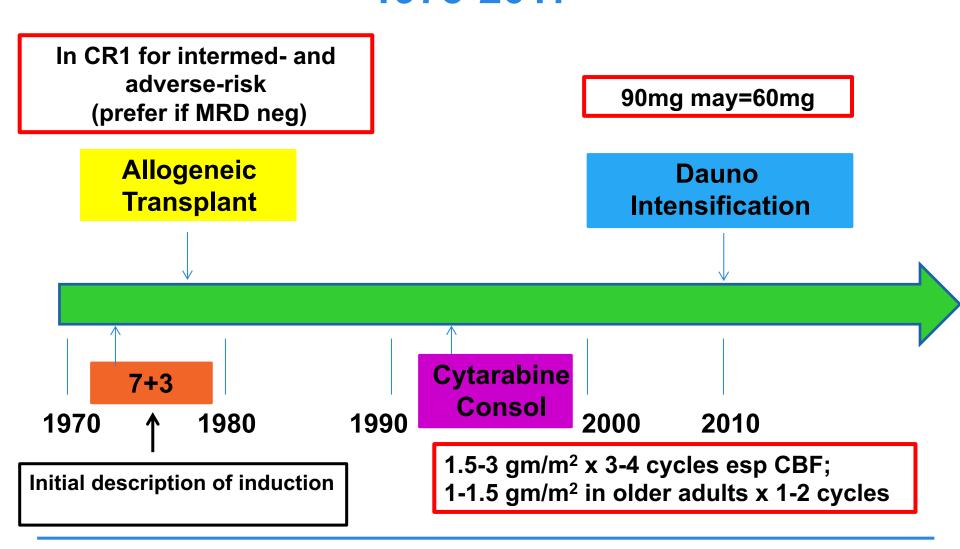
Acute Myeloid Leukemia

Martin S. Tallman, M.D.

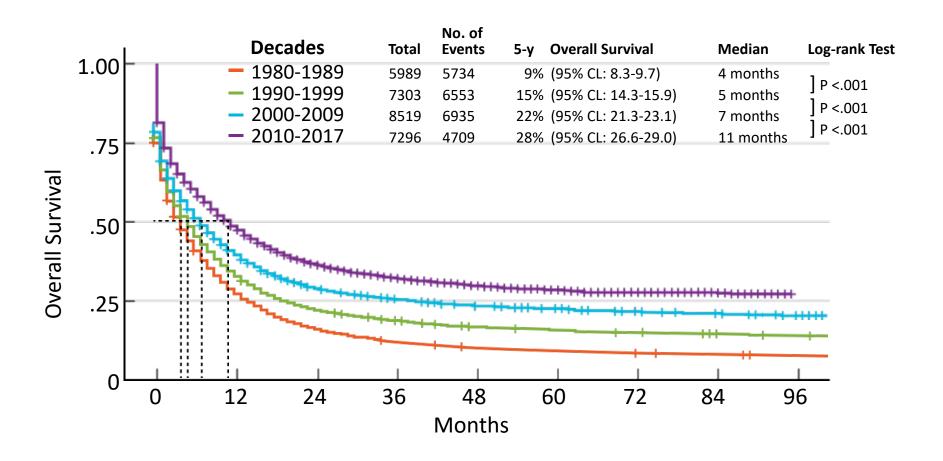
Northwestern University Feinberg School of Medicine
Robert H. Lurie Comprehensive Cancer Center
Chicago, Illinois

19th Annual Miami Cancer Meeting Miami, FL April, 2023

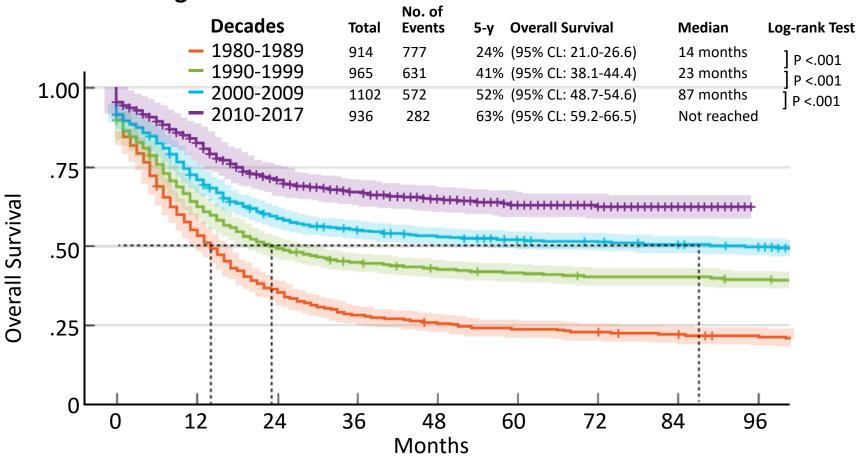

Objectives

 Describe the prevailing therapeutic paradigm in AML and outcomes before 2017

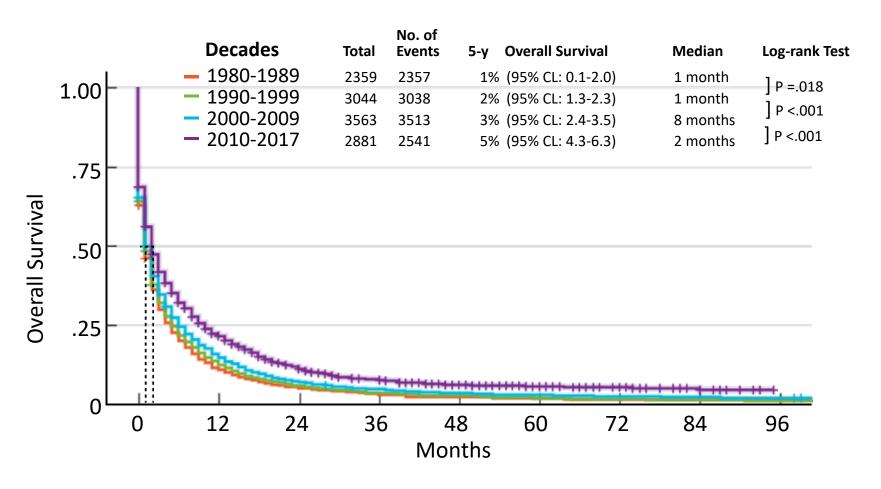
 Discuss selective novel agents for AML, new treatment strategies and changing therapeutic paradigms


Define the evolving landscape in AML

Prevailing Therapeutic Paradigm in AML 1973-2017


Kaplan-Meier Estimates for all Types of Acute Myeloid Leukemia by Decade of Diagnosis

SEER All AML: All Ages


Kaplan-Meier Estimates for all Types of Acute Myeloid Leukemia by Decade of Diagnosis

Kaplan-Meier Estimates for all Types of Acute Myeloid Leukemia by Decade of Diagnosis

SEER All AML: Age ≥70

Recent Progress in AML

- Insights into genetic pathogenesis/integrated genetic profiling
- Recognition of inherited familial predisposition syndromes
- Drug discovery/targeted therapy
- Expanded availability and advances in transplantation
- Paradigm shift in approach to older adults
- Increased importance of measurable residual disease

Gene Mutations Important in Everyday Practice

Gene	Incidence	Association	Impact
FLT3-ITD/TKD	25%	NPM1	Unfavorable
NPM1	13%	FLT3	Favorable
bZIP $CEBP\alpha$	11%	FLT3	Favorable ¹
C-KIT	15%	CBF	Unfavorable ²
IDH1/2	22%	NPM1	Favorable
TP53	7%	t-AML, complex karyotype	Unfavorable
RUNX1	10%	Mutually exclusive with recurrent genetic abn	Unfavorable
ASXL1	7-30%	Secondary AML	Unfavorable
TET2	27%	NPM1, FLT3, JAK2, RUNX1, CEBP α , KRAS, but not IDH	Unfavorable

²in t(8;21), and maybe inv(16), but less clear

¹Wakita et al. Blood Adv, 2022; ²Hyak et al. ASH, 2022 (abstr 536)

ELN 2022 Changes to Risk Classification

- All recurrent genetic abn (ex BCR::ABL1) define AML if >/=10% blasts including NPM1, bZIP CEBPα
- FLT3-ITD ratio not relevant, all FLT3-ITD are intermediate risk (+/- NPM1)
- AML with myelodysplasia-related gene mutations is adverse-risk
- Adverse cytogenetics in NPM1-mutated AML is adverse
- bZIP $CEBP\alpha$ is favorable-risk (either monoallelic or biallelic)

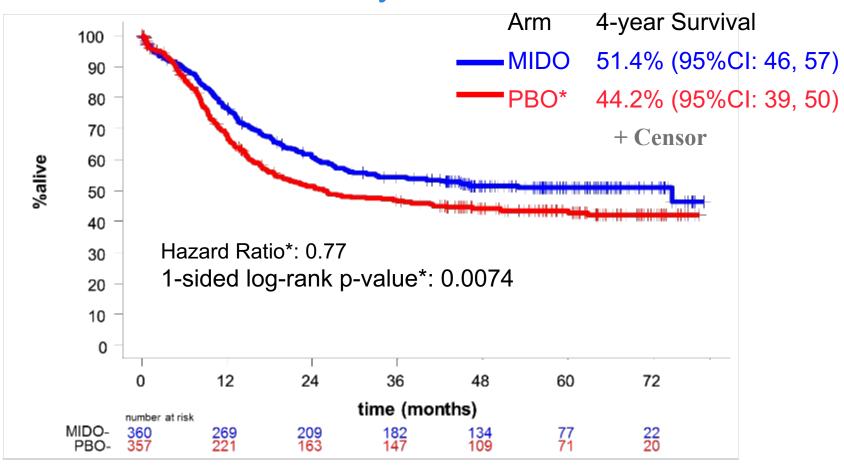
Recently Approved Agents for AML 2017-2023

Agent	Target	Population		
Midostaurin	FLT3	Induction, consol, (maint)		
Gilteritinib	FLT3	Rel/Refr		
Ivosidenib/Enasidenib	IDH1/2	Rel/Refr or de novo (Ivo as		
		monotherapy or with Aza)		
Venetoclax (w HMA or LoDAC)	BCL-2	De novo, >/=75, comorbidities		
Glasdegib (w HMA or LoDAC)	Smoothened receptor	De novo, >/=75, comorbidities		
Gemtuzumab ozogamicin	CD33	Fav/intermed, rel/refr		
CPX-351	Cytotoxic	t-AML, AML-MRC		
CC-486	DNA	CR/CRi1, ineligible for curative		
	methyltransferase	therapy		
Olutasidenib	IDH1	Rel/Refr		

Evolving Use of Novel Agents in AML

Single agent (CPX-351, CC-486)

Novel agent combined with chemo (FLT3i, IDH1, Venetoclax, GO)


Novel-novel combination doublets (Venetoclax + Gilteritinib)

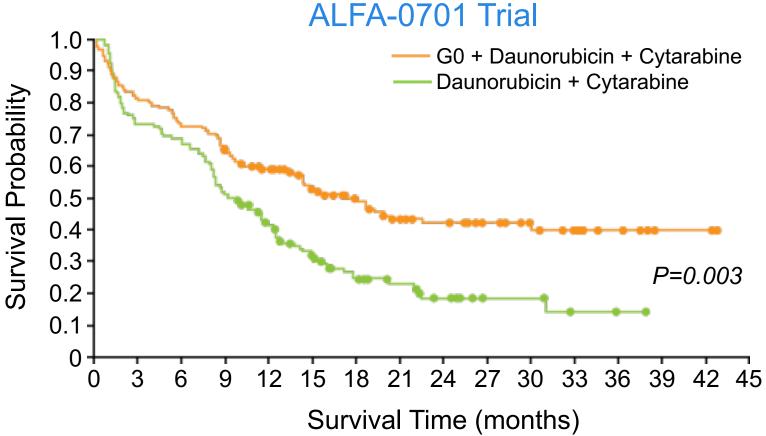
Novel-novel-chemo triplet (Gilt + Venetoclax + HMA)

Overall Survival Chemo + Midostaurin or Placebo

Ratify Trial

*PBO=Placebo

Midostaurin in AML

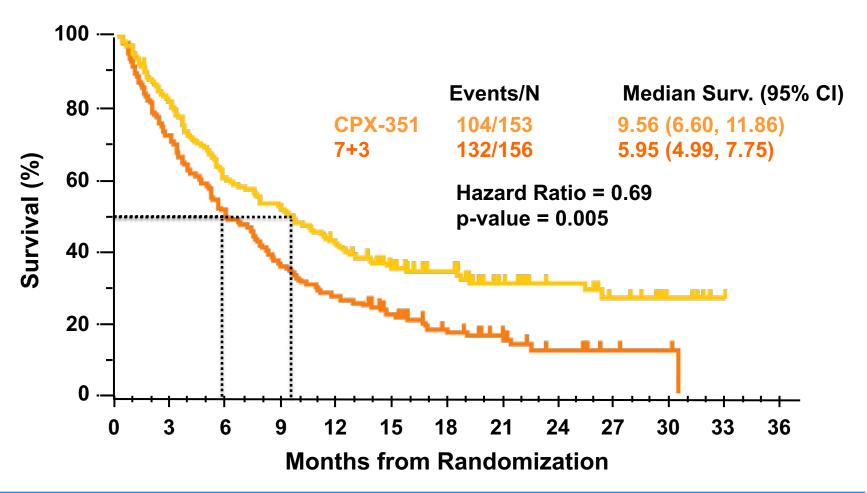

- First agent with (sustained) regulatory approval in ~50 years
- It changed practice and therapeutic paradigm, but full potential of FLT3i not realized
 - OS increase only 7%
 - Benefit more in FLT3-TKD than ITD
 - Which phase of treatment important if not all 3?
 - Among least potent FLT3 inhibitors
 - Role in maintenance unclear¹

Midostaurin in AML

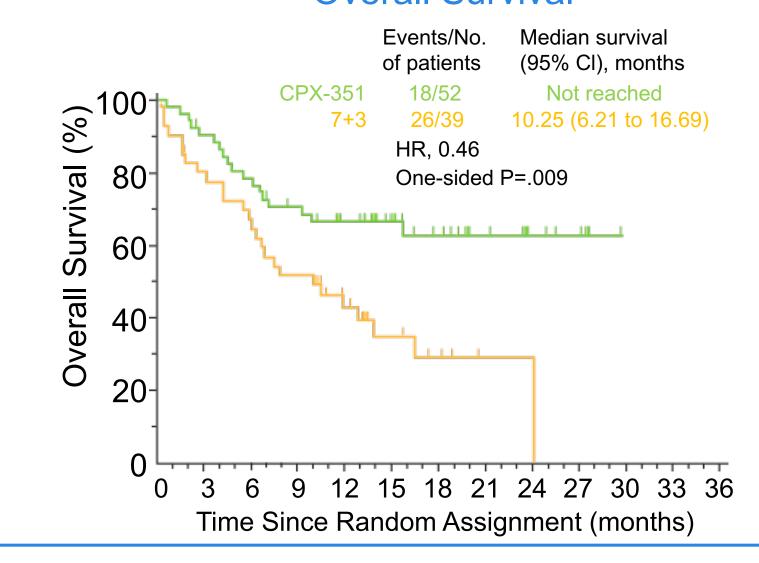
- All FLT3^{mut} pts get 7 + 3 + Midostaurin in induction, consol then allo or maintenance: new SOC
- Second gen FLT3i: Quizartinib + chemo vs placebo + chemo and maint Quiz or placebo and/or allo followed by 3 yr Quiz or placebo
 - n=539, new dx, FLT3-ITD^{mut}
 - med OS quiz 32 mo vs 15 placebo (p=0.0324)
 - CRc 72% vs 65%.
 - But ? control arm should have been chemo + Mido not placebo

Gemtuzumab Ozogamicin (Anti-CD33 + Calicheamicin)

Newly Diagnosed AML Ages 50-70 Kaplan-Meier Plot of Event-Free Survival



Gemtuzumab Ozogamicin


- 5 Randomized trials in AML (UK MRC AML15, UK NCRI AML 16, SWOG 0106, GOELAMS AML 2006IR, ALFA 0107)
- CR not improved
- OS benefit in 2 of the 5 (marginal in 1)
- UK studies complicated with multiple randomizations
- Has role in 2 small subsets of AML: high-risk APL and CBF, but not clearly otherwise

Overall Survival Greater in the CPX-351 Arm Compared to the 7+3 Arm

High-risk and Secondary AML

Impact of CPX-351 on Transplant Outcome Overall Survival

CPX-351

- Why is CPX-351 more effective in t-AML and AML with MRC?
- Not better in pts with hx prior MDS and HMA exposure
- Why is outcome after allo-HCT better with CPX-351 than with with 7 + 3?
 - Deeper remission?
 - Less toxicity pre-transplant?
- Will CPX-351 be effective either alone or when combined with other agents in adverse subtypes?¹⁻³ TP53 → poor outcome with chemo and CPX-351²
- Approved for t-AML and AML –MRC and has changed SOC

Ivosidenib (*IDH1*i) or Enasidenib (*IDH2*i) Plus Chemo Phase I Trial

Best Overall Response Summary

	Ivosidenib + CT			Enasidenib + CT		
Response, (%)	All (n=60)	De novo (n=42)	sAML (n=18)	All (n=91)	De novo (n=56)	sAML (n=35)
CR+CRi/CRp	77	88	50	74	80	63
CR	68	76	50	55	64	40
CRi/CRp	8	12	-	19	16	23
MLFS	7	7	6	11	9	14
PR	3	-	11	2	2	3
Treatment failure	13	5	33	13	9	20

Need randomized trials of chemo with or without Ivo or Ena

Stein et al. Blood, 2020

Ivosidenib and Enasidenib In AML

- Approved and readily used in relapsed/refractory IDH1/2-mutated AML
- In de novo IDH1-mut AML prefer Azacitidine + Venetoclax since IDH-mut AML responds well¹ or possibly Aza + Ivo²
- I don't add Ivo or Ena to HMA + Ven outside a clinical trial
- I don't combine Ivo or Ena with induction chemo outside a trial

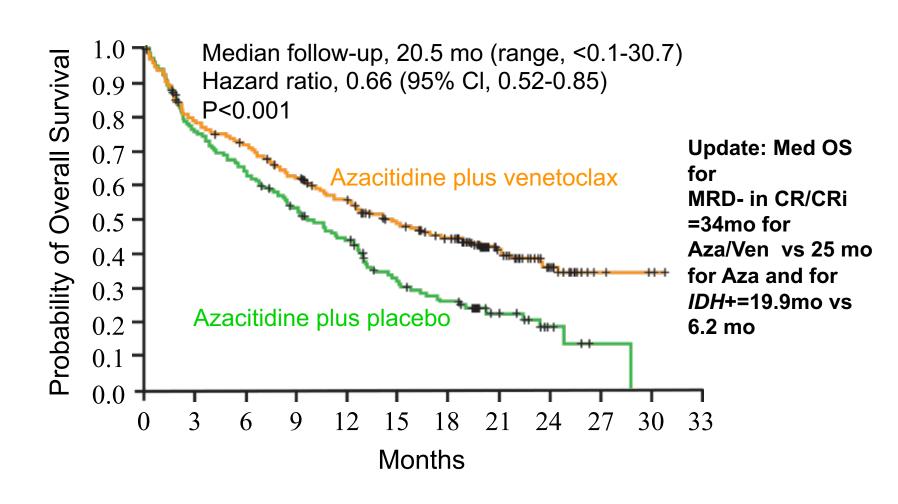

Venetoclax (Bcl-2i + HMA in Newly Dx "Unfit" AML

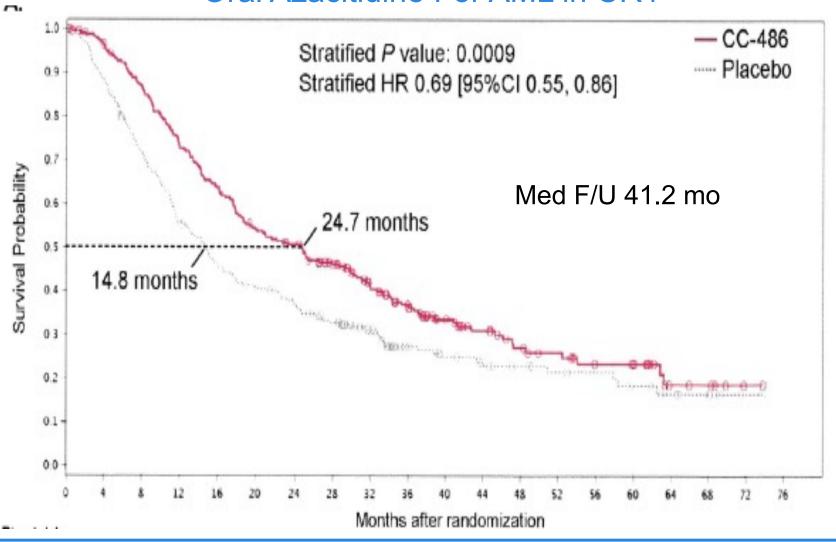
Table 5. Ef	ficacy outcomes	by sul	bgroups
-------------	-----------------	--------	---------

Subgroup	Evaluable for response/OS, n (%)	CR + CRi, n (%)	n for Median duration of CR + CRi	Median duration of CR + CRi, mo (95%CI)	Median OS, mo (95%CI)
All patients	145	97 (67)	97	11.3 (8.9, NR)	17.5 (12.3-NR)
Cytogenetic risk Intermediate Poor	74 (51) 71 (49)	55 (74) 42 (60)	55 42	12.9 (11, NR) 6.7 (4.1, 9.4)	NR (17.5-NR) 9.6 (7.2-12.4)
Age ≥75 y <75 y	62 (43) 83 (57)	40 (65) 57 (69)	40 57	9.2 (6.4, 12.5) 12.9 (9.2, NR)	11 (9.3-NR) 17.7 (142-NR)
AML De novo Secondary	109 (75) 36 (25)	73 (67) 24 (67)	73 24	9.4 (7.2, 11.7) NR (12.5, NR)	12.5 (10.3-24.4) NR (14.6-NR)
Mutations* FLT3† IDH1 or 2‡ NPM1 TP53	18 (12) 35 (24) 23 (16) 36 (25)	13 (72) 25 (71) 21 (91) 17 (47)	13 25 21 17	11 (6.5, NR) NR (6.8, NR) NR (6.8, NR) 5.6 (1.2, 9.4)	NR (8-NR) 24.4 (12.3-NR) NR (11-NR) 7.2 (3.7-NR)

Overall Survival

Aza + Venetoclax vs Aza + Placebo

HMA + Venetoclax in AML Tricks of the Trade


- Tumor lysis very uncommon in AML, but some admit to initiate C1
- With concomitant azoles Ven dose reduced from 400mg qd
 - Per FDA 100mg for vori and 70mg for posa
- Continue Ven for 28 days in C1 without interruption for cytopenias
- Bone marrow biopsy day 14-21 C1. If no decrease in blasts, consider alternative therapy; if marrow aplasia hold C2 until recovery
- Once in remission, Ven often decreased to 7 or 14 days of subsequent 28day cycles to avoid prolonged cytopenias
- Consider GCSF if CR and ANC <500/uL for >42 days
- If no CR after 1-2 cycles, consider abandoning

HMA + Venetoclax Based Strategies Research Directions at ASH2022

- Aza/Ven + novel agents
 - Gilteritinib (*FLT3* inhibitor)
 - Pevonedistat (NEDD8 inhibitor)
 - Magrolimab (Anti-CD47 antibody)
 - Uproleselan (E-selectin antagonist)
 - SNDX-5613 (Menin-MLL binding inhibitor)
- Aza/Ven + or vs or as maintenance after induction chemotherapy
- Aza/Ven in high-risk younger pts
- Aza/Ven as a bridge to allo for molecular persistence of NPM1
- Aza/Ven as maintenance after allo
- Aza/Ven with reduced duration of Ven to 7 days

QUAZAR AML-001 Maintenance Trial of CC-486

Oral Azacitidine For AML in CR1

QUAZAR AML-001 Maintenance Trial Oral Aza CC-486

- Phase III placebo controlled trial, age >/=55
- AML in CR1, intermediate- or high-risk, not candidates for allograft
- Prolonged OS and RFS, indep of NPM1 and FLT3 status and MRD
- It's oral
- But, pretreatment not prescribed and varied (~20% no consol)
- Pts in relapse with 5-15% blasts could continue CC-486 until >15% blasts or HSCT
- Myelosuppression and other toxicities
- I generally do not use it

The Transplant Conundrum

- Poor responders to induction or relapsed pts, (N=272)
- Randomized to remission induction with HAM (N=143) or Watch and Wait (N=138), then HCT
- To HCT: W and W 98% HAM 96%
- CR@d56 after HCT: W and W 84.1%, HAM 81.3%
- OS by IIT: 3-yr
 W and W 51%, HAM 54.2%
- Concl: Intensive reinduction did not confer an OS advantage
 Data support HCT wo prior remission induction when a donor is readily available
- Likelihood of achieving MRD⁻ is mutation dependent, rely less on intensive chemo beyond C1 consolidation, need MRD "erasers"

Conclusions

- 10 new drugs recently approved for AML
- Mido: new SOC, second gen more potent FLT3i avail, in randomized trials
- CPX-351: new SOC for t-AML, AML-MRC, prior MDS/CMML
- Venetoclax + HMA
 - highly effective <u>new SOC</u> for older adults, unfit adults and maybe even younger adults with poor-risk disease (await studies)
 - Serves as a backbone for combinations with novel agents
- Therapeutic paradigms are changing
- Just how large the pot of gold at the end of the rainbow is requires more study

Changing Landscape in AML 2023

- Move towards less chemo and in fact, away from chemo with targeted strategies
- New-found ability to effectively treat older adults, poor-risk pts and those with comorbidities
- Revisiting maintenance
- Shift to oral therapies, future may be doublets, triplets and beyond
- Increased burden on outpatient care delivery