AML and MDS: Current Status and Future Directions

Brian A. Jonas, MD, PhD, FACP Associate Professor University of California, Davis

Disclosures

For the past 12 months:

- **Consulting/Advising**: AbbVie, BMS, Genentech, Gilead, GlycoMimetics, Pfizer, Servier
- Grant/Research support to my institution: 47, AbbVie, Amgen, Aptose, AROG, Celgene, Daiichi Sankyo, F. Hoffmann-La Roche, Forma, Genentech/Roche, Gilead, GlycoMimetics, Hanmi, Immune-Onc, Incyte, Jazz, Loxo, Pfizer, Pharmacyclics, Sigma Tau, Treadwell

Learning Objectives

- Discuss new and updated classification systems for AML and MDS
- Learn about new and updated prognostic systems for AML and MDS
- Review new treatment approaches for AML and MDS

New/Updated Classification Systems for AML and MDS

New/Updated Classification Systems

- 2022 Update to the WHO Classification System (WHO 2022)
- The International Consensus Classification of Myeloid Neoplasms and Acute Leukemia (ICC)
- ELN 2022 AML Recommendations

ELN 2022 Recommended Work Up

Genetic analyses	Results preferably available within
Cytogenetics ^d	• 5-7 days
 Screening for gene mutations required for establishing the diagnosis and to identify actionable therapeutic targets^e <i>FLT3</i>,^f <i>IDH1</i>, <i>IDH2</i> <i>NPM1</i> <i>CEBPA</i>,^g <i>DDX41</i>, <i>TP53</i>; <i>ASXL1</i>, <i>BCOR</i>, <i>EZH2</i>, <i>RUNX1</i>, <i>SF3B1</i>, <i>SRSF2</i>, <i>STAG2</i>, <i>U2AF1</i>, <i>ZRSR2</i> 	 3-5 days 3-5 days 1st cycle
 Screening for gene rearrangements^h PML::RARA, CBFB::MYH11, RUNX1::RUNX1T1, KMT2A rearrangements, BCR::ABL1, other fusion genes (if available) 	• 3-5 days

Additional genes recommended to test at diagnosis¹

 ANKRD26, BCORL1, BRAF, CBL, CSF3R, DNMT3A, ETV6, GATA2, JAK2, KIT, KRAS, NRAS, NF1, PHF6, PPM1D, PTPN11, RAD21, SETBP1, TET2, WT1

WHO 2022 - MDS

 Table 3.
 Classification and defining features of myelodysplastic neoplasms (MDS).

	Blasts	Cytogenetics	Mutations
MDS with defining genetic abnormalities			
MDS with low blasts and isolated 5q deletion (MDS-5q)	<5% BM and <2% PB	5q deletion alone, or with 1 other abnormality other than monosomy 7 or 7q deletion	
MDS with low blasts and <i>SF3B1</i> mutation ^a (MDS- <i>SF3B1</i>)		Absence of 5q deletion, monosomy 7, or complex karyotype	SF3B1
MDS with biallelic <i>TP53</i> inactivation (MDS-bi <i>TP53</i>)	<20% BM and PB	Usually complex	Two or more <i>TP53</i> mutations, or 1 mutation with evidence of <i>TP53</i> copy number loss or cnLOH
MDS, morphologically defined			
MDS with low blasts (MDS-LB)	<5% BM and <2% PB		
MDS, hypoplastic ^b (MDS-h)			
MDS with increased blasts (MDS-IB)			
MDS-IB1	5-9% BM or 2-4% PB		
MDS-IB2	10-19% BM or 5–19% PB or Auer rods		
MDS with fibrosis (MDS-f)	5–19% BM; 2–19% PB		

^aDetection of \geq 15% ring sideroblasts may substitute for *SF3B1* mutation. Acceptable related terminology: MDS with low blasts and ring sideroblasts. ^bBy definition, \leq 25% bone marrow cellularity, age adjusted.

BM bone marrow, PB peripheral blood, cnLOH copy neutral loss of heterozygosity.

ICC - MDS

Table 20. Myelodysplastic syndromes (MDS) and myelodysplastic syndrome/acute myeloid leukemia (MDS/AML)

	Dysplastic lineages	Cytopenias	Cytoses*	BM and PB Blasts	Cytogenetics ^b ***	Mutations
MDS with mutated SF3B1 (MDS- SF3B1)	Typically ≥1 ^c	≥1	0	<5% BM <2% PB	Any, except isolated del(5q), - 7/del(7q), abn3q26.2, or complex	SF3B1 (≥10% VAF), without multi-hit <i>TP53</i> , or RUNX1
MDS with del(5q) [MDS- del(5q)]	Typically ≥1°	≥1	Thrombocytosis allowed	<5% BM <2% PB ^d	del(5q), with up to 1 additional, except -7/del(7q)	Any, except multi- hit <i>TP53</i>
MDS, NOS - without dysplasia	0	≥1	0	<5% BM <2% PB₫	-7/del(7q) or complex	Any, except multi- hit <i>TP53</i> or <i>SF3B1</i> (≥10% VAF)
MDS, NOS - with single lineage dysplasia	1	≥1	0	<5% BM <2% PB ^d	Any, except not meeting criteria for MDS-del(5q)	Any, except multi- hit <i>TP53</i> ;not meeting criteria for MDS- <i>SF3B1</i>
MDS, NOS - with multilineage dysplasia	≥2	≥1	0	<5% BM <2% PBª	Any, except not meeting criteria for MDS-del(5q)	Any, except multi- hit <i>TP53,;</i> not meeting criteria for MDS- <i>SF3B1</i>

MDS with excess blasts (MDS-EB)	Typically ≥1 ^c	≥1	0	5-9% BM, 2-9% PB ^d	Any	Any, except multi- hit <i>TP53</i>
MDS/AML	Typically ≥1 ^c	≥1	0	10-19% BM or PB ^e	Any, except AML- defining ^f	Any, except NPM1, bZIP CEBPA or TP53

^aCytoses: Sustained white blood count $\geq 13 \times 10^9$ /L, monocytosis ($\geq 0.5 \times 10^9$ /L and $\geq 10\%$ of leukocytes), or platelets $\geq 450 \times 10^9$ /L; thrombocytosis is allowed in MDS-del(5q) or in any MDS case with inv(3) or t(3;3) cytogenetic abnormality.

^bBCR::ABL1 rearrangement or any of the rearrangements associated with myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions exclude a diagnosis of MDS, even in the context of cytopenia.

^cAlthough dysplasia is typically present in these entities, it is not required.

^dAlthough 2% PB blasts mandates classification of an MDS case as MDS-EB, the presence of 1% PB blasts confimed on two separate occasions also qualifies for MDS-EB.

*For pediatric patients (<18 years), the blast thresholds for MDS-EB are 5-19% in BM and 2-19% in PB, and the entity MDS/AML does not apply.

^fAML-defining cytogenetics are listed in the AML section.

WHO 2022 – MDS/MPNs and CHIP/CCUS

Summary Box:

- CH is recognized as a category of precursor myeloid disease state.
- CHIP and CCUS are formally defined.

Table 5. Myelodysplastic/myeloproliferative neoplasms.

Chronic myelomonocytic leukaemia

Myelodysplastic/myeloproliferative neoplasm with neutrophilia

Myelodysplastic/myeloproliferative neoplasm with SF3B1 mutation and thrombocytosis

Myelodysplastic/myeloproliferative neoplasm, not otherwise specified

Summary Box:

- CMML diagnostic criteria undergo major revisions, including lowering the cutoff for absolute monocytosis, adopting MD-CMML and MP-CMML subtypes, and eliminating CMML-0.
- Atypical chronic myeloid leukaemia renamed MDS/MPN with neutrophilia.
- MDS/MPN with ring sideroblasts and thrombocytosis redefined based on SF3B1 mutation and renamed MDS/MPN with SF3B1 mutation and thrombocytosis.

ICC - CMML

Table 13. Diagnostic criteria for chronic myelomonocytic leukemia (CMML)

- Monocytosis defined as monocytes >0.5 x10⁹/L and >10% of the WBC
- Cytopenia (thresholds same as MDS)^a
- Blasts (including promonocytes) <20% of the cells in blood and bone marrow
- Presence of clonality: abnormal cytogenetics and/or presence of at least one myeloid neoplasm associated mutation of at least 10% allele frequency^b
- In cases without evidence of clonality,
 - monocytes <u>>1.0 x10⁹/L and >10% of the WBC, and</u>
 - increased blasts (including promonocytes)^c, or morphologic dysplasia, or
 - an abnormal immunophenotype consistent with CMML would be required for its diagnosis.
- Bone marrow examination with morphologic findings consistent with CMML (hypercellularity due to a myeloid proliferation often with increased monocytes), and lacking diagnostic features of acute myeloid leukemia, myeloproliferative neoplasm or other conditions associated with monocytosis^d
- No BCR::ABL1 or genetic abnormalities of myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions

a A small proportion of cases may show only borderline or no cytopenia usually in early phase disease.

b Based on International Consensus Group Conference, Vienna, 2018.²⁶⁰

c increased blasts: \geq 5% in the bone marrow and/or \geq 2% in the peripheral blood.

d For cases lacking bone marrow findings of CMML, a diagnosis of clonal monocytosis of undetermined significance (CMUS) could be considered. If cytopenia is present a diagnosis of clonal cytopenia and monocytosis of undetermined significance (CCMUS) could be entertained. In these diagnostic settings, however, an alternative cause for the observed monocytosis would have to be excluded on the basis of appropriate clinicopathologic correlations.

WHO 2022 – AML

Table 7. Acute myeloid leukaemia.

Acute myeloid leukaemia with defining genetic abnormalities

Acute promyelocytic leukaemia with PML::RARA fusion Acute myeloid leukaemia with RUNX1::RUNX1T1 fusion Acute myeloid leukaemia with CBFB::MYH11 fusion Acute myeloid leukaemia with DEK::NUP214 fusion Acute myeloid leukaemia with RBM15::MRTFA fusion Acute myeloid leukaemia with BCR::ABL1 fusion Acute myeloid leukaemia with KMT2A rearrangement Acute myeloid leukaemia with MECOM rearrangement Acute myeloid leukaemia with NUP98 rearrangement Acute myeloid leukaemia with NPM1 mutation Acute myeloid leukaemia with CEBPA mutation Acute myeloid leukaemia, myelodysplasia-related Acute myeloid leukaemia with other defined genetic alterations Acute myeloid leukaemia, defined by differentiation Acute myeloid leukaemia with minimal differentiation Acute myeloid leukaemia without maturation Acute myeloid leukaemia with maturation Acute basophilic leukaemia Acute myelomonocytic leukaemia Acute monocytic leukaemia

Acute erythroid leukaemia

Acute megakaryoblastic leukaemia

Summary Box:

- AML is arranged into two families: AML with defining genetic abnormalities and AML defined by differentiation. AML, NOS is no longer applicable.
- Most AML with defining genetic abnormalities may be diagnosed with <20% blasts.
- AML-MR replaces the former term AML "with myelodysplasia-related changes", and its diagnostic criteria are updated. AML transformation of MDS and MDS/MPN continues to be defined under AML-MR in view of the broader unifying biologic features.
- AML with rare fusions are incorporated as subtypes under AML with other defined genetic alterations.
- AML with somatic *RUNX1* mutation is not recognized as a distinct disease type due to lack of sufficient unifying characteristics.

Summary Box:

- Myeloid neoplasms (MDS, MDS/MPN, and AML) post cytotoxic therapy (MN-pCT) require full diagnostic work up; the term replaces therapyrelated.
- Exposure to PARP1 inhibitors is added as a qualifying criterion for MNpCT.
- The diagnostic framework for myeloid neoplasm associated with germline predisposition is restructured along a scalable model that can accommodate future refinement and discoveries.

ICC - AML

AML and related neoplasms

AML with recurrent genetic abnormalities (requiring ≥10% blasts in BM or PB)^a

- APL with t(15;17)(q24.1;q21.2)/PML::RARA^b
- AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1
- AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11
- AML with t(9;11)(p21.3;q23.3)/MLLT3::KMT2A^c
- AML with t(6;9)(p22.3;q34.1)/DEK::NUP214
- AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1)^d
- AML with other rare recurring translocations^e
- AML with mutated NPM1
- AML with in-frame bZIP mutated CEBPA^f
- AML with t(9;22)(q34.1;q11.2)/BCR::ABL1^a

Categories designated AML (if ≥20% blasts in BM or PB) or MDS/AML (if 10-19% blasts in BM or PB)

- AML with mutated TP539
- AML with myelodysplasia-related gene mutations
 Defined by mutations in ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2
- AML with myelodysplasia-related cytogenetic abnormalities^h
- AML not otherwise specified (NOS)

Myeloid sarcoma

Myeloid proliferations related to Down Syndrome

- Transient abnormal myelopoiesis associated with Down syndrome
- Myeloid leukemia associated with Down syndrome

Blastic plasmacytoid dendritic cell neoplasm

Acute leukemias of ambiguous lineage

- Acute undifferentiated leukemia
- MPAL with t(9;22)(q34.1;q11.2)/BCR::ABL1
- MPAL with t(v;11q23.3)/KMT2A rearranged
- MPAL, B/myeloid, not otherwise specified
- MPAL, T/myeloid, not otherwise specified

Table 27. Diagnostic qualifiers that should be used following a specific MDS, AML (or MDS/AML) diagnosis*

Therapy-related**

• prior chemotherapy, radiotherapy, immune interventions

Progressing from myelodysplastic syndrome

• MDS should be confirmed by standard diagnostics

Progressing from myelodysplastic/myeloproliferative neoplasm (specify)

• MDS/MPN should be confirmed by standard diagnostics

Germline predisposition

*Examples: Acute myeloid leukemia with myelodysplasia-related cytogenetic abnormality, therapy-related; acute myeloid leukemia with myelodysplasia-related gene mutation, progressed from myelodysplastic syndrome; AML with myelodysplasia-related gene mutation, germline *RUNX1* mutation

**lymphoblastic leukemia/lymphoma may also be therapy-related, and that association should also be noted in the diagnosis

ICC – TP53 AML/MDS

Туре	Cytopenia	Blasts	Genetics
MDS with mutated TP53	Any	0-9% bone marrow and blood blasts	Multi-hit TP53 mutation ^a , or <i>TP53</i> mutation (VAF >10%) and complex karyotype often with loss of 17p ^b
MDS/AML with mutated <i>TP53</i>	Any	10-19% bone marrow or blood blasts	Any somatic <i>TP53</i> mutation (VAF >10%)
AML with mutated TP53	Not required	≥20% bone marrow or blood blasts or meets criteria for pure erythroid leukemia	Any somatic <i>TP53</i> mutation (VAF >10%)

^aDefined as two distinct *TP53* mutations (each VAF >10%) OR a single *TP53* mutation with either 1) 17p deletion on cytogenetics; 2) VAF of >50%; or 3) Copy-neutral loss of heterozygosity (LOH) at the 17p *TP53* locus.

^bIf TP53 locus LOH information is not available

Arber et al, Blood 2022 Dohner et al, Blood 2022

ICC – AML/MDS Summary

Arber et al, Blood 2022 Dohner et al, Blood 2022

New/Updated Prognostic Systems for AML and MDS

ELN 2017 Risk Stratification

Risk category*	Genetic abnormality
Favorable	t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i> inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i> Mutated <i>NPM1</i> without <i>FLT3</i> -ITD or with <i>FLT3</i> -ITD ^{Iow} † Biallelic mutated <i>CEBPA</i>
Intermediate	 Mutated NPM1 and FLT3-ITD^{high}† Wild-type NPM1 without FLT3-ITD or with FLT3-ITD^{low}† (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3); MLLT3-KMT2A‡ Cytogenetic abnormalities not classified as favorable or adverse
Adverse	t(6;9)(p23;q34.1); <i>DEK-NUP214</i> t(v;11q23.3); <i>KMT2A</i> rearranged t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i> inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); <i>GATA2,MECOM(EVI1)</i> -5 or del(5q); -7; -17/abn(17p) Complex karyotype,§ monosomal karyotypell Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD ^{high} † Mutated <i>RUNX1</i> ¶ Mutated <i>RUNX1</i> ¶ Mutated <i>ASXL1</i> ¶

ELN 2022 Risk Stratification

* Changes from ELN 2017

Revised International Prognostic Scoring System

	Score Value						
Prognostic variable	0	0.5	1	1.5	2	3	4
Cytogenetic ^e	Very good	I	Good	Ι	Intermediate	Poor	Very poor
Marrow blasts (%)	≤2	<u> - 1</u> 7	>2-<5		5-10	>10	<u>-</u>
Hemoglobin	≥10		8-<10	<8	-	1	_
Platelets	≥100	50- <100	<50		_	-	_
ANC	≥0.8	<0.8	_	_	-	-	_

IPSS-R Risk Category (% IPSS-R pop.)*	Overall Score	Median Survival (y) in the Absence of Therapy	25% AML Progression (y) in the Absence of Therapy
VERY LOW (19)	≤1.5	8.8	Not reached
LOW (38)	>1.5-≤3.0	5.3	10.8
INT ³ (20)	>3.0-≤4.5	3	3.2
HIGH (13)	>4.5-≦6.0	1.6	1.4
VERY HIGH (10)	>6.0	0.8	0.7

International Prognostic Scoring System – Molecular

Table 1. IPSS-M Risk Score Construction from an Adjusted Cox Multivariable Regression for Leukemia-Free Survival.*						
Category and Variable	Adjusted Hazard Ratio (95% CI)†	Model Weight <u>:</u>				
Clinical						
Bone marrow blasts — %	1.07 (1.05–1.09)	0.0704				
min (Platelets,250) — x10 ⁹ /l	0.998 (0.997-0.999)	-0.00222				
Hemoglobin — g/dl	0.84 (0.81-0.88)	-0.171				
Cytogenetic						
IPSS-R cytogenetic category§	1.33 (1.21–1.47)	0.287				
Gene main effects (17 variables, 16 genes)¶						
TP53 ^{multihit}	3.27 (2.38-4.48)	1.18				
MLL ^{PTD}	2.22 (1.49–3.32)	0.798				
FLT3 ^{ITD+TKD}	2.22 (1.11-4.45)	0.798				
SF3B1 ^{5q}	1.66 (1.03–2.66)	0.504				
NPM1	1.54 (0.78–3.02)	0.430				
RUNX1	1.53 (1.23–1.89)	0.423				
NRAS	1.52 (1.05–2.20)	0.417				
ETV6	1.48 (0.98–2.23)	0.391				
IDH2	1.46 (1.05–2.02)	0.379				
CBL	1.34 (0.99–1.82)	0.295				
EZH2	1.31 (0.98–1.75)	0.270				
U2AF1	1.28 (1.01–1.61)	0.247				
SRSF2	1.27 (1.03–1.56)	0.239				
DNMT3A	1.25 (1.02–1.53)	0.221				
ASXL1	1.24 (1.02–1.51)	0.213				
KRAS	1.22 (0.84–1.77)	0.202				
SF3B1 ^α	0.92 (0.74 1.16)	-0.0794				
Gene residuals (1 variable, 15 genes; possible values of 0, 1, or 2)						
min (Nres,2)	1.26 (1.12–1.42)	0.231				

* CI denotes confidence interval; IPSS-M, International Prognostic Scoring System-Molecular; IPSS-R, International Prognostic Scoring System-Revised; ITD, internal tandem duplication; min, minimum; PTD, partial tandem duplication; and TKD tyrosine kinase domain.
 † Hazard ratio is for the risk of leukemic transformation or death, adjusted for age, sex, and secondary/therapy-related versus primary myelodysplastic syndrome. Cox regression was performed for 2428 patients with available covariables and leukemia-free survival data.
 ‡ Model weights were derived from the logarithm of the raw hazard ratios up to three significant digits. The following formula applies: IPSS-M score = 1.15467 + (∑variables i W; X)/log(2), where w/ denotes the weight of variable j, and x/ the value of the variable j observed in a given patient.
 § IPSS-R cytogenetic categories were as follows: 0 denotes very good, 1 good, 2 intermediate, 3 poor, and 4 very poor.
 § *F3B1*⁵⁶ is the *SF3B1* mutation in the presence of isolated del(5q) — that is, del(5q) only or with one additional aberration excluding -7/del(7q). *SF3B1*^T is the *SF3B1* mutation without comutations in *BCOR, BCORL1, RUNX1, NRAS, STAG2, SRSF2,* and del(5q).
 IN res is defined as the number of mutated genes within the following list: *BCOR, BCORL1, CEBPA, ETNKI, GATA2, GNB1, IDH1, NF1, PHF6, PPM1D, PRPF8, PTPN11, SETBP1, STAG2, and WT1.* The variable min(Nres,2) can therefore take the value 0, 1, or 2.

IPSS-M, Continued

Table 2. Summary of Clinical Outcomes for 2701 Patients by IPSS-M Risk Category.*						
	IPSS-M Risk Category					
Characteristic	Very Low	Low	Moderate Low	Moderate High	High	Very High
Patients — No. (%)	381 (14)	889 (33)	302 (11)	281 (11)	379 (14)	469 (17)
Risk score	\leq -1.5	>-1.5 to -0.5	>-0.5 to 0	>0 to 0.5	>0.5 to 1.5	>1.5
Hazard ratio (95% CI)†	0.51 (0.39-0.67)	1.0 (Reference)	1.5 (1.2–1.8)	2.5 (2.1-3.1)	3.7 (3.1-4.4)	7.1 (6.0-8.3)
Median LFS (25–75% range) — yr‡	9.7 (5.0–17.4)	5.9 (2.6–12.0)	4.5 (1.6–6.9)	2.3 (0.91-4.7)	1.5 (0.80–2.8)	0.76 (0.33-1.5)
Median OS (25–75% range) — yr	10.6 (5.1–17.4)	6.0 (3.0–12.8)	4.6 (2.0–7.4)	2.8 (1.2-5.5)	1.7 (1.0-3.4)	1.0 (0.5–1.8)
AML-t — %						
By 1 yr	0.0	1.7	4.9	9.5	14.3	28.2
By 2 yr	1.2	3.4	8.8	14.0	21.2	38.6
By 4 yr	2.8	5.1	11.4	18.9	29.2	42.8
Death without AML — %						
By 1 yr	2.2	8.5	12.0	18.0	19.3	30.6
By 2 yr	7.0	16.2	19.8	31.1	39.8	45.6
By 4 yr	15.9	29.5	33.6	51.1	54.2	51.3

IPSS-M, Continued

Bernard et al, NEJM Evidence 2022.

IPSS-M – Therapy-Related MDS

New Treatment Approaches for AML and MDS

AGILE: Ivosidenib+Azacitidine vs PBO+Aza for Newly Diagnosed AML with mIDH1

 Multicenter, double-blind, randomized phase III trial Stratified by region (US/Canada vs Western Europe, Israel, and Australia vs Japan vs rest of world) and disease history (de novo vs secondary AML)

*Enrollment at time of data cutoff (May 18, 2021).

- Enrollment halted based on efficacy as of May 12, 2021 (N = 148)
- Primary endpoint: EFS with ~173 events (52 mo)
- Secondary endpoints: CRR, OS, CR + CRh rate, ORR

AGILE: OS and EFS

AGILE: Responses

Response	IVO + AZA (n = 72)	PBO + AZA (n = 74)
CR rate, n (%) [95% CI] OR (95% CI); <i>P</i> value	34 (47.2) [35.3-59.3]	11 (14.9) [7.7-25.0] 4.8 (2.2-10.5); <.0001
 Median duration of CR, mo (95% CI) Median time to CR, mo (range) 	NE (13.0-NE) 4.3 (1.7-9.2)	11.2 (3.2-NE) 3.8 (1.9-8.5)
CR + CRh, n (%) [95% CI] OR (95% CI); <i>P</i> value	38 (52.8) [40.7-64.7]	13 (7.6) [9.7-28.2] 5.0 (2.3-10.8); <.0001
 Median duration of CR + CRh, mo (95% CI) Median time to CR + CRh, mo (range) 	NE (13.0-NE) 4.0 (1.7-8.6)	9.2 (5.8-NE) 3.9 (1.9-7.2)
ORR, n (%) [95% CI] • OR (95% CI): <i>P</i> value	45 (62.5) [50.3-73.6]	14 (18.9) [10.7-29.7] 7.2 (3.3-15.4): <.0001
 Median duration of response, mo (95% Cl) 	22.1 (13.0-NE)	9.2 (6.6-14.1)
 Median time to response, mo (range) 	2.1 (1.7-7.5)	3.7 (1.9-9.4)
mIDH1 Clearance in BMMCs by Response, n/N (%)	IVO + AZA (n = 43)	PBO + AZA (n = 34)
CR + CRh CR CRh	17/33 (51.5) 14/29 (48.3) 3/4 (75)	3/11 (27.3) 2/10 (20) 1/1 (100)
Non-CR + CRh responders	2/4 (50)	0/2 (0)
Nonresponders	1/6 (16.7)	0/21 (0)

AGILE: AEs

	IVO + AZ	A (n = 71)	PBO + AZ	PBO + AZA (n = 73)		
TEAES, N (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3		
Any TEAE	70 (98.6)	66 (93.0)	73 (100)	69 (94.5)		
Any hematologic TEAE	55 (77.5)	50 (70.4)	48 (65.8)	47 (64.4)		
Most common hematologic TEAEs* Anemia Febrile neutropenia Neutropenia Thrombocytopenia 	22 (31.0) 20 (28.2) 20 (28.2) 20 (28.2)	18 (25.4) 20 (28.2) 19 (26.8) 17 (23.9)	21 (28.8) 25 (34.2) 12 (16.4) 15 (20.5)	19 (26.0) 25 (34.2) 12 (16.4) 15 (20.5)		
Most common TEAEs* Nausea Vomiting Diarrhea Pyrexia Constipation Pneumonia 	30 (42.3) 29 (40.8) 25 (35.2) 24 (33.8) 19 (26.8) 17 (23.9)	2 (3.8) 0 1 (1.4) 1 (1.4) 0 16 (22.5)	28 (38.4) 19 (36.0) 26 (35.6) 29 (39.7) 38 (52.1) 23 (31.5)	3 (4.1) 1 (1.4) 5 (6.8) 2 (2.7) 1 (1.4) 21 (28.8)		
Bleeding	29 (40.8)	4 (5.6)	21 (28.8)	5 (6.8)		
Infections	20 (28.2)	15 (21.1)	36 (49.3)	22 (30.1)		

- AEs of special interest (IVO + AZA vs PBO + AZA):
 - Grade ≥2 differentiation syndrome: 14.1% vs 8.2%
 - Grade ≥3 QT prolongation:
 9.9% vs 4.1%
- Fewer infections with IVO + AZA vs PBO + AZA (28.2% vs 49.3%)

No treatment-related deaths

*Occurring in >20% of patients.

QUAZAR AML-001 Maintenance Trial CC-486 (Oral Azacitidine)

Patient DISPOSITION / SCHEMA

*Still receiving study drug at data cutoff (July 15, 2019).

⁺Became eligible for hematopoietic stem cell transplant during treatment. Requirement of ANC >/= 500 and and Plt >/= 20 at the time of screening

QUAZAR Trial – Patient Characteristics

Table 1. Baseline Demographic and Disease Characteristics.*						
Characteristic	CC-486 (N=238)	Placebo (N = 234)	Total (N = 472)			
Response after induction therapy — no. (%)						
Complete remission	187 (79)	197 (84)	384 (81)			
Complete remission with incomplete blood count recovery	51 (21)	37 (16)	88 (19)			
Receipt of consolidation therapy — no. (%)						
Yes	186 (78)	192 (82)	378 (80)			
Νο	52 (22)	42 (18)	94 (20)			
Median time from induction therapy to randomization (range) — mo	4.0 (1.4-8.8)	4.0 (1.3–15.1)	4.0 (1.3–15.1)			
Median time from complete remission to randomization (range) — days <u>‡</u>	84.5 (7–154)	86.0 (7–263)	85.0 (7–263)			
Median bone marrow blasts (range) — $\%$ [2.0 (0.0–5.0)	2.0 (0.0–6.5)	2.0 (0.0–6.5)			
Positive for measurable residual disease — no. (%) \P	103 (43)	116 (50)	219 (46)			
Median platelet count (range) — ×10 ⁻⁹ /liter§	154 (22-801)	179 (16–636)	165 (16–801)			
Median absolute neutrophil count (range) — ×10 ⁻⁹ /liter§	3.0 (0.3–15.9)	2.8 (0.5–9.6)	2.9 (0.3–15.9)			

QUAZAR Trial – Safety

- Median treatment durations:
 - CC-486: 12 cycles (range 1-80)
 - Placebo: 6 cycles (range 1-73)
- CC-486 safety profile was generally consistent with that of injectable AZA¹
- Gastrointestinal adverse events (AEs) in the CC-486 arm were most common during the first 2 treatment cycles
- Serious AEs were reported for 34% and 25% of patients in the CC-486 and placebo arms, respectively
- · No treatment-related deaths

1. Dombret et al. *Blood.* 2015;126(3):291-9. AE, adverse event; AZA, azacitidine; GI, gastrointestinal.

	CC-486 n = 236		Placebo n = 233		
	All Grades	Grade 3–4	All Grades	Grade 3–4	
Preferred term		n (%)		
Patients with ≥1 AE	231 (98)	169 (72)	225 (97)	147 (63)	
Gastrointestinal					
Nausea	153 (65)	6 (3)	55 (24)	1 (0.4)	
Vomiting	141 (60)	7 (3)	23 (10)	0	
Diarrhea	119 (50)	12 (5)	50 (22)	3 (1)	
Constipation	91 (39)	3 (1)	56 (24)	0	
Hematologic					
Neutropenia	105 (45)	97 (41)	61 (26)	55 (24)	
Thrombocytopenia	79 (34)	53 (23)	63 (27)	50 (22)	
Anemia	48 (20)	33 (14)	42 (18)	30 (13)	
Other					
Fatigue	70 (30)	7 (3)	45 (19)	2 (1)	
Asthenia	44 (19)	2 (1)	13 (6)	1 (0.4)	
Pyrexia	36 (15)	4 (2)	44 (19)	1 (0.4)	
Couah	29 (12)	0	39 (17)	0	

QUAZAR Trial – Primary Endpoint OS

Data cutoff: July 15, 2019

OS was defined as the time from randomization to death by any cause. Kaplan-Meier estimated OS was compared for CC-486 vs. placebo by stratified log-rank test. HRs and 95%CIs were generated using a stratified Cox proportional hazards model.

QUAZAR Trial – Secondary Endpoint RFS

• 1-year relapse rate was 53% in the CC-486 arm [95%CI 46, 59] and was 71% in the placebo arm [65, 77]

Data cutoff: July 15, 2019

RFS was defined as the time from randomization to relapse or death by any cause, whichever occurred first. Kaplan-Meier estimated RFS was compared for CC-486 vs. placebo by stratified log-rank test. HRs and 95%CIs were generated using a stratified Cox proportional hazards model.

QUAZAR AML-001 Trial: Effects of NPM1 and FLT3-ITD mutations

NPM1 mutational status at AML Dx was prognostic for OS and RFS, and predictive of a survival benefit for pts treated with Oral-AZA (vs. PBO). Presence of *FLT3*-ITD at Dx had a negative prognostic influence, as suggested by differences in OS results in the PBO arm

Oral-AZA prolonged OS vs. PBO in pts with *NPM1*^{mut} + *FLT3*-ITD^{neg} (48.6 vs. 18.0 mo, respectively), and in pts with both *NPM1*^{mut} + *FLT3*-ITD (46.1 vs. 11.5 mo)

NPM1 ^{mut} , Oral-AZA	47.2	NPM1 ^{wt} , Oral-AZA	19.6
NPM1 ^{mut} , Placebo	15.9	NPM1 ^{wt} , Placebo	14.6

Median	05, n	nonths	
NPM1 ^{mut} FLT3-ITD ^{neg} , Oral-AZA	48.6	Other, Oral-AZA	20.2
NPM1 ^{mut} FLT3-ITD ^{neg} , Placebo	18.0	Other, Placebo	14.6

	Median OS,	months	
NPM1 ^{mut} FLT3-ITD, Ora	al-AZA 46.1	Other, Oral-AZA	24.7
NPM1 ^{mut} FLT3-ITD, Pla	cebo 11.5	Other, Placebo	14.9

QUAZAR AML-001: MRD Responses

 Oral AZA was associated with a higher rate of MRD response (BL MRD+, became MRD- onstudy) vs. PBO: 37% vs. 19%, respectively

 The median duration of MRD negativity overall (BL MRD– and MRD responders) was extended with Oral AZA vs. PBO

^aTime from MRD assessment at screening.

95%CI, 95% confidence interval; AZA, azacitidine; BL, baseline; HR, hazard ratio; mo, months; MRD, measurable residual disease; PBO, placebo.

Menin Inhibition for AML with MLL Rearrangements and NPM1c Mutations

Menin Inhibitors in Development

	Table 1 Phase 1/2 clinical trialsinvestigating menin inhibitors inrefractory acute leukemias.	Clinical trial/status	Drug	Dosing	Min. age	Phase 2 expansion cohorts
		AUGMENT-101 NCT04065399	SNDX-5613	PO BID	30 d	A. ALL or MPAL with <i>KMT2Ar</i> B. AML with <i>KMT2Ar</i>
		Syndax (recruiting)				C. AML with <i>NPM1c</i>
Early clinical experie	<u>nce</u> :	KOMET-001	KO-539	PO daily	18 yr	A. AML with KMT2Ar
Active in r/r AML wit	h MLLr and	NCT04067336				B. AML with <i>NPM1c</i>
NPM1c		Kura (recruiting)				
ORR around ~50% (C	CR ~20-25%)	NCT04752163	DS-1594	PO BID	18 yr	A. KMTAr leukemia: single agent
Potential AEs		Daiichi Sankyo				B. AML with NPM1c: single agent
Differentiation syndr	ome KO-539	(recruiting)				C. AML with <i>KMT2Ar</i> or <i>NPM1c</i> : in combination with azacytidine and venetoclax
QTc prolongation SN	DX-5613					D. ALL with <i>KMT2Ar</i> : in combination with mini-HCVD
		NCT04811560	JNJ-	PO daily	18 yr	-
	Janssen	75276617				
		(not yet recruiting)				
		Biomea Fusion	BMF-219	PO	_	-
		(IND enabling				

submission)

Status of clinical trials as of May 2021. ALL acute lymphoblastic leukemia, MPAL mixed-phenotype acute leukemia, KMT2Ar rearranged Lysine Methyltransferase 2A, AML acute myeloid leukemia, NPM1c mutation of the Nucleophosmin 1 resulting in a cytoplasmic localization of the protein, Min. age minimum age for enrollement, d days, yr years, Mini-HCVD dose reduced combination of cyclophosphamide and dexamethasone, methotrexate, and cytarabine.

Oral Decitabine + Cedazuridine (DEC-C)

- Current HMA treatment poses significant patient burden due to 5–7 days per month of parenteral administration in a clinic setting
- Oral bioavailability of HMAs decitabine and azacitidine is limited due to rapid degradation by CDA in the gut and liver

- Cedazuridine is a novel, potent, and safe CDA inhibitor
 - Large safety margin, with no adverse events at up to 200 mg/kg in monkeys (~2400 mg/m² human equivalent)

CDA, cytidine deaminase.

ASTX727-02 trial of DEC-C in MDS/CMML: Randomized Cross-Over Trial

ASTX727-02 Primary Endpoint: 5-day Decitabine AUC Equivalence

Decitabine			IV DEC	Ora	I ASTX727	Ratio of Geo. LSM	Intrasubiect
5-day AUC ₀₋₂	₄ (h∙ng/mL)	Ν	Geo. LSM	Ν	Geo. LSM	Oral/IV, % (90% CI)	(%CV)
Primary Analysis	Paired ¹	123	864.9	123	855.7	98.9 (92.7, 105.6)	31.7

¹ Paired patient population: patients who received both ASTX727 and IV decitabine in the randomized first 2 cycles with adequate PK samples.

- Study met its primary endpoint with high confidence: Oral/IV 5-day decitabine AUC ~99% with 90% CI of ~93-106%
- All Sensitivity and secondary PK AUC analyses confirmed findings from primary analysis

ASTX727-01-B: DEC-C Responses in MDS/CMML

	Phase 2 overall (N = 80		
Type of response	n (%)	95% CI	
CR	17 (21)	13-32	
PR	0		
mCR mCR with HI	18 (22) 6 (7)	14-33 3-16	
HI-E HI-N HI-P	13 (16) 8 (10) 2 (2) 11 (14)	9-26 4-19 0-9 7-23	
Overall response* (CR + PR + mCR + HI)	48 (60)	48-71	
No response	32 (40)	29-52	

• Comparable safety was seen between IV decitabine and PO DEC-C

Summary and Future Directions

- New classification and prognostic scoring systems have been introduced for AML and MDS
 - Implications for clinical trials design and drug development
 - Increased impact of molecular abnormalities
- It remains an exciting time for new treatments for AML and MDS
 - Standards of care are rapidly evolving
 - Clinical trials continue to advance new treatments