

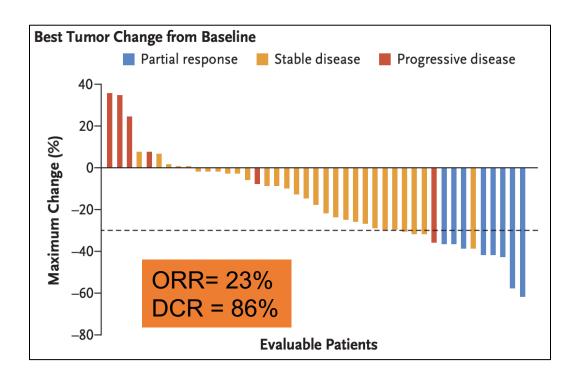
ASCO GI 2023 Updates

Tanios Bekaii-Saab, MD

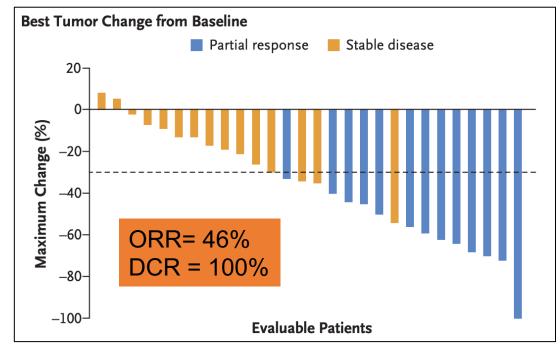
Program Leader, GI Cancer, Mayo Clinic Cancer Center (AZ, FL and MN)
Professor, Mayo Clinic College of Medicine and Science
Consultant, Mayo Clinic AZ
Chair, ACCRU Consortium

Targeting RAS in GI Malignancies

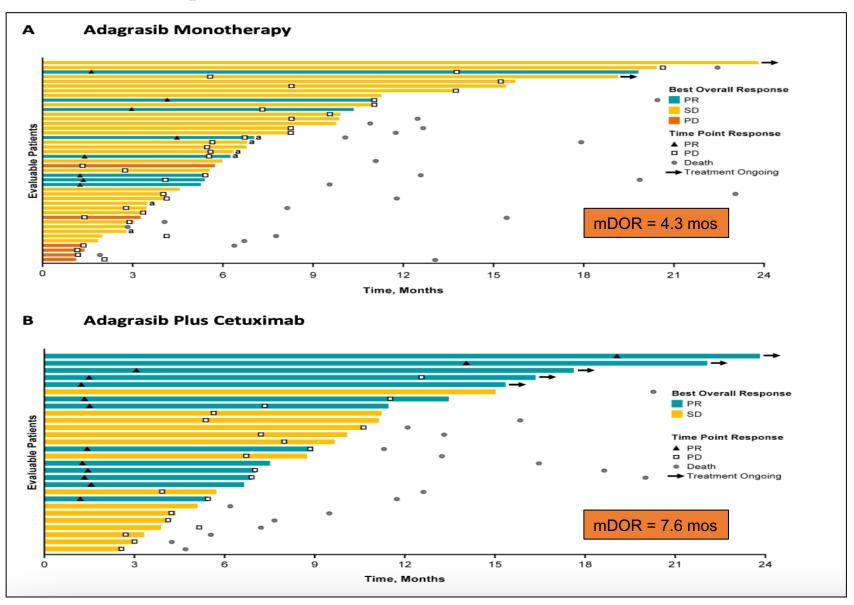
The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Adagrasib with or without Cetuximab in Colorectal Cancer with Mutated KRAS G12C

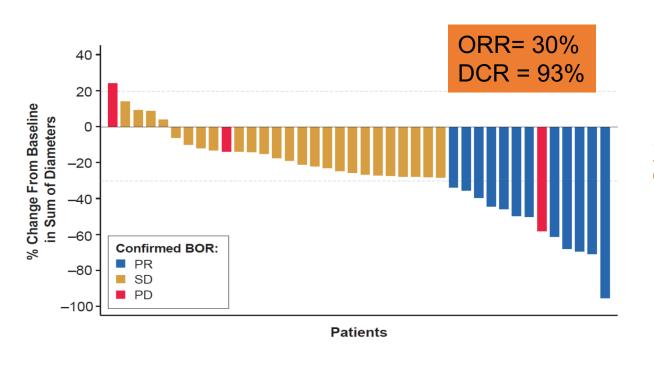

Rona Yaeger, M.D., Jared Weiss, M.D., Meredith S. Pelster, M.D., Alexander I. Spira, M.D., Ph.D., Minal Barve, M.D., Sai-Hong I. Ou, M.D., Ph.D., Ticiana A. Leal, M.D., Tanios S. Bekaii-Saab, M.D., Cloud P. Paweletz, Ph.D., Grace A. Heavey, B.A., James G. Christensen, Ph.D., Karen Velastegui, B.Sc., Thian Kheoh, Ph.D., Hirak Der-Torossian, M.D., and Samuel J. Klempner, M.D.

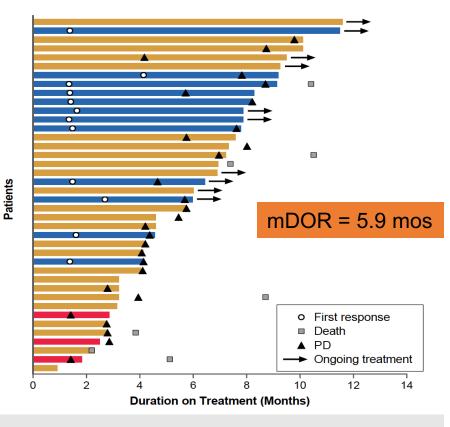
Best tumor change from baseline


Adagrasib

Adagrasib plus Cetuximab

Time to Response and Duration of Treatment


Summary of Treatment-Related Adverse Events


Adverse Event	Adagrasib Monotherapy (N = 44)					
	Any Grade	Grade 1	Grade 2	Grade 3	Grade 4	
	number of patients (percent)					
Any event	41 (93)	10 (23)	16 (36)	13 (30)	2 (5)	
Leading to dose discontinuation	0	_	_	_	_	
Leading to dose interruption	20 (45)	_	_	_	_	
Leading to dose reduction	17 (39)	_	_	_	_	
Most frequent events†						
Diarrhea	29 (66)	16 (36)	10 (23)	3 (7)	0	
Nausea	25 (57)	15 (34)	10 (23)	0	0	
Vomiting	20 (45)	12 (27)	8 (18)	0	0	
Fatigue	20 (45)	11 (25)	7 (16)	2 (5)	0	
Anemia	7 (16)	2 (5)	1 (2)	4 (9)	0	
Prolonged QT interval on ECG	7 (16)	2 (5)	3 (7)	2 (5)	0	
Peripheral edema	7 (16)	6 (14)	1 (2)	0	0	
Decreased appetite	8 (18)	4 (9)	4 (9)	0	0	
Increased ALT	5 (11)	3 (7)	0	2 (5)	0	
Increased AST	5 (11)	3 (7)	0	2 (5)	0	

	Adagrasib plus Cetuximab (N = 32)					
Any event	32 (100)	5 (16)	22 (69)	3 (9)	2 (6)	
Leading to dose discontinuation						
Adagrasib	0	-	_	-	_	
Cetuximab	5 (16)	_	_	_	_	
Leading to dose interruption						
Adagrasib	14 (44)	_	_	_	_	
Cetuximab	10 (31)	_	_	-	_	
Leading to dose reduction						
Adagrasib	10 (31)	-	_	-	_	
Cetuximab	1 (3)	_	_	_	_	
Most frequent events†						
Nausea	20 (62)	13 (41)	7 (22)	0	0	
Diarrhea	18 (56)	11 (34)	6 (19)	1 (3)	0	
Vomiting	17 (53)	13 (41)	4 (12)	0	0	
Dermatitis acneiform	15 (47)	11 (34)	3 (9)	1 (3)	0	
Fatigue	15 (47)	8 (25)	7 (22)	0	0	
Dry skin	13 (41)	11 (34)	2 (6)	0	0	
Headache	10 (31)	7 (22)	3 (9)	0	0	
Dizziness	8 (25)	4 (12)	4 (12)	0	0	
Maculopapular rash	8 (25)	7 (22)	1 (3)	0	0	
Stomatitis	7 (22)	5 (16)	1 (3)	1 (3)	0	
Dyspepsia	6 (19)	4 (12)	2 (6)	0	0	
Hypomagnesemia	6 (19)	3 (9)	3 (9)	0	0	
Infusion-related reaction	6 (19)	1 (3)	4 (12)	0	1 (3)	

CodeBreak101: Sotorasib + Panitumumab

Tumour Response

- Reduction in RECIST target lesions observed in 88% of patients
- Median (range) duration of treatment was 5.9 (0.5, 11.3) months, with 25% of patients remaining on treatment

ASCO Plenary Series

KRYSTAL-1: Activity and Safety of Adagrasib (MRTX849) in Patients With **Advanced Solid Tumors Harboring a** KRAS^{G12C} Mutation

Shubham Pant¹, Rona Yaeger², Alexander I. Spira³, Meredith S. Pelster⁴, Joshua K. Sabari⁵, Navid Hafez⁶, Minal Barve⁷, Karen Velastegui⁸, Xiaohong Yan⁸, Hirak Der-Torossian⁸, Tanios S. Bekaii-Saab⁹

¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA; ³Virginia Cancer Specialists, Fairfax, VA; NEXT Oncology, Fairfax, VA; US Oncology Research, The Woodlands, TX, USA; ⁴Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA; ⁵Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; ⁶Yale Cancer Center, New Haven, CT, USA; ⁷Mary Crowley Cancer Research, Dallas, TX, USA; 8Mirati Therapeutics, Inc., San Diego, CA, USA; 9Department of Medical Oncology and Hematology, Mayo Clinic, Scottsdale, AZ, USA

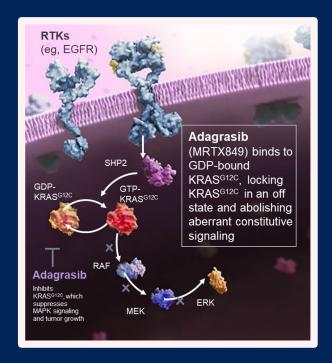
Adagrasib (MRTX849) is a Differentiated KRAS^{G12C} Inhibitor

KRAS^{G12C} mutations act as oncogenic drivers in a range of solid tumors:

- NSCLC (~14%)¹

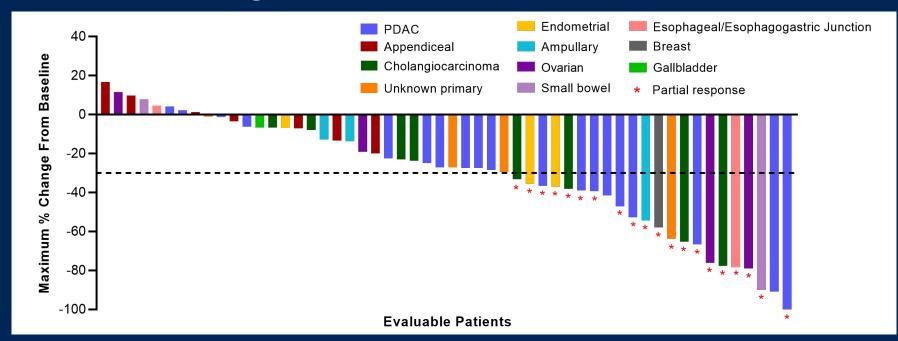
PDAC (1–3%)⁴

- CRC $(3-4\%)^{1-3}$


Small bowel (1–3%)^{1,2}

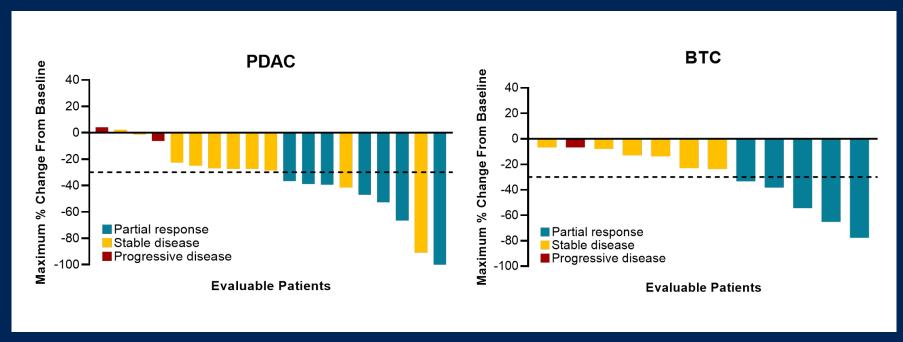
Appendiceal (3–4%)^{1,2}

Biliary tract (1%)²


- Ovarian $(0.4\%)^1$ - Endometrial $(1.5\%)^1$

- Adagrasib, a covalent inhibitor of KRAS^{G12C}, was selected for favorable properties, including a long half-life (23 hours), dose-dependent PK and CNS penetration^{5–7}
- Adagrasib has been granted accelerated approval by the FDA and is under review by the EMA for the treatment of KRASG12C-mutated NSCLC
- Adagrasib has been granted breakthrough therapy designation, in combination with cetuximab, for the treatment of patients with KRAS^{G12C}-mutated CRC

Adagrasib in Patients With Solid Tumors^a: Best Tumor Change from Baseline



- Confirmed objective responses were observed in 20/57 patients (35.1%)
- Disease control was observed in 49/57 patients (86.0%)

^aExcluding non-small cell lung cancer and colorectal cancer All results are based on BICR; data as of October 1, 2022 (median follow-up: 16.8 months)

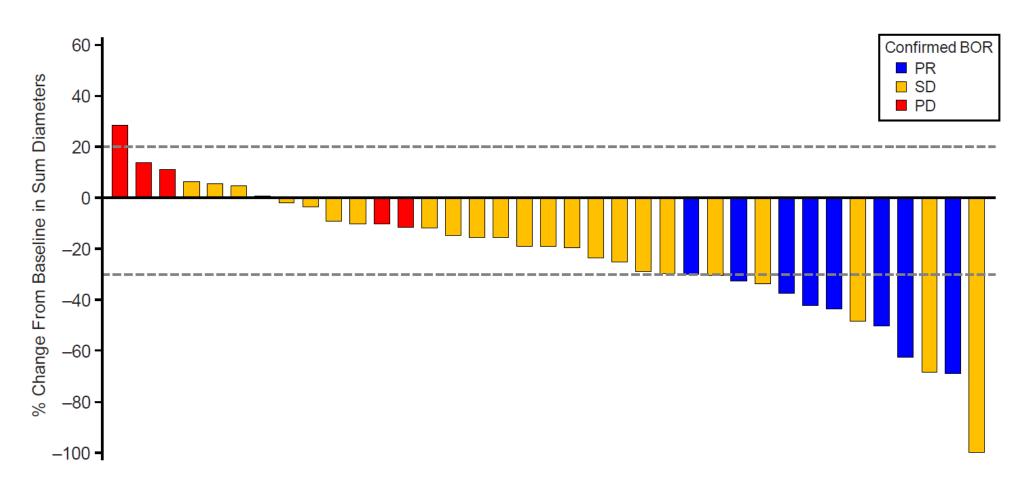
Adagrasib in Patients With PDAC and BTC: Best Tumor Change From Baseline

- Confirmed ORR of 33.3% (7/21 patients)
- Disease control was observed in 17/21 (81.0%) patients
- Confirmed ORR of 41.7% (5/12 patients)
- Disease control was observed in 11/12 (91.7%) patients

All results are based on BICR; data as of October 1, 2022 (median follow-up: 16.8 months)

#ASCOPlenarySeries

PRESENTED BY: Shubham Pant

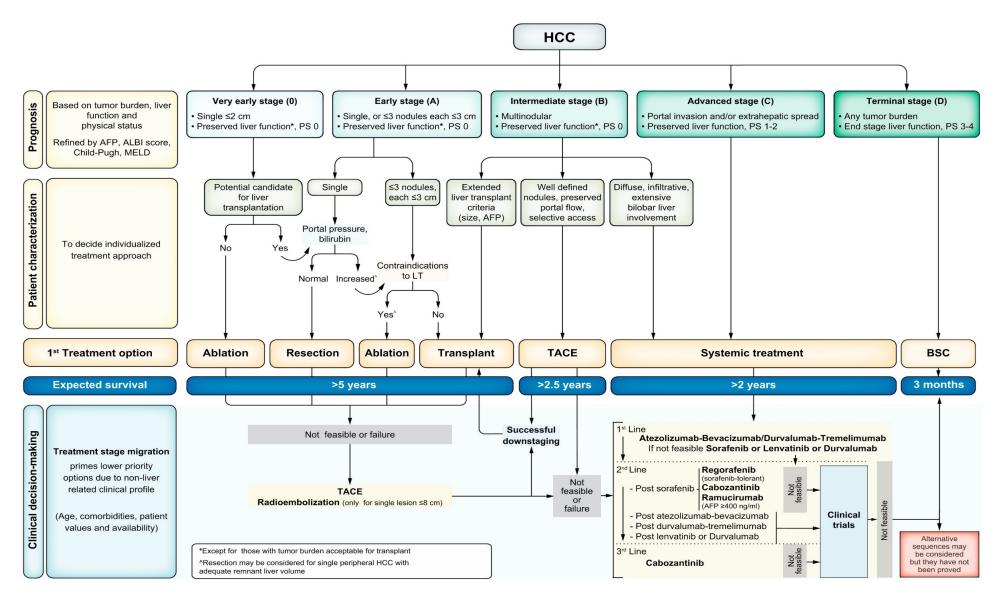

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

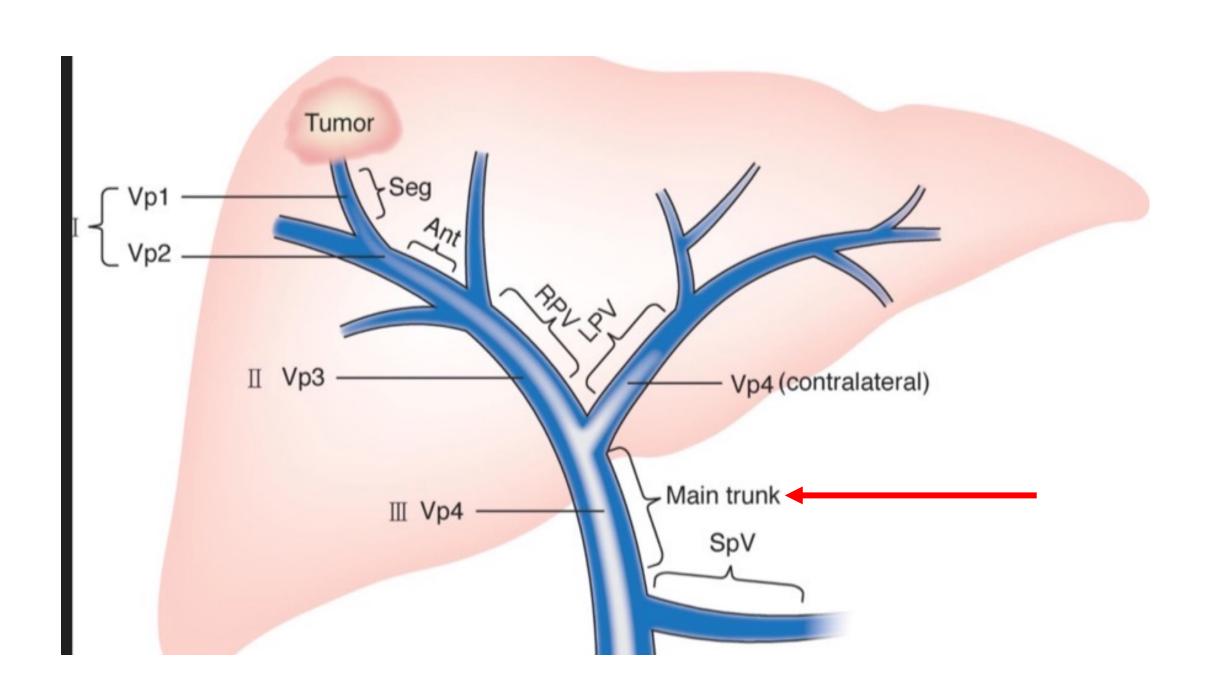
Sotorasib in KRAS p.G12C–Mutated Advanced Pancreatic Cancer

J.H. Strickler, H. Satake, T.J. George, R. Yaeger, A. Hollebecque, I. Garrido-Laguna, M. Schuler, T.F. Burns, A.L. Coveler, G.S. Falchook, M. Vincent, Y. Sunakawa, L. Dahan, D. Bajor, S.-Y. Rha, C. Lemech, D. Juric, M. Rehn, G. Ngarmchamnanrith, P. Jafarinasabian, Q. Tran, and D.S. Hong

Best Tumor Shrinkage by Central Review



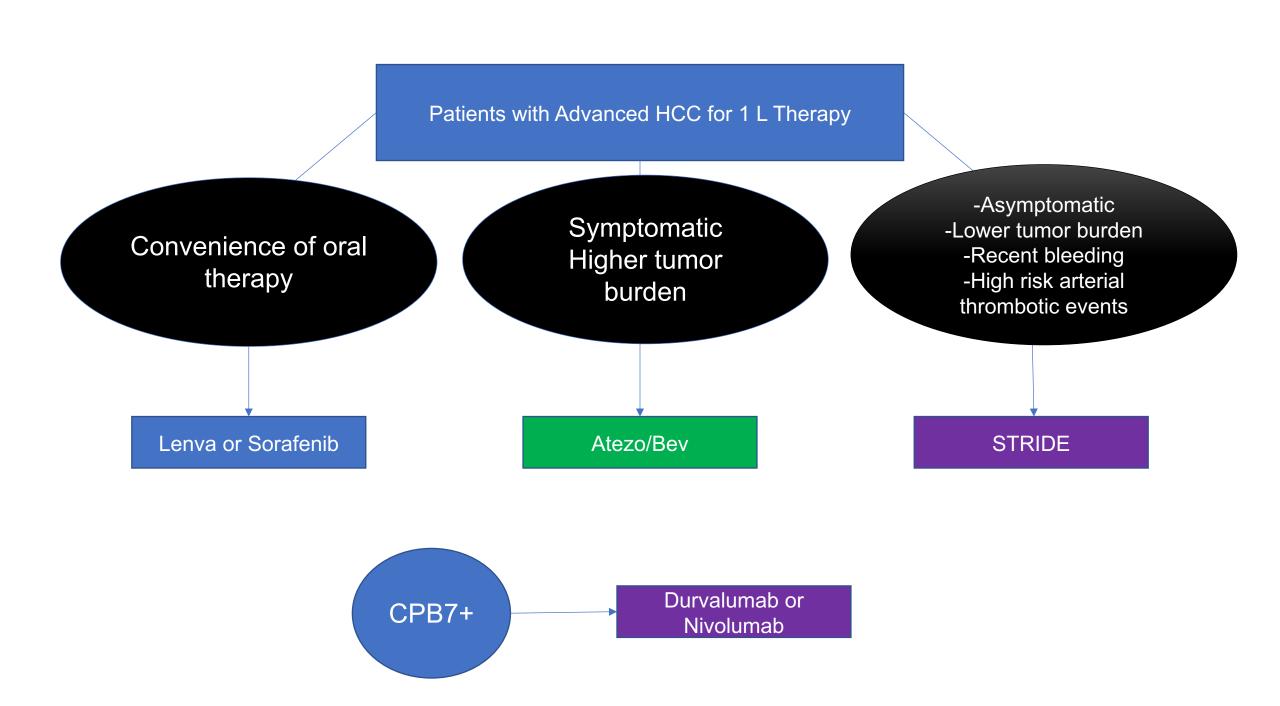
Conclusions


- Direct inhibition of mutant RAS through allele- specific inhibitors provides the best therapeutic approach
- Both Adagrasib and Sotorasib are well tolerated with a manageable safety profile
- Further exploration of Adagrasib is ongoing in the KRYSTAL-1 trial (NCT03785249)
- Next steps :
 - Combination with Chemotherapy?
 - Combination with Cetuximab ? KRYSTAL-1
 - Combination with other targets ? IO?
 - G12 D and others on the way

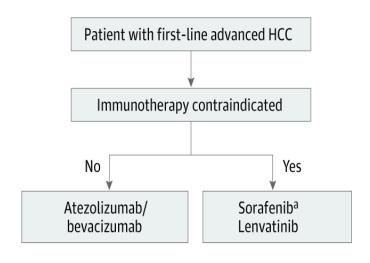
Hepatocellular Carcinoma

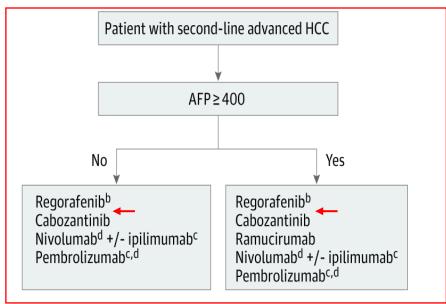
When is systemic therapy indicated for HCC?

IO BASED COMBINATIONS


Phase III Approved IO Combination Studies in HCC

	IMBRAV	IMBRAVE 150		HIMALAYA		
	Atezo/Bev	Sorafenib	STRIDE	Sorafenib		
mOS (mo)	19.2 HR 0.66 (0.52,0.85)	13.4	16.4 HR 0.78 (0.65-0.92)	13.8		
mPFS (mo)	6.9 HR 0.65(0.53, 0.81)	4.3	3.78 HR 0.9 (0.77-1.05)	4.07		
ORR (RECIST 1.1)	30%	11%	20.1%	5.1%		
CR	8%		3.1%			
PD	19%		39.9%			
Median DoR (months)	18.1	14.9	22.3	18.4		
DCR	74%	55%	60.1%	60.7%		
IMAEs requiring steroids	12.2%		20.1%			
All grade bleeding events	25%	17.3%	1.8%	4.8%		
Grade 3/4 bleeding events	6.4%	5.8%	0.5%	1.6%		


IO + MKI = Mixed Bag


- LEAP-002 Lenva +/- Pembro Negative for OS/PFS
- COSMIC 312 Cabo + Atezo Negative for OS / Positive for OS
- Rivoceranib (Apatinib) + Camrelizumab vs. Sorafenib Positive for OS/PFS

From: Systemic Therapy and Sequencing Options in Advanced Hepatocellular Carcinoma: A Systematic Review and Network Meta-analysis

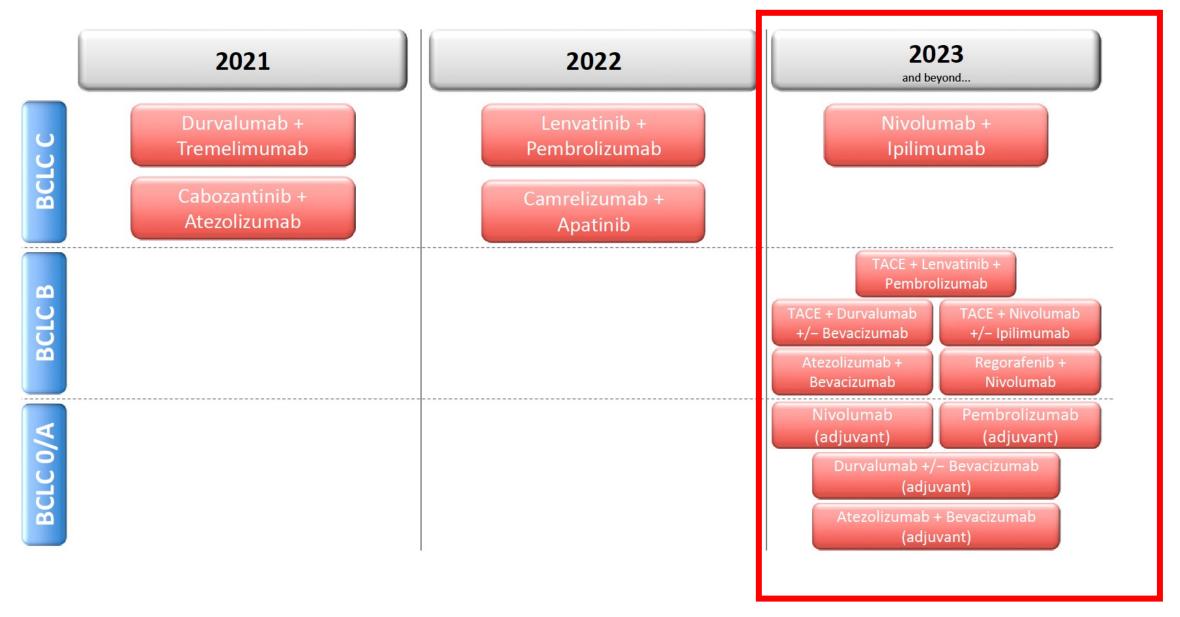
Sonbol and Bekaii-Saab et al . JAMA Oncol. 2020;6(12):e204930. doi:10.1001/jamaoncol.2020.4930

Suggested Treatment Algorithms for Patients With Advanced Hepatocellular Carcinoma (HCC)AFP indicates α-fetoprotein.

Date of download: 3/11/2021

^aConsider lower starting dose of 200 mg and escalate as tolerated.

^bConsider starting dose-escalation strategy starting with 80-mg dose.

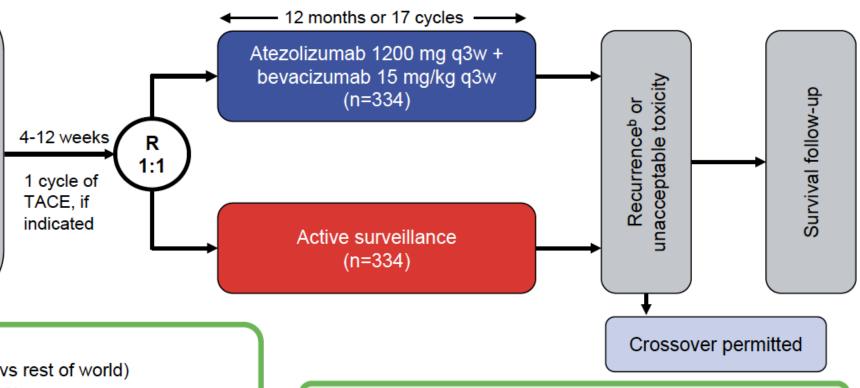

^cNot supported by level 1 evidence.

^dIf no prior programmed cell death-1 or programmed cell death ligand-1 failure.

Future Practical Considerations

- Optimal sequencing of all agents is not well-established
- Biomarker Discovery is key to better selection of patients with HCC
- Explore in earlier disease stages: LR combination, adjuvant and neoadjuvant settings etc ...

Future Directions



IMbrave050 study design

APRIL 14-19 • #AACR23

Patient Population

- Confirmed first diagnosis of HCC and had undergone curative resection or ablation
- · Disease free
- · Child-Pugh class A
- High risk of recurrence^a
- No extrahepatic disease or macrovascular invasion (except Vp1/Vp2)
- ECOG PS 0 or 1

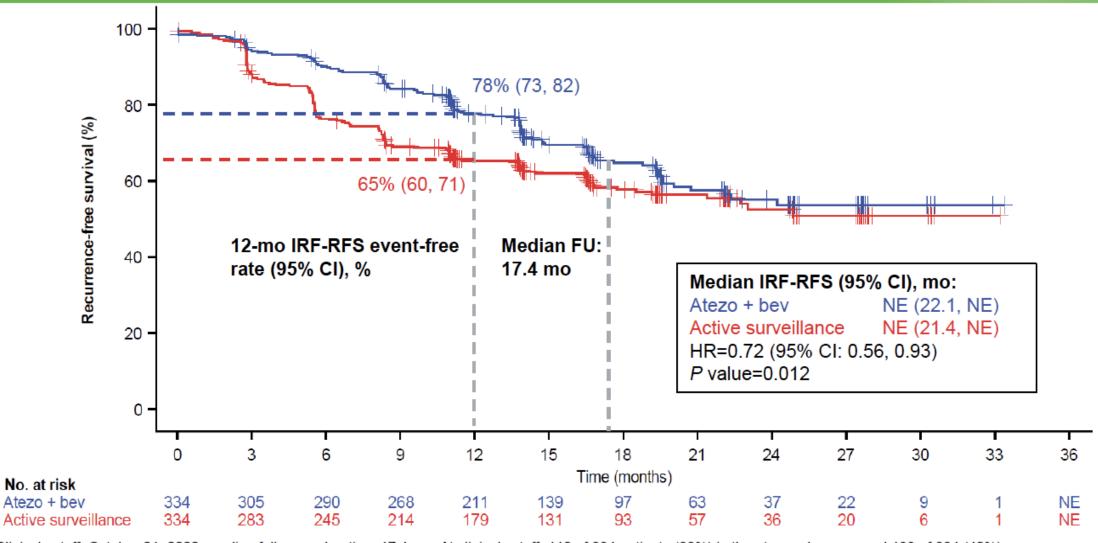
Stratification

- Region (APAC excluding Japan vs rest of world)
- High-risk features and procedures:
 - Ablation
 - Resection, 1 risk feature, adjuvant TACE (yes vs no)
 - Resection, ≥2 risk features, adjuvant TACE (yes vs no)

Primary endpoint

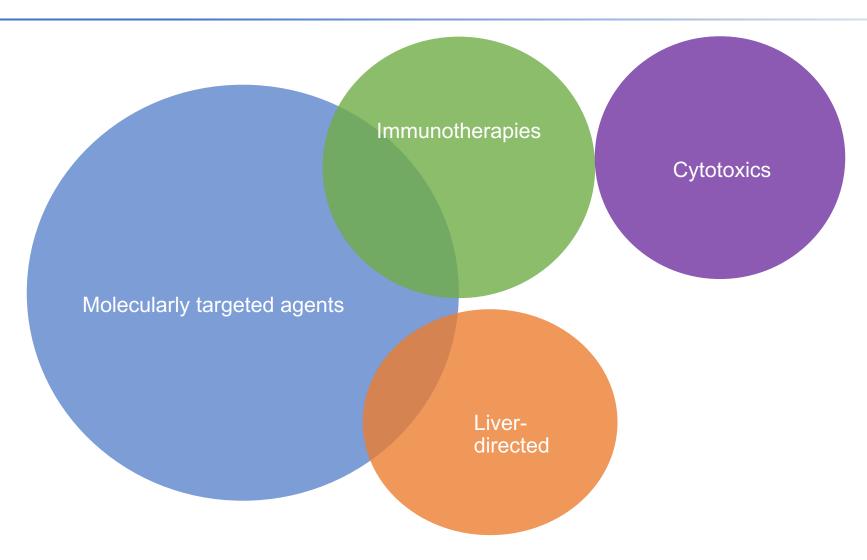
 Recurrence-free survival assessed by the independent review facility^b

ClinicalTrials.gov, NCT04102098. ECOG PS; Eastern Cooperative Oncology Group performance status; Q3W, every three weeks; R, randomization; TACE, transarterial chemoembolization.


a High-risk features include: tumor >5 cm, >3 tumors, microvascular invasion, minor macrovascular invasion Vp1/Vp2, or Grade 3/4 pathology.

^b Intrahepatic recurrence defined by EASL criteria. Extrahepatic recurrence defined by RECIST 1.1.

Primary endpoint: IRF-assessed RFS was significantly improved with atezo + bev vs active surveillance

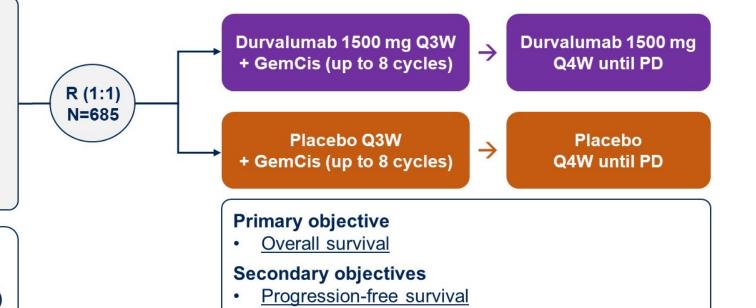

APRIL 14-19 • #AACR23

Clinical cutoff: October 21, 2022; median follow-up duration: 17.4 mo. At clinical cutoff, 110 of 334 patients (33%) in the atezo + bev arm and 133 of 334 (40%) in the active surveillance arm experienced disease recurrence or death.

Cholangiocarcinoma

Classes of novel therapeutics under investigation for BTC

TOPAZ-1 study design


TOPAZ-1 is a double-blind, multicenter, global, Phase 3 study

Key eligibility

- Locally advanced or metastatic BTC (ICC, ECC, GBC)
- Previously untreated if unresectable or metastatic at initial diagnosis
- Recurrent disease >6 months after curative surgery or adjuvant therapy
- ECOG PS 0 or 1

Stratification factors

- Disease status
 - (initially unresectable versus recurrent)
- Primary tumor location
 - (ICC versus ECC versus GBC)

Objective response rate

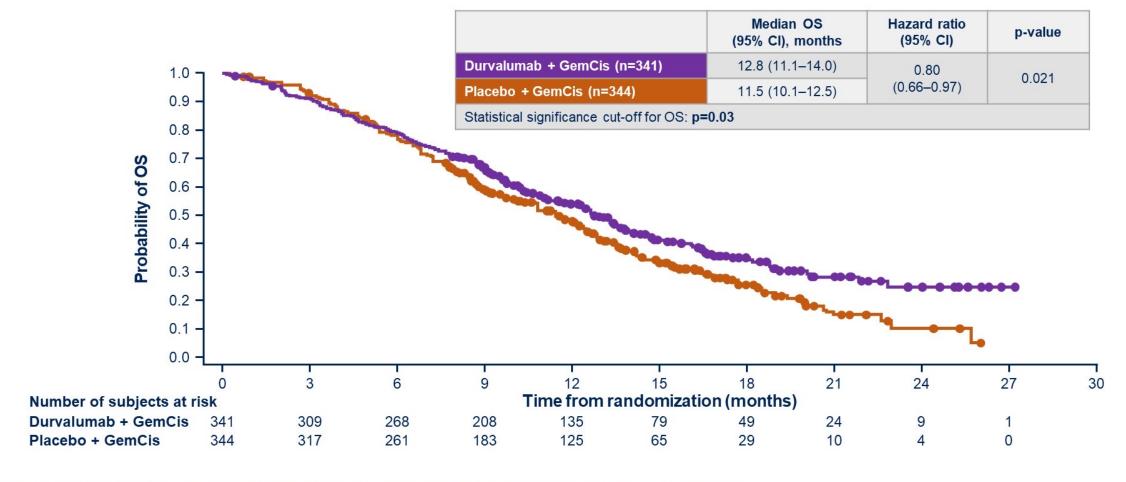
Efficacy by PD-L1 status

Duration of response

Safety

GemCis treatment: gemcitabine 1000 mg/m2 and cisplatin 25 mg/m2 on Days 1 and 8 Q3W administered for up to 8 cycles.

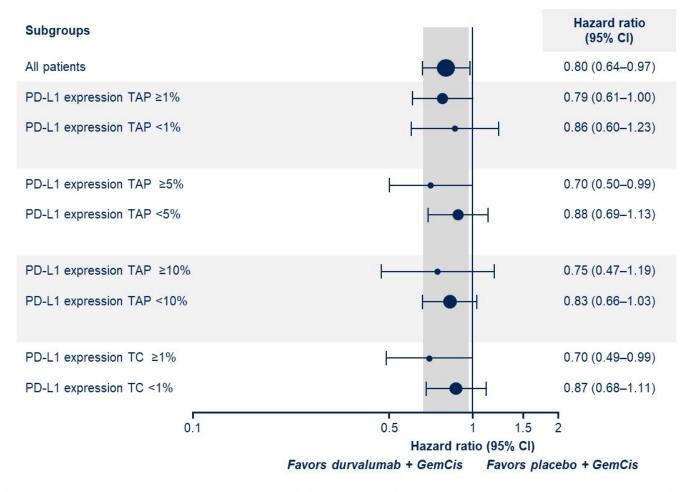
BTC, biliary tract cancer; ECC, extrahepatic cholangiocarcinoma; ECOG, Eastern Cooperative Oncology Group; GBC, gallbladder cancer; GemCis, gemcitabine and cisplatin; ICC; intrahepatic cholangiocarcinoma; PD, progressive disease; PD-L1, programmed cell death ligand-1; PS, performance status; QnW, every n weeks; R, randomization.

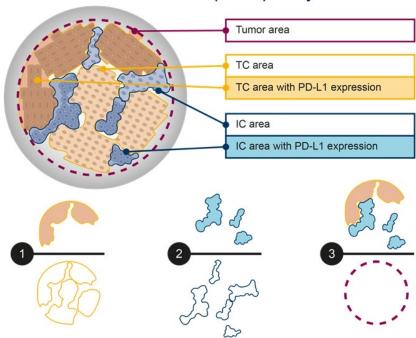

ASCO Gastrointestinal Cancers Symposium

PRESENTED BY: Do-Youn Oh, MD, PhD

Primary endpoint: OS

Median duration of follow-up (95% CI) was 16.8 (14.8–17.7) months with durvalumab + GemCis and 15.9 (14.9–16.9) months with placebo + GemCis. CI, confidence interval; GemCis, gemcitabine and cisplatin; HR, hazard ratio; mo, month; OS, overall survival.



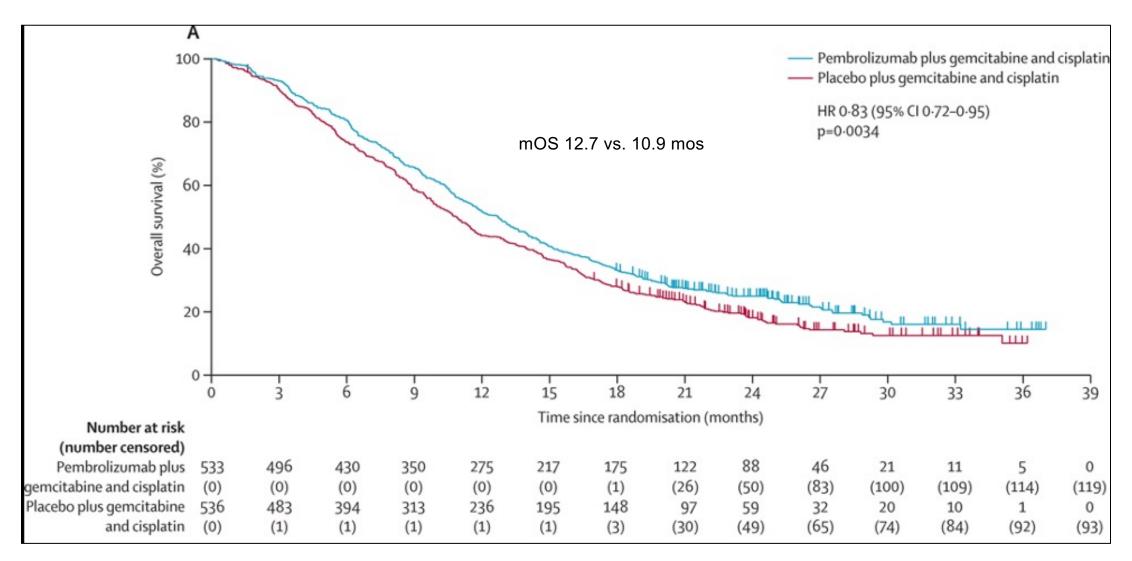

PRESENTED BY: Do-Youn Oh, MD, PhD

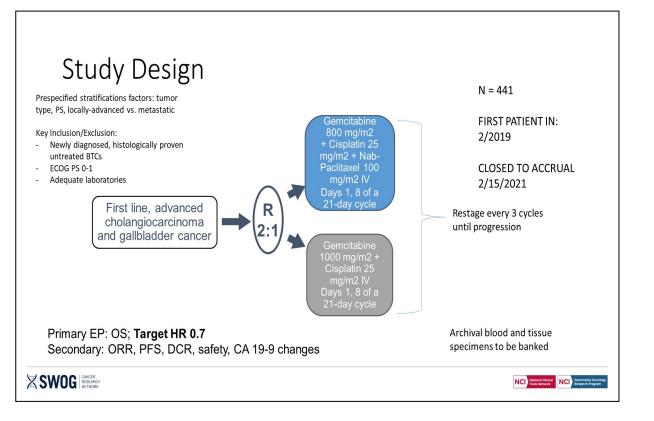
OS in subgroups by PD-L1 expression

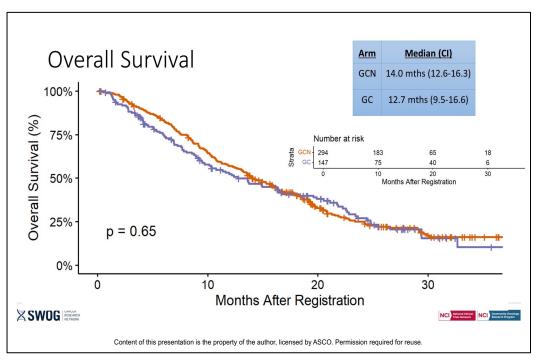
Tumor Area Positivity (TAP) score using the Ventana PD-L1 (SP263) Assay

- TC: proportion of TCs with PD-L1 membrane staining at any intensity
- 2 IC: proportion of tumor-associated ICs with PD-L1 cytoplasmic/ membrane staining at any intensity
- Combined TCs and ICs: Proportion of tumour area occupied by TCs with membrane and ICs with cytoplasmic/membrane PD-L1 staining at any intensity (TAP score)

CI, confidence interval; IC, immune cell; OS, overall survival; PD-L1, programmed cell death ligand-1; TC, tumor cell; TAP, tumor area positivity






PRESENTED BY: Do-Youn Oh, MD, PhD

Keynote 966 GC +/- Pembrolizumab Primary Endpoint : OS

Gr 3-4 Treatment-Related Adverse Events

Treatment-Related Adverse Event	GCN Grade 3-4 N (%)	GC Grade 3-4 N (%)
Anemia	95 (33%)	30 (22%)
Neutropenia	105 (37%)	37 (28%)
Thrombocytopenia	56 (20%)	20 (15%)
Leukopenia	72 (25%)	14 (10%)
Diarrhea	13 (5%)	1 (0.7%)
Fatigue	26 (9%)	8 (6%)
Sepsis	12 (4%)	3 (2%)
Peripheral Sensory Neuropathy	10 (4%)	1 (0.7%)

*Included if incidence ≥5% of patients.

Additional all grade AE's seen in ≥25% of patients:

Alopecia, ALT increase, Anorexia, Constipation, Edema, Hypomagnesemia, Nausea, Vomiting Gr 5 events on GCN (N): Cardiac Arrest (1), Sepsis (3), SVC Syndrome (1), Thromboembolic Event (1), Upper GI Hemorrhage (1)

Conclusions

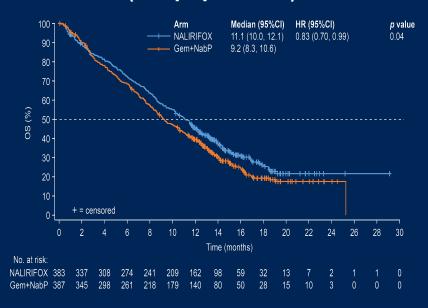
- Biomarker Discovery is key to better selection of patients with BTC
- The role of immunotherapy in cholangiocarcinoma remains to be fully defined;
 - TOPAZ-1 with Gem/Cis +/- Durvalumab positive
 - KEYNOTE 966 (G/C +/- Pembro) positive
- Adding Nab-Paclitaxel to Gem/Cis did not improve outcome
- Molecularly targeted agents such as those targeting FGFR and IDH1 are providing patients with advanced cholangiocarcinoma new treatment options
 - Ongoing efforts to expand the role of targeted therapies to IDH2, BRAF V600E, Her2 amplifications and others.
 - Ongoing trials with first line strategies in iCCA and FGFR2 fusions vs. standard gemcitabine/cisplatin

Pancreatic Cancer

ASCO Gastrointestinal Cancers Symposium

NAPOLI 3: A randomized, open-label phase 3 study of liposomal irinotecan + 5-fluorouracil/leucovorin + oxaliplatin (NALIRIFOX) versus nab-paclitaxel + gemcitabine in treatment-naïve patients with metastatic pancreatic ductal adenocarcinoma

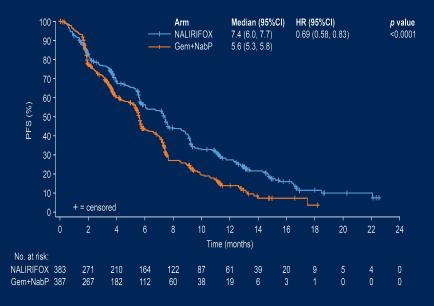
Zev A Wainberg,¹ Davide Melisi,² Teresa Macarulla,³ Roberto A Pazo Cid,⁴ Sreenivasa R Chandana,⁵ Christelle De La Fouchardière,⁶ Andrew Dean,⁷ Igor Kiss,⁸ Woo Jin Lee,⁹ Thorsten O Goetze,¹⁰ Eric Van Cutsem,¹¹ Scott Paulson,¹² Tanios Bekaii-Saab,¹³ Shubham Pant,¹⁴ Richard Hubner,¹⁵ Zhimin Xiao,¹⁶ Huanyu Chen,¹⁶ Fawzi Benzaghou,¹⁶ Eileen M O'Reilly¹⁷


¹University of California, Los Angeles, CA, USA; ²Azienda Ospedaliera Universitaria Integrata and University of Verona, Verona, Italy; ³Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology (VHIO), Barcelona, Spain; ⁴Hospital Universitario Miguel Servet, Zaragoza, Spain; ⁵Cancer and Hematology Centers of Western Michigan, Grand Rapids, MI, USA; ⁶Centre Leon Berard, Lyon, France; ⁷St John of God Subiaco Hospital, Subiaco, WA, Australia; ⁸Masaryk Memorial Cancer Institute and Faculty of Medicine, Masaryk University, Brno, Czechia; ⁹National Cancer Center, South Korea; ¹⁰Krankenhaus Nordwest, Frankfurt, Germany; ¹¹University Hospital, University of Leuven, Leuven, Belgium; ¹²Texas Oncology - Baylor Charles A. Sammons Cancer Center, Dallas, TX, USA; ¹³Mayo Clinic, Scottsdale, AZ, USA; ¹⁴MD Anderson Cancer Center, Houston, TX, USA; ¹⁵Christie NHS Foundation Trust, Manchester, UK; ¹⁶Ipsen, Cambridge, MA, USA; ¹⁷Memorial Sloan Kettering Cancer Center, New York, NY, USA

NAPOLI 3: mOS (ITT population)

Stratified by ECOG PS (0 vs 1), region (North America vs ROW), live metastases (yes vs no) per IRT. P boundary for efficacy claim p value < 0.048.

Cl, confidence interval; Gem, gencilabine; HR, hazard ratio; IRT, interactive response technology; ITT, intention-to-treat; mOS, median overall survival; NabP, nab-paclitaxel.



PRESENTED BY: Professor Zev A Wainberg
Presentation is properly of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

NAPOLI 3: mPFS per investigator (ITT population)

Stratified by ECOG PS (0 vs. 1), region (North America vs ROW), live metastases (yes vs no) per IRT. P boundary for efficacy claim p value < 0.048.

Ci, confidence interval; ECOG PS, Eastern Cooperative Oncology Group Performance Status; Gem, gemoitabine; HR, hazard ratio; IRT, interactive response technology; ITT, intention-to-treat; mPFS, median progression-free survival; NabP, nab-pacitizavel; PFS; progression-free survival; ROW, rest of world.

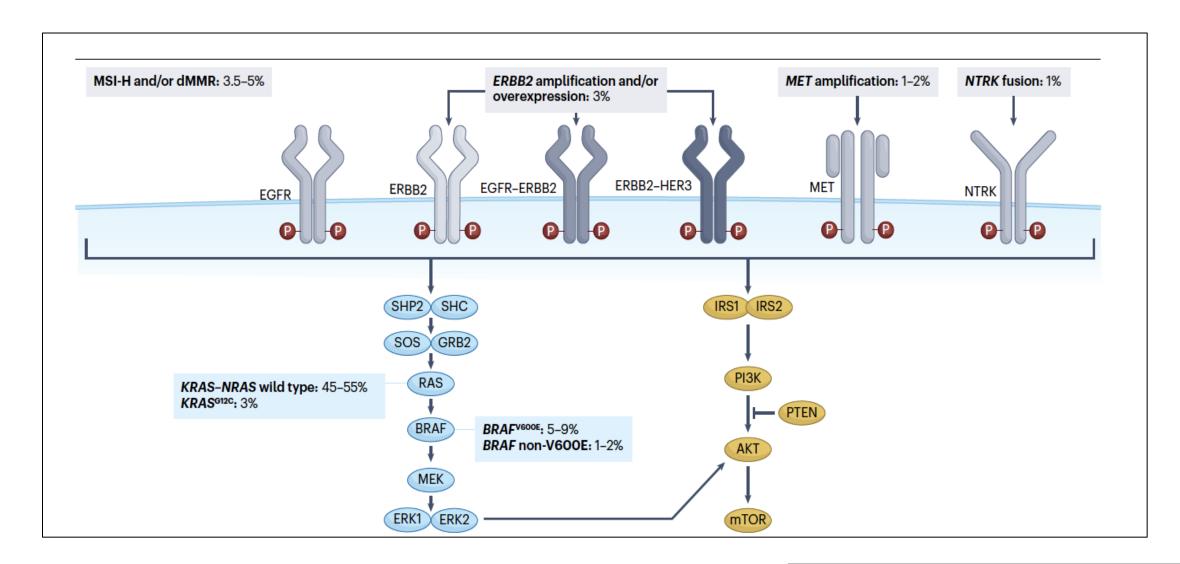
PRESENTED BY: Professor Zev A Wainberg

Presentation is property of the author and ASCO. Permission required for reuse, contact permissions@asco.org.

NAPOLI 3: Selected any-cause TEAEs in ≥10% of patients

	NALIRIFO	X (N = 370)	Gem+NabP (N = 379)		
Any-cause TEAEs in ≥10% of patients, % ^a	Any grade	Grade 3-4	Any Grade	Grade 3-4	
Hematologic					
Neutropenia / neutrophil count decreased / febrile neutropenia	29.5 / 20.5 / 2.4	14.1 / 9.7 / 2.4	31.9 / 18.7 / 2.6	24.5 / 13.5 / 2.4	
Anemia	26.2	10.5	40.4	17.4	
Thrombocytopenia / platelet count decreased	13.5 / 10.5	0.8 / 0.8	22.7 / 17.9	3.7 / 2.4	
Non-hematologic					
Diarrhea	70.5	20.3	36.7	4.5	
Nausea	59.5	11.9	42.7	2.6	
Vomiting	39.7	7.0	26.4	2.1	
Hypokalemia	31.6	15.1	12.9	4.0	
Peripheral neuropathy	17.8	3.2	17.4	5.8	
Peripheral sensory neuropathy	15.1	3.5	13.5	2.9	
Paresthesia	11.9	0.3	8.7	0.5	
Pyrexia	10.5	0.8	23.0	1.6	

^aGrouped by system organ class (safety population). Gem, gemcitabine; NabP, nab-paclitaxel; TEAE, treatment-emergent adverse event.



Conclusions

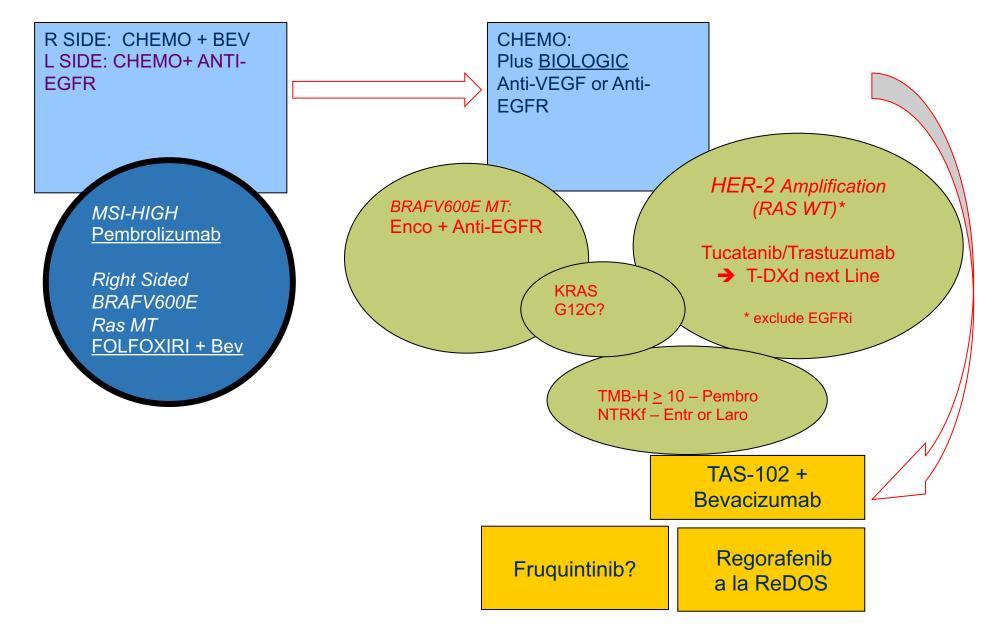
- Frontline NALIRIFOX has demonstrated survival benefit vs. gemcitabine/nab-paclitaxel in a phase III study for patients with metastatic pancreatic cancer
 - ? FOLFIRINOX ?
- Maintenance (Switch) therapy with PARP inhibitor olaparib can be considered in select patients with germline BRCA1/2 mutation
- Novel therapies, including immunotherapeutic approaches and molecularly and metabolic targeting agents, are currently under active investigation

Colorectal Cancer

Relevant Targets in mCRC

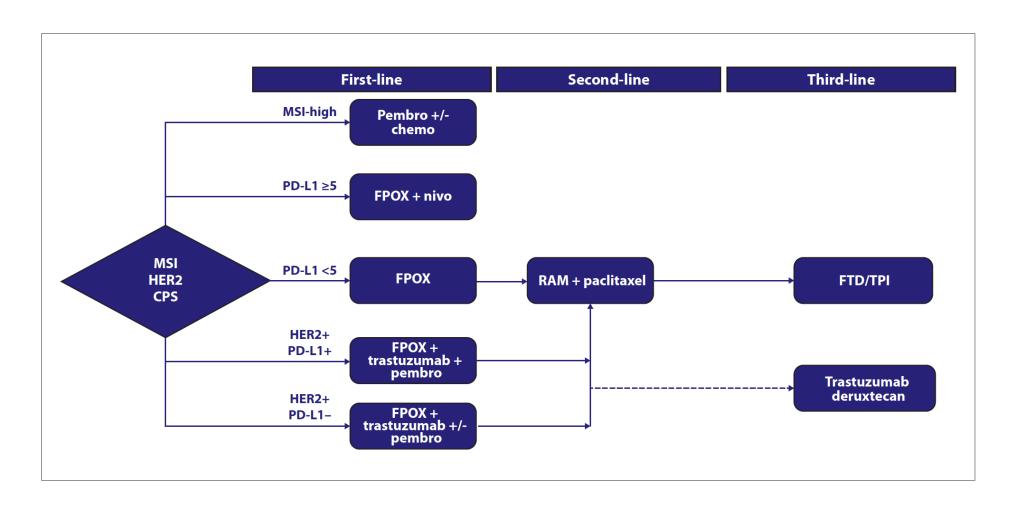
Recent data of HER2-targeted therapies in patients with advanced or metastatic colorectal cancer

Regimen	Trial (n) – year	ORR	PFS	os	Most common Grade 3+ AEs
Trastuzumab + lapatinib	HERACLES-A (n=32) – 2016	28%	4.7m	10m	Fatigue 16% Decreased LVEF 6%
Trastuzumab + pertuzumab	MyPathway (n=84; 57 evaluable) – 2019	32%	2.9m	11.5m	Hypokalemia 5% Abdominal pain 5%
Pertuzumab and T-DM1	HERACLES-B (n=31) – 2020	9.7%	4.1m	Not reported	Thrombocytopenia 7%
Trastuzumab deruxtecan	DESTINY-CRC01 (N=78; 53 HER2+) – 2021	45.3%	6.9m	15.5m	Neutropenia 15% Anemia 13% ILD 5+%
Tucatinib + trastuzumab	MOUNTAINE FDA Approva	28 1% al	8.2m	24.1m	Hypertension 7% Diarrhea 3.5%
1/2023					


Tosi F, Sartore-Bianchi A, et al. Long-term Clinical Outcome of Trastuzumab and Lapatinib for HER2-positive Metassa.

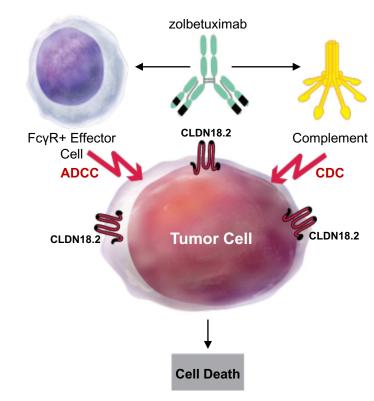
Meric-Bernstam F, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPatinway): an updaled report and under the properties of the

Comparison of Modern Studies with Regorafenib, TAS-102/Bev and Fruquintinib in mCRC

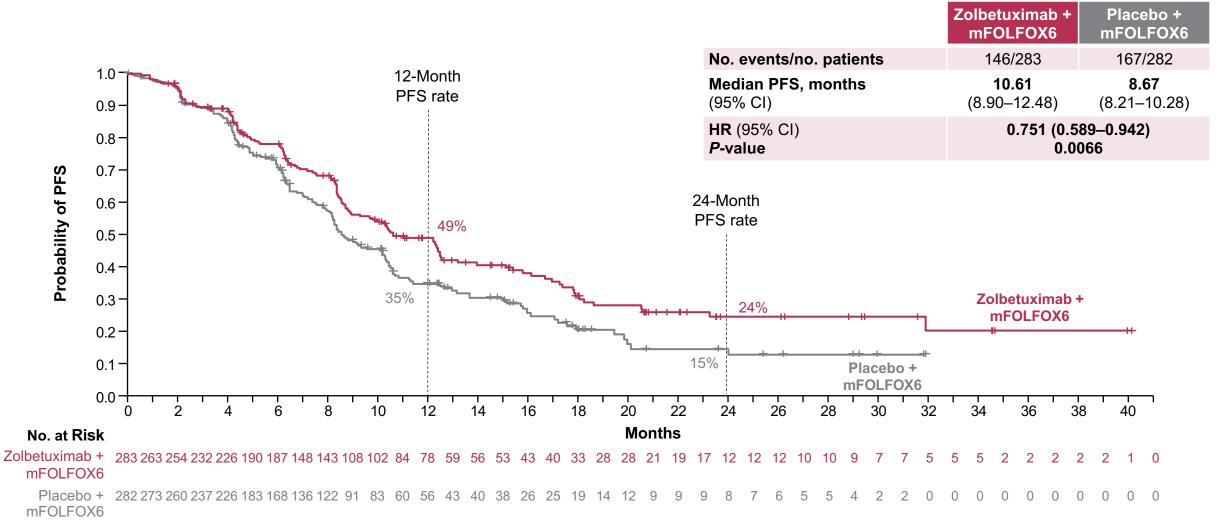

Agent	Rego	orafenib	Fruquintinib		TAS-102 +/-Bevacizumab			
Trial	Re	eDOS	FRESCO 2		SUNLIGHT + Prior Bev		SUNLIGHT – Prior Bev	
Prior biologics		% BEV GFR mAbs	100% BEV 100% EGFR mAbs		Prior Bevacizumab (72%) ?? EGFR		No Prior Bevacizumab (28%) ?? EGFR	
	REGO (n = 54)	REGO 160 (n = 62)	FRUQ (n = 136)	BSC + PL (n = 68)	TAS 102 + Bev n = 178	TAS 102 n = 177	TAS 102+ Bev n = 68	TAS102 n = 69
Prior lines ≤2 >3	0% 100%	0% 100%	0% 100%	0% 100%	100% 0%		100% 0%	
Median OS, mo	10	6	7.4	4.8	9.0	7.1	15.1	8.1

CRC: Rx PARADIGM 2023

Gastro-Esophageal Cancers


Suggested treatment algorithm in advanced/metastatic gastroesophageal adenocarcinoma

Introduction: Zolbetuximab Targets CLDN18.2


- CLDN18.2 is a tight junction protein normally expressed in gastric mucosa cells and retained in G/GEJ adenocarcinoma^{1–8}
- CLDN18.2 may become exposed on the surface of G/GEJ adenocarcinoma cells, making it a promising target^{2–8}
- Zolbetuximab is a first-in-class chimeric IgG1 monoclonal antibody that targets CLDN18.2 and induces ADCC/CDC^{4–8}
- In the phase 2b FAST study, EOX \pm zolbetuximab prolonged survival in a subgroup of patients with higher expression of CLDN18.2 in tumor cells⁸
 - mPFS: 9.0 vs 5.7 months with zolbetuximab + EOX vs EOX alone
 - mOS: 16.5 vs 8.9 months with zolbetuximab + EOX vs EOX alone

Mechanism of Action of Zolbetuximab

^{1.} Niimi T et al. Mol Cell Biol. 2001;21:7380–90; 2. Sahin U et al. Clin Cancer Res. 2008;14:7624–34; 3. Moran D et al. Ann Oncol. 2018;29:viii14-viii57; 4. Sahin U et al. Eur J Cancer. 2018;100:17–26; 5. Rhode C et al. Jpn J Clin Oncol. 2019;49:870–6; 6. Türeci Ö et al. Ann Oncol. 2019;30:1487-95. 7. Pellino A et al. J Pers Med. 2021; 11(11):1095; 8. Sahin U et al. Ann Oncol. 2021;32:609–19.

Primary End Point: PFS by Independent Review Committee^a

• PFS was significantly longer in patients treated with zolbetuximab + mFOLFOX6 vs placebo + mFOLFOX6

Data cutoff: September 9, 2022; Median follow-up = 12.94 months (zolbetuximab + mFOLFOX6) vs 12.65 months (placebo + mFOLFOX6).

Per RECIST version 1.1.

Biomarker selection in esophageal & gastric adenocarcinoma

Biomarker	Prevalence in metastatic gastric cancer	Therapeutic agent(s)
ERBB2/HER2	20%	Trastuzumab + pembrolizumab
MSI-high	5% in Stage IV, 20% in Stage I-III	Pembrolizumab or nivolumab
EBV-positive	3%	Pembrolizumab or nivolumab
PD-L1 CPS	CPS ≥ 1 80%/ CPS ≥ 5 60%	Nivolumab or pembrolizumab
FGFR2b overexpression	30%	Bemarituzumab
CLDN18.2	35%	Zolbetuximab
Tumor sequencing	NTRACK, EGFR, MET, RAS amp	Larotrectinib/Entrectenib, afatinib etc
Plasma DNA	Monitoring for response and resistance	Broad application

10

All patients with a diagnosis of a gastrointestinal cancer should be offered germline testing, as well as somatic tumor profiling to look for actionable molecular findings

