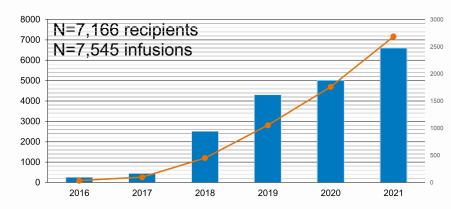
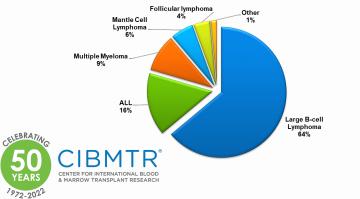

UCSF Helen Diller Family Comprehensive Cancer Center

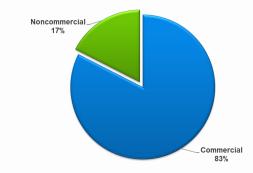
CAR-T therapies: successes and challenges

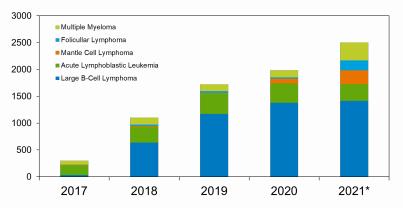
Krishna Komanduri, MD, FASTCT Julius R. Krevans Distinguished Professor of Medicine Chief, Division of Hematology/Oncology, UCSF Health Physician-in-Chief, Helen Diller Family Comprehensive Cancer Center

The Development of the Registry Parallel to the Expansion of the Field of Cellular Immunotherapy





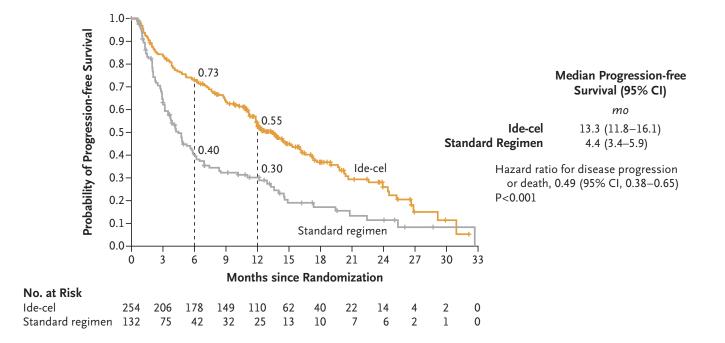

3



Cellular Immunotherapy Registry at a Glance

CAR-T therapy in second line myeloma

RCT of ide-cel vs. standard regimens in R/R myeloma

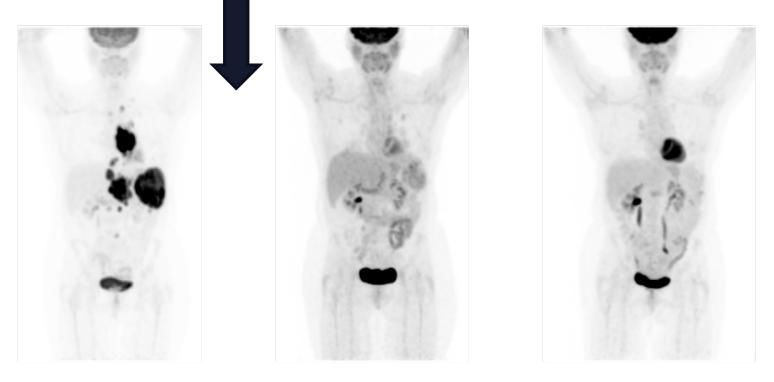

- Eligible patients had failed 2-4 prior therapies including daratumumab, an immunomodulatory agent and a proteasome inhibitor
- Documented disease progression within 60 days of the last cycle
- All patients had measurable disease and ECOG 0-1 performance status
- Median age 63 (range 30-83); 42-46% with high-risk cytogenetics
- ~85% had prior autologous SCT
- Ph3 RCT with 2:1 randomization to ide-cel vs. "standard regimens"

132 Were assigned to standard-regimen group
43 Were to receive daratumumab, pomalidomide, and dexamethasone
30 Were to receive carfilzomib and dexamethasone
30 Were to receive elotuzumab, pomalidomide, and dexamethasone
22 Were to receive ixazomib, lenalidomide, and dexamethasone
7 Were to receive daratumumab, bortezomib, and dexamethasone

UCCF Helen Diller Far

Comprehensive

PFS of ide-cel vs. SOC regimens in R/R myeloma


RCT of ide-cel vs. standard regimens in R/R myeloma

- Overall, ide-cel outperformed other SOC regimens in this population
- However, no plateau suggesting curative potential evident in PFS curves
- When progression did occur, BCMA (target) downregulation was NOT seen, in contrast to frequent target loss in CD19 CAR-T treatment failures

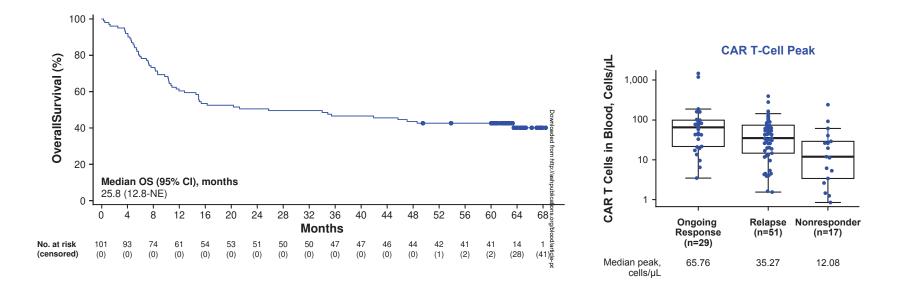
Updates: CAR-T therapies in NHL

CAR-T response to axi-cel after six prior lines of therapy

December 2015

February 2016

April 2016


Images by Lazaros Lekakis, MD

Neelapu, et al., long-term F/U of ZUMA-1 study in NHL

- Reported LTFU of patients treated with axi-cel for R/R LBCL (n=101)
- High-risk patients failing at least two prior lines of therapy, median age of 58
- Median F/U now 63 months
- Five-year OS 43%; PFS 32%
- Patients who had no defining events by 12 months had >90% OS at 5y
- Five deaths beyond year 3: one progressive disease and one secondary malignancy
- Secondary analyses reported positive association between early CAR-T expansion (peak numbers and AUC) and maintenance of long-term responses

Is cell therapy standard of care for 2nd line DLBCL?

Neelapu, et al., long-term F/U of ZUMA-1 study in NHL

Comprehensive Cancer Center

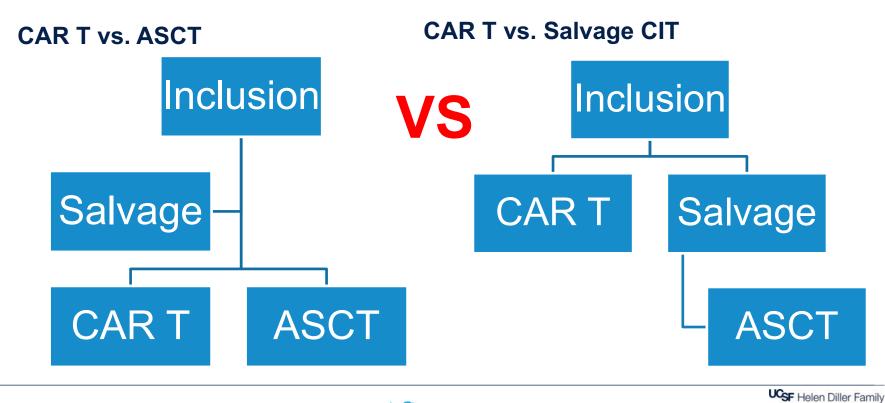
Neelapu, et al., Blood, in press 2023

CD19 CAR T-cells in DLBCL: Earlier Lines

ZUMA-7
Axi-cel

High Risk DLBCL:

- Refractory to 1st line therapy
- Relapsed within 12m of 1st line therapy


CAR T

BELINDA Tisa-cel

TRANSFORM

Salvage /Auto

Which is the better study design?

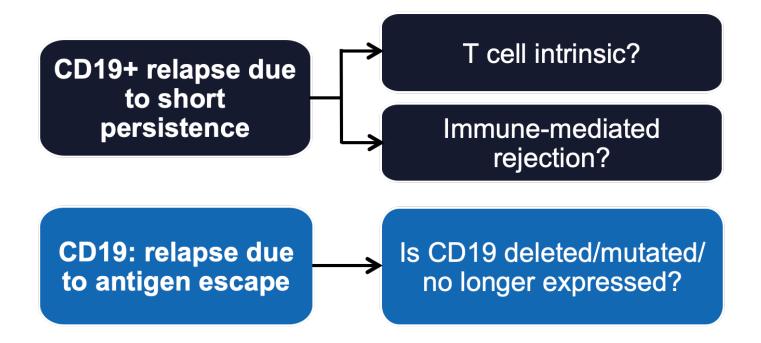
Comprehensive

Cancer Center

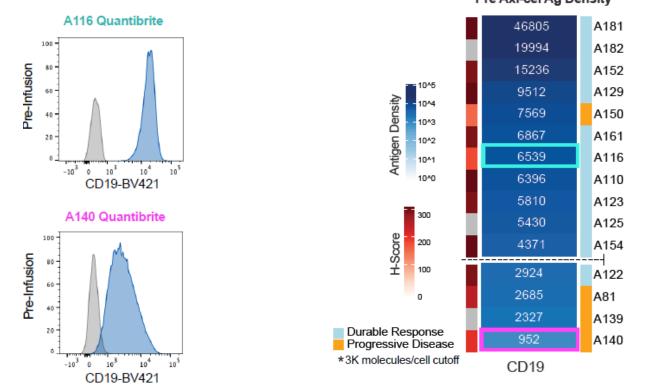
Is CAR-T therapy the 2nd line DLBCL standard?

- Two of three RCTs favored CAR-T therapy in the second line setting (ZUMA-7 and TRANSFORM)
- RCTs demonstrated traditional salvage therapies are suboptimally effective (<40% achieved PR and had AutoSCT)
- Retrospective analyses suggest individuals who achieved a PR can do quite well with AutoSCT
- Key practical question is for someone responding to salvage, what to do? Many would still do a transplant for patients achieving a CR.
- All current data prone to selection bias
- Additional data (including from registries) needed
- Additional RCTs would be helpful (but are unlikely)

What about fourth line? First line?

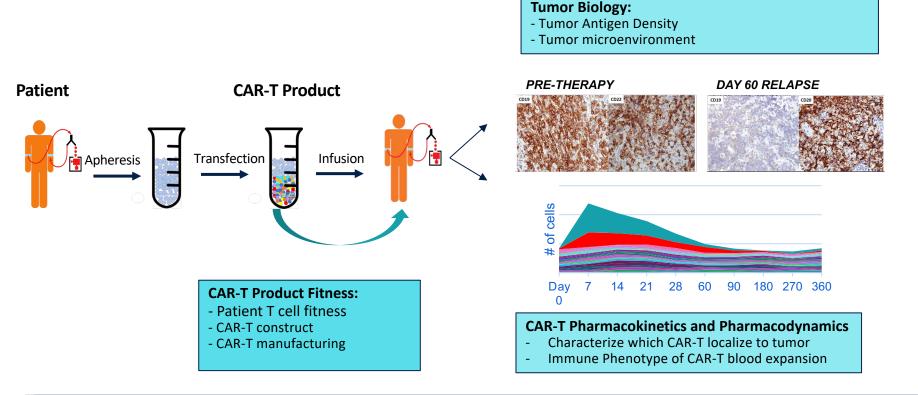

- We need better therapies following CAR-T failure
- Long-term results of all three commercial products suggest only 30-40% cure rates
- CAR-T trials (including CD19/22) demonstrate ≤30% ORR
- Second-line CAR-T therapies (following first failure) are needed
- First-line studies promising (ZUMA-12, Neelapu, Nat Med 2022) look very promising but additional data, RCTs needed.

Can we predict cellular therapy failures?



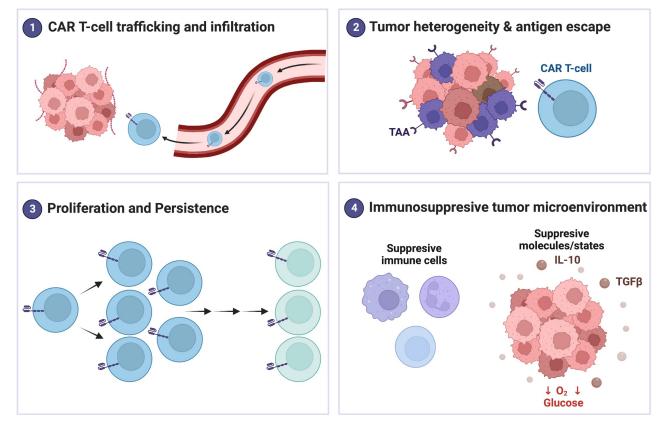
Cancer Center

Mechanisms of relapse after CD19 CAR-T therapy



Pre-treatment quantitative flow (but not IHC) may identify patients at risk for treatment failure

Spiegel, Nat Medicine 2021


Optimizing CAR-T Therapy: Model by Spiegel and Miklos

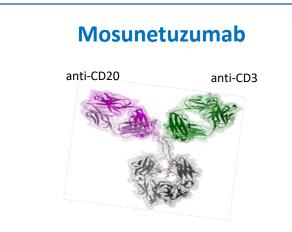
UCSF Helen Diller Family Comprehensive Cancer Center

from Spiegel and Komanduri, Blood Feb 17, 2022

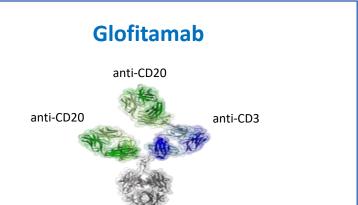
Challenges for CAR-T cell efficacy/safety

Comprehensive Cancer Center

adapted from slide by Julia Carnevale, MD, UCSF


What developments will make a difference?

- Allogeneic CAR-T therapies are promising (limited data, and potential problems, including need for aggressive T cell depletion)
- Additional targets beyond those initially targeted (e.g., beyond CD19/BCMA) alone and bispecific/bicistronic therapies (e.g., CD20, CD22, CD19/20, CD19/22)
- NK cell therapies are exploding (including NK-CAR therapies) and appear promising, though with relatively limited data
- More therapies tested and approved for pediatric subjects (just one to date)
- Better pre-treatment predictors of treatment failure (e.g, antigen density) and measures of impending relapse (e.g, ctDNA) are needed.



What about relapses after CAR-T therapy?

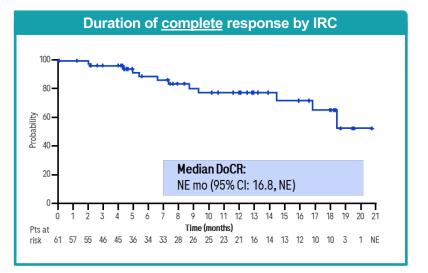
CD20xCD3 Bispecific antibodies

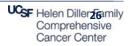
Tolerable safety profile may allow for outpatient administration without required monitoring

Unique bivalent binding structure; 2:1 CD20:CD3 format engineered for high potency

Glofitamab in R/R DLBCL with ≥2 prior therapies: Ph2 expansion study

Heavily pre-treated, highly refractory population


n (%)*		N=154 [†]
Median age, years (range)		66.0 (21–90)
Male		100 (64.9)
ECOG PS [‡]	0	69 (44.8)
	1	84 (54.5)
	Ι	10 (6.5)
Ann Arber stere	II	25 (16.2)
Ann Arbor stage	III	31 (20.1)
	IV	85 (55.2)
	DLBCL	110 (71.4)
	trFL	27 (17.5)
NHL subtype	HGBCL	11 (7.1)
	PMBCL	6 (3.9)
Dullaudianaa	>6cm	64 (41.6)
Bulky disease	>10cm	18 (11.7)


n (%)*	N=154
Median no. of prior lines, n (range)	3 (2–7)
2 prior lines	62 (40.3)
≥3 prior lines	92 (59.7)
Prior anti-CD20 Ab	154 (100.0)
Prior anthracycline	149 (96.8)
Prior CAR-T	51 (33.1)
Prior ASCT	28 (18.2)
Refractory to any prior therapy	139 (90.3)
Refractory to last prior therapy	132 (85.7)
Primary refractory	90 (58.4)
Refractory to prior CAR-T	46 (29.9)
Refractory to any prior anti-CD20	128 (83.1)

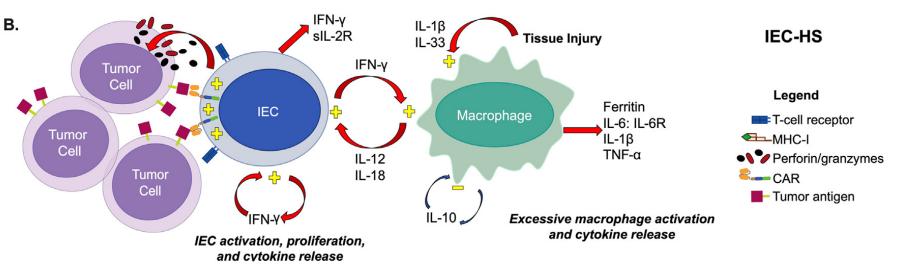
Clinical cut-off date: March 14, 2022; *unless otherwise specified; †safety-evaluable population (all treated patients);
 ‡ECOG PS 2, n=1 (0.6%); Ab, antibody; ASCT, autologous stem cell transplant; trFL, transformed follicular lymphoma.

Glofitamab monotherapy in 3L+ Large B-cell lymphoma Phase 2 pivotal data

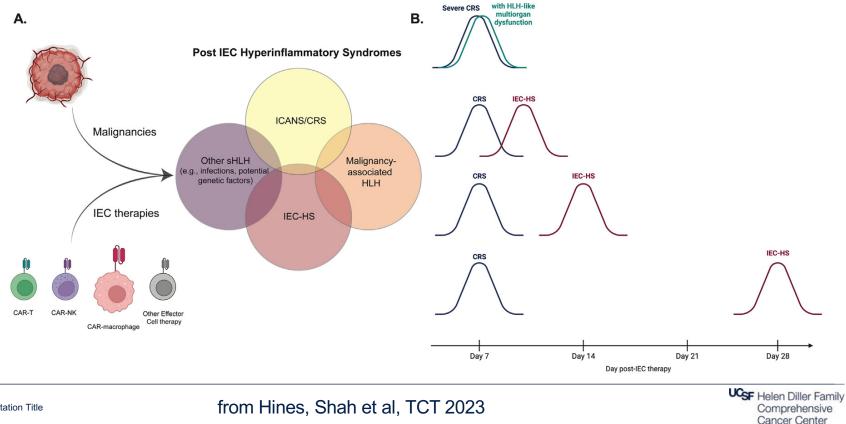
Efficacy endpoint ¹	Glofitamab 2.5/10/30mg (n=155)	
CR rate*	61 (39.4%)	
ORR*	80 (51.6%)	
Median duration of follow-up, mos		12.6 (0-22 mos)
12-months DoR, % (95% CI)		63.6 (51.1, 76.2)
12-months DoCR, % (95% CI)		77.6 (64.3, 90.8)

Glofitamab conclusions

- Glofitamab is the first T-cell-engaging bispecific monoclonal antibody to demonstrate clinically meaningful outcomes for patients with R/R DLBCL in a pivotal Phase II setting:
 - primary efficacy endpoint met; CR: 39.4% and ORR: 51.6% in heavily pre-treated, highly refractory patients with DLBCL after ≥2 prior lines
 - consistent CR rates in patients with prior CAR-T exposure; higher CR rate in relapsed patients versus refractory patients
 - CRs achieved early and durable even after fixed-duration treatment (max. 12 cycles)
 - glofitamab was well tolerated: low rate of treatment discontinuations; CRS was mostly low grade and during Cycle 1, with predictable time of onset; low rate of ICANS
- Glofitamab is a promising off-the-shelf treatment with a novel mode of action, BUT...
- Unclear how durable responses will be to bispecific antibody therapies, relative to CAR-T approaches
- How best to sequence therapies will be an increasing challenge, in lymphoma and myeloma


CAR-T therapies: special problems

Cellular Therapy


Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome

Melissa R. Hines¹, Tristan E. Knight², Kevin O. McNerney³, Mark B. Leick⁴, Tania Jain⁵, Sairah Ahmed⁶, Matthew J. Frigault⁴, Joshua A. Hill⁷, Michael D. Jain⁸, William T. Johnson⁹, Yi Lin¹⁰, Kris M. Mahadeo¹¹, Gabriela M. Maron¹², Rebecca A. Marsh¹³, Sattva S. Neelapu⁶, Sarah Nikiforow¹⁴, Amanda K. Ombrello¹⁵, Nirav N. Shah¹⁶, Aimee C. Talleur¹⁷, David Turicek¹⁸, Anant Vatsayan¹⁹, Sandy W. Wong²⁰, Marcela V. Maus⁴, Krishna V. Komanduri²⁰, Nancy Berliner²¹, Jan-Inge Henter²², Miguel-Angel Perales²³, Noelle V. Frey²⁴, David T. Teachey²⁵, Matthew J. Frank²⁶, Nirali N. Shah^{18,*}

from Hines, Shah et al, TCT 2023

HLH syndromes after CAR-T therapy

IEC-HS: definition and diagnostic critera

Table 1

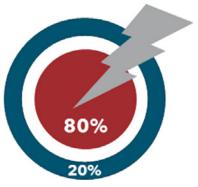
IEC-HS: Definition and Identification

Definition of IEC-HS	The development of a pathological and biochemical hyperinflammatory syndrome independent from CRS and ICANS that (1) manifests with features of macrophage activation/HLH, (2) is attributable to IEC therapy, and (3) is associated with pro- gression or new onset of cytopenias, hyperferritinemia, coagulopathy with hypofibrinogenemia, and/or transaminitis		
Criteria for Identifying IEC-HS*	HS* Clinical/Laboratory Manifestations		
Most common manifestations [†]	Required: elevated ferritin (>2 \times ULN or baseline (at time of infusion)) and/or rapidly rising (per clinical assessment)		
	Onset with resolving/resolved CRS or worsening inflammatory response after initial improvement with CRS-directed therapy ‡		
	Hepatic transaminase elevation [§] (>5 × ULN (if baseline was normal) or >5 × baseline if baseline was abnormal)		
	Hypofibrinogenemia (<150 mg/dL or <lln)< td=""></lln)<>		
	Hemophagocytosis in bone marrow or other tissue		
	Cytopenias (new onset, worsening, or refractory [¶])		
Other manifestations	Lactate dehydrogenase elevations (>ULN)		
that may be present	Other coagulation abnormalities (eg, elevated PT/PTT)		
	Direct hyperbilirubinemia		
	New-onset splenomegaly		
	Fever (new [#] or persistent)		
	Neurotoxicity		
	Pulmonary manifestations (eg, hypoxia, pulmonary infiltrates, pulmonary edema)		
	Renal insufficiency (new onset)		
	Hypertriglyceridemia (fasting level, >265 mg/dL $^{\parallel}$)		

from Hines, Shah et al., TCT 2023

Transplantation and Cellular Therapy journal homepage: www.astctjournal.org

Check for updates


Full Length Article Position Report

Paving the Road for Chimeric Antigen Receptor T Cells: American Society for Transplantation and Cellular Therapy 80/20 Task Force Consensus on Challenges and Solutions to Improving Efficiency of Clinical Center Certification and Maintenance of Operations for Commercially Approved Immune Effector Cell Therapies

Sarah Nikiforow^{1,*}, Matthew J. Frigault², Noelle V. Frey³, Rebecca A. Gardner⁴, Krishna V. Komanduri⁵, Miguel-Angel Perales⁶, Partow Kebriaei⁷, Phyllis Irene Warkentin⁸, Marcelo Pasquini⁹, Joy Lynn Aho¹⁰, Bruce L. Levine¹¹, Helen E. Heslop¹², Tracey L. Hlucky¹³, Karen Habucky¹⁴, Mecide Gharibo¹⁵, Madan Jagasia¹⁶, Frederick L. Locke^{17,*}

Mission

- Advocate for standardization
- Identify 80% common workflows (contrasting 20% product-specific)
- Streamline auditing and education
- Leverage existing entities

The 80/20 Project: Challenges and Potential Solutions

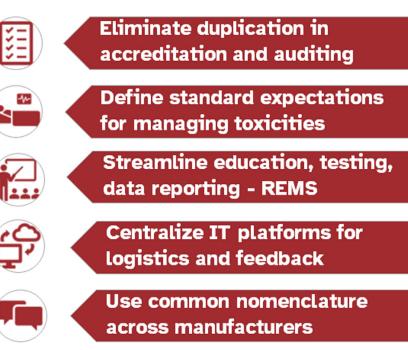


Figure 2. Potential solutions to challenges.

33 Presentation Title

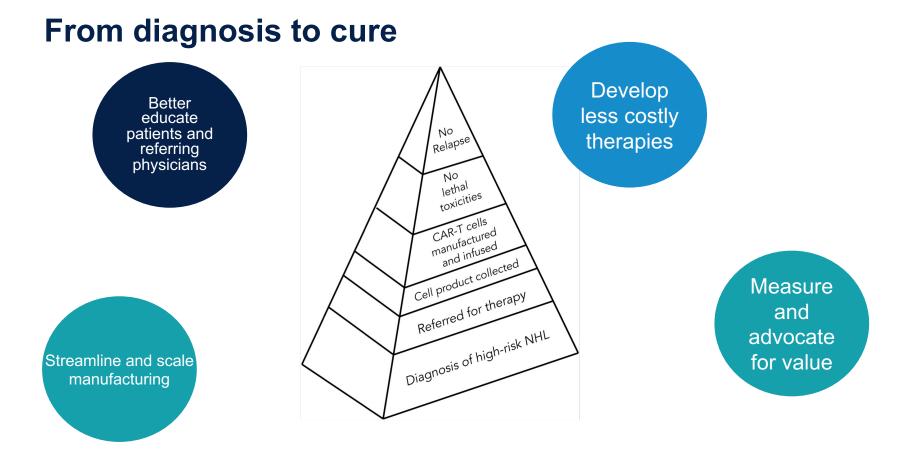
from Hines, Shah et al, TCT 2023

Streamlining CAR-T therapies: 80/20 Project Plans

Table 2

ASTCT 80/20 Task Force Stakeholder Recommendations for Immune Effector Cell Therapy Standardization

	ASTCT 80/20 Task Force and Stakeholder Goals	Strategies in Development	Potential Future Initiatives
1	Eliminate duplication in accredita- tion and auditing of clinical sites	 Risk-adapted or tiered algorithms to sponsor auditing, eg, using FACT accreditation Existing accreditation entities with shared reports/findings, ie, FACT, NMDP, AABB 	 Modularization of auditing for specific site or manufacturer needs Hub-and-spoke model of quality programs/ accreditation for smaller centers
2	Define standard and uniform safety guidelines for managing CAR-T cell therapy toxicities to potentially replace product-specific REMS programs	• Expert consensus guidelines exist on treatment management strategies, eg, NCCN	• Expert local and/or accrediting body-based treatment guidelines and oversight
3	Streamline education, testing and data reporting on CAR-T toxicities currently performed under REMS	• Commercial collaborations are consid- ering a shared REMS program and/or centralized testing	 Centrally available education modules geared to individual roles within clinical sites Agreement on common data points and cen- tral mechanism for reporting, ie, CIBMTR
4	Standardize IT platforms for enroll- ment, logistics of maintaining chain of identity/chain of custody across multiple transportation steps, and clinical site-manufacturer communication	• Limited number of portals using agreed-upon nomenclature, identifiers, and processes	Limited number of portals using agreed- upon nomenclature, identifiers, and processes
5	Use of universal nomenclature, as much as possible, by cell therapy manufacturers	 ICCBBA/ISBT 128 labeling standards for apheresis and final manufactured products Standards coordinating body initiatives 	 Recognition of common workflows for apheresis collections, labels, and transpor- tation documentation


Comprehensive Cancer Center

from Nikiforow, Locke et al, TCT 2023

What about access and equity in CAR-T therapy?

- All approved CAR-T therapies, in aggregate, are underutilized
- Based on registry/public data, probably ≤30% of eligible 3L patients receive CAR-T therapy
- High cost, tertiary/quaternary therapies tend to maximize historical barriers to access (racial, socioeconomic, logistical)
- Early data suggest that African American patients are less likely to receive CAR-T therapy, and may have lower ORR, CR rates
- Unique access issues exist for pediatric patients, for whom fewer options exist

How can we improve access and equity in cellular therapy?

Acknowledgements

Slides: Jay Spiegel (UM/Sylvester) Marcelo Pasquini (MCW/CIDR) Miguel Perales (MSKCC) Ginna Laport

Faculty, Staff and Patients at the University of Miami and UCSF

UCSF Helen Diller Family Comprehensive Cancer Center