ALK and ROS1 Fusions and BRAF Mutations in NSCLC

Jonathan W. Riess, M.D. M.S. Associate Professor of Medicine Medical Director Thoracic Oncology UC Davis Comprehensive Cancer Center

A Comprehensive Cancer Center Designated by the National Cancer Institute

Disclosures

- Consulting/Advisory Board: Blueprint, Beigene, Daiichi Sankyo, EMD Serano, Janssen, Regeneron, Turning Point, Bristol Myers Squibb, Jazz Pharmaceuticals, Novartis, Roche/Genentech, Boehringer Ingelheim
- Research Funding: Merck, Boehringer Ingelheim, Novartis, AstraZeneca, Spectrum, Revolution Medicines

ALK and ROS1 Fusions and BRAF mutations in NSCLC

Driver mutations in lung cancer ~5% % ALK FR other MET 30% **EGFR** >1 mutation 3% sensitising 17% RET Z NTRK ~1% **KRAS PIK3CA 1%** MEK1 <1% 25% Unknown oncogenic driver detected 31%

Tsao et al JTO 2016. J. Mazieres et al. Annals of Oncology 2019

Driver mutations and Response to PD(L)1

- ALK and ROS1 Fusions and BRAF Muations in total represent ~10% of NSCLC-adenocarcinoma
- ALK and ROS1 fusions mainly never/light smoking history
- BRAF mutations- maybe older, more likely than ALK or ROS1 Have a smoking history.
- BRAF mutant NSCLC may benefit from ICI. ALK and ROS1 no clear benefit to PD-(L)1

ALEX Study design

PRESENTED AT: ASCO ANNUAL MEETING '17 | #ASCO17

KEY ELIGIBILITY

- ALK+ by central IHC testing
- Advanced or metastatic ALK+ NSCLC
- Treatment-naïve
- ECOG PS 0-2
- Measurable disease
- Asymptomatic brain metastases allowed

Slides are the property of the author. Permission required for reuse

• Brain metastases (present vs absent)

ALK, anaplastic lymphoma kinase; IHC, immunohistochemistry; NSCLC, non-small-cell lung cancer; ECOG PS, Eastern Cooperative Oncology Group Performance Status; PO, by mouth; PFS, progression-free survival; IRC, independent review committee; CNS, central nervous system; ORR, objective response rate; DOR, duration of response; OS, overall survival

Presented by: Alice T. Shaw

Updated Results: ALEX Trial

ALEX: Secondary Endpoint: KN024 Pembrolizumab 5-OS (Updated) yr OS PD-L1 High

Overall Survival, %	100 - 90 - 80 - 70 - 60 - 50 - 30 - 20 - 10 -	and a second sec	and a second	Medi 26.3 13.4	ian (95% (mo (18.3- mo (9.4-'	Cl) -40.4 mo) 8.3 mo)	43.7 24.7	/% /%	35.	3% 3%	31.5 16.3	9% 3%	
	0		40	40									<u>-</u>
	0	6	12	18	24	30	36	42	48	54	60	66	72
No. of all	- 1-					11	me, mont	ns					
mbrolizuma hemotheraj	ab 154 py 151	121 108	106 80	89 61	78 48	73 44	66 35	<mark>62</mark> 33	54 28	51 26	20 13	0 3	0 0
	-												

	Alectinib	Crizotinib
Median OS	Not reached	57.4 months
5-year OS	62.5%	45.5%

J. Brahmer et al. ESMO 2020

Note: J-ALEX did not show OS benefit compared to criz likely d/t crossover

Updated PFS ALTA 1L Brigatinib

Primary Endpoint: BIRC-Assessed PFS

Treatment	No. (%) of Patients With Events	Median PFS (95% Cl)	2-Year PFS, % (95% CI)
Brigatinib (n=137)	63 (46)	24.0 mo (18.5–NR)	48 (39–57)
Crizotinib (n=138)	87 (63)	11.0 mo (9.2–12.9)	26 (18–35)

Investigator-Assessed PFS

56 (46-64)

24 (16-32)

9.2 mo (7.4–12.9)

59 (43)

92 (67)

Brigatinib (n=137)

Crizotinib (n=138)

Lorlatinib > Crizotinib

Crown Primary Endpoint: PFS by BICR

Crizotinib

(n=147)

86 (59)

9.3

(7.6-11.1)

0.28

(0.19 - 0.41)

< 0.001

BICR, blinded independent central review; CI, confidence interval; HR, hazard ratio; NE, not estimable; PFS, progression-free survival

Comparing ALK Inhibitors By CNS Activity

Trial	Therapy	iORR [®] (Measur- able Disease)	iORR (Measurable or Non-measurable)	iPFS at 12- or 24-months ^b	Cumulative Incidence of CNS Progression ^c					
ALEX ^{58,59}	Alectinib	81%	59%		9%					
ALTA-1L ^{60,61}	Brigatinib	78%	67%	48% (24 mos)						
CROWN ⁶²	Lorlatinib	82%	66%	-	3%					
^a iORR, intracrania ^b iPFS, intracranial ^c Assessed at 12-m	aiORR, intracranial objective response rate. biPFS, intracranial progression-free survival. °Assessed at 12-months.									

Myall et al, *Neurooncol Adv*, 2021 Shaw et al, *NEJM*, 2020

How to Choose? FDA Approved Next Generation ALK inhibitors for 1L Therapy: Efficacy and Toxicity

	Alectinib	Brigatinib	Lorlatinib
ORR	79%	71%	76%
Med PFS by ICR	25.7 mo	24 mo	NR
Med PFS by IR	34.8	30.8	NR
Med OS	>5 yr	NR	NR
Toxicity	Fatigue, constipation, myalgia (CPK), edema, transaminitis (moderate) Weight gain	Nausea, diarrhea, fatigue, HA, HTN, pulm tox, transaminitis	Edema, neuropathy, cognitive changes (mood), lipids, weight gain

What to do for Second Line Treatment: Data from the phase 1/2 study of lorlatinib supported its approval in the \geq 2L setting

Efficacy¹

Safety^{‡3}

Response to lorlatinib	Non-crizotinib TKI±CT (n=28)	2 ALK TKIs±CT or 3 ALK TKIs±CT (n=111)
ORR,%	42.9	39.6
(95% CI)	(24.5–62.8)	(30.5–49.4)
Median PFS,* months	5.5	6.9
(95% CI)	(2.9–8.2)	(5.4–9.5)
Intracranial ORR, %	46.2	48.1
(95% CI)	(19.2–74.9)	(36.9–59.5)

ORR for patients treated with 1L alectinib was 31%²

Data cut-off: 2 February 2018 *Kaplan-Meier estimate [†]Data are from all patients treated in the phase 1/2 study (n=295)

EML4-ALK Variants and Resistance Mechanisms in ALK+ NSCLC

	Crizotinih	Ceritinih	Ensartinih	Alectinih	Brigatinih	Lorlatinih			_	
WT	23.30	12.47	1.281	1.377	0.959	0.267		1000nM	WT	205.3 70.5 to 597.9
	16.23 to 33.46	7.813 to 19.92	1.073 to 1.530	1.044 to 1.818	0.794 to 1.158	0.212 to 0.337			G1123S	54.50 23.65 to 125.6
G1123S	27.17 16.75 to 44.09	271.7 to 1611	0.983 0.711 to 1.358	1.167 to 2.082	7.082 to 17.53	2.855 2.238 to 3.642			1 11520	124.3
L1152R	361.3 205.5 to 635.1	167.3 145.2 to 968.4	34.75 23.42 to 51.56	3.501 3.110 to 3.943	0.798 0.640 to 0.995	7.402 8.190 to 20.24			LIIJZK	66.44 to 232.6
C1156Y	306.0	199.7	27.27	13.61	7.659	8.938		800nM	C1156Y	110.4 69.28 to 176.1
011301	100.6 to 931.3	54.09 to 737.4	9.057 to 82.12	5.461 to 33.91	3.999 to 14.67	4.206 to 18.99			I1171T	152.8
I1171T	4/1.9 190.3 to 1171	165.1 59.20 to 460.4	69.25 339.21 to 122.3	379.8 126.4 to 1141	25.85 10.58 to 63.14	52.53 23.42 to 117.8			E1174C	257.7
F1174C	294.4 72.52 to 1195	205.1 69.89 to 601.6	58.55 24.82 to 138.1	19.22 9.222 to 40.05	29.10 12.31 to 68.78	9.786 5.047 to 18.98			F11/40	85.86 to 773.5
E1174V	57.91	51.28	6.992	1.988	5.165	2.100		600nM	F1174V	238.8 170.4 to 1003
1 11749	33.13 to 100.7	24.74 to 106.3	5.689 to 8.593	1.700 to 2.325	4.110 to 6.491	1.732 to 2.545			V1180L	98.12
V1180L	44.44 to 295.0	7.962 to 17.70	3.401 to 5.786	1186 to 3051	1.233 to 1.983	1.394 to 1.953			1 440GM	924.5
L1196M	637.1 246.7 to 1645	133.8 59.24 to 302.4	59.53 31.25 to 113.4	58.74 23.75 to 145.3	20.09 8.841 to 45.65	56.52 30.07 to 106.2			LIISOW	415.4 to 2057
I 1108E	27.97	1722	0.323	201.9	48.53	56.61			L1198F	46.52 17.84 to 121.3
211301	14.30 to 54.73	587.6 to 5045	0.199 to .524	125.2 to 325.5	29.15 to 80.80	26.51 to 120.9	1	400nM	G1202del	322.0
G1202del	59.72 to 541.6	165.9 to 614.0	68.17 to 283.0	614.7 to 1509	14.85 to 42.15	5.858 to 21.21			040000	440.5
G1202R	289.5 197.4 to 424.4	252.4 147.7 to 413.3	316.0 212.4 to 470.2	1918 1151 to 3197	30.92 233.47 to 40.72	31.18 26.41 to 36.81			G1202R	175.7 to 1105
61206V	177.5	53.14	31.45	7.216	17.56	4.704			D1203N	332.0 170.1 to 648.2
512001	65.38 to 482.0	25.64 to 110.1	21.92 to 45.14	3.878 to 13.43	8.543 to 36.10	2.795 to 7.918		200nM	S1206Y	175.7
E1210K	4027 887.6 to 20981	345.6 147.4 to 809.1	3010 1015 to 9077	5065 2991 to 8557	299.2 144.7 to 622	38.04 10.67 to 139.3				482 6
F1245C	197.6	216.3	22.03	13.62	26.00	7.357			E1210K	170.5 to 1366
C4060A	699.3	67.13	221.8	58.66	11.41	76.39			F1245C	289.9 119.2 to 704.8
G1269A	176.9 to 2765	29.22 to 154.3	97.82 to 503.1	42.83 to 80.35	5.492 to 23.72	31.93 to 182.7			G1269A	511.4

		OnLouins	ocritinii	Ensuranti	Alcounts	Brigatinib	Lonaumo	
ηM	WT	205.3 70.5 to 597.9	75.1 29.72 to 189.8	24.92 9.450 to 65.70	29.51 15.53 to 56.05	16.75 10.10 to 27.77	4.456 2.376 to 8.357	1000nM
	G1123S	54.50 23.65 to 125.6	651.2 179.3 to 2365	1.309 0.701 to 2.446	3.000 1.424 to 6.319	25.79 9.503 to 69.99	3.557 2.111 to 5.992	
	L1152R	124.3 66.44 to 232.6	165.7 533.61 to 511.9	14.80 7.863 to 27.86	3.300 2.502 to 4.354	0.190 0.126 to 0.287	4.246 2.228 to 8.091	
И	C1156Y	110.4 69.28 to 176.1	58.66 38.68 to 88.98	10.92 7.338 to 16.25	5.266 3.842 to 7.218	2.263 3.842 to 7.218	2.313 1.570 to 3.407	800nM
	I1171T	152.8 79.26 to 294.5	17.60 13.11 to 23.62	13.84 6.726 to 28.50	24.78 14.50 to 42.36	3.135 2.297 to 4.278	7.450 4.528 to 12.26	
	F1174C	257.7 85.86 to 773.5	248.5 110.2 to 560.4	64.79 23.95 to 175.3	286.2 123.0 to 665.8	28.06 13.40 to 58.75	13.11 6.494 to 26.48	
л	F1174V	238.8 170.4 to 1003	157.4 60.73 to 408.0	33.28 22.67 to 48.86	38.43 21.25 to 69.52	31.92 20.08 to 50.75	8.258 5.731 to 11.90	 600nM
	V1180L	98.12 43.35 to 222.6	18.63 7.693 to 45.10	9.423 5.058 to 17.56	2166 601.8 to 7798	3.523 1.950 to 6.365	2.653 1.569 to 4.484	
	L1196M	924.5 415.4 to 2057	205.9 58.74 to 721.6	81.31 37.03 to 178.6	929.6 422.2 to 2047	26.66 11.10 to 64.04	69.81 28.04 to 173.8	
	L1198F	46.52 17.84 to 121.3	2072 382.2 to 11228	3.807 2.080 to 6.966	1205 494.7 to 2933	157.0 59.32 to 415.5	59.47 313.53 to 112.2	
И	G1202del	322.0 125.6 to 765.0	586.7 173.2 to 1988	474.7 169.0 to 1333	>10000 N/A	104.6 337.6 to 290.8	26.19 12.51 to 54.86	400nM
	G1202R	440.5 175.7 to 1105	405.6 189.5 to 868.1	315.9 194.1 to 514.1	>10000 N/A	83.82 50.43 to 139.3	35.72 20.46 to 62.36	
	D1203N	332.0 170.1 to 648.2	329.2 172.0 to 630.1	21.10 11.73 to 37.98	142.7 46.29 to 439.7	33.42 20.19 to 55.30	19.73 12.16 to 32.01	
И	S1206Y	175.7 60.74 to 508.3	90.05 24.02 to 337.6	48.24 23.47 to 99.14	9.804 6.057 to 15.87	16.29 8.313 to 31.94	3.238 3.042 to 5.134	 200nM
	E1210K	482.6 170.5 to 1366	178.2 83.58 to 380.1	527.6 198.5 to 1402	759.3 255.7 to 2255	162.9 58.92 to 450.3	7.565 3.780 to 15.14	
	F1245C	289.9 119.2 to 704.8	208.0 63.52 to 680.9	52.90 23.83 to 117.5	65.55 27.22 to 157.9	46.16 21.58 to 98.70	14.82 6.461 to 34.00	

123.1 100.4

52.65

10.02 42.70

Wu, W et al. (2017). Cancers. 9. 164. 10.3390/cancers9120164.

Zhang et al. Lung Cancer 2019. Lin et al JCO 2018, Horn et al JTO 2019

ALK mutation status / variants and efficacy of Lorlatinib

Lorlatinib had longer PFS in v3 patients (n= 17) compared to v1 patients (n= 12).

All patients were previously treated with crizotinib and another ALK inhibitor

Lin et al JCO 2018. Shaw JCO 2019

Bypass Tracts Also Matter in ALK TKI Resistance and are Actionable

A Phase 1 Study of Ceritinib and Trametinib

M. Lara, JW Riess, C. Blakely. WCLC 2021

Early Progression on Alectinib with MET amplification and Response to Crizotinib and Alectinib/Crizotinib

J. Jiang, R. Camidge, JW Riess. CLC 2021

4th Generation ALK Inhibitors in Development

TPX-0131: cellular potency
against WT, single and
compound mutant ALK

- Potent against the *ALK* solvent front (e.g., G1202R) and hinge region (e.g., L1198F) resistance mutations
- Reduced potency against I1171X and G1269S mutations
- Potent against a range of *EML4-ALK* compound mutations refractory to approved ALK TKIs, including G1202R-based compound mutations

Cui JJ et al., AACR 2020; Brion WM et al., Mol Cancer Ther 2021

Cell proliferation IC ₅₀ values (nM						
EML4-ALK	TPX-0131	Crizotinib	Alectinib	Brigatinib	Ceritinib	Lorlatinib
WT	0.4	50	7.4	12	3.9	0.8
11171N	516	254	4310	49	72	48
111715	189	188	306	31	27	31
I1171T	316	232	210	33	29	25
L1196M	0.5	274	50	21	5.4	38
L1198F	<0.2	18	397	74	618	30
G1202R	0.2	434	2690	188	329	52
G1269A	13	451	197	20	15	49
G1269S	701	1390	671	46	97	191
L1196M/L1198F	<0.2	252	2250	253	1410	1310
L1198F/C1156Y	<0.2	19.3	776	102	1310	140
L1198F/I1171N	1.6	626	236	55.1	64.1	78.7
G1202R/C1156Y	0.2	745	2420	810	1300	521
G1202R/L1196M	0.7	808	>10000	1100	1260	4780
G1202R/L1198F	<0.2	188	3000	2040	2010	1710
G1202R/G1269A	9.9	705	7200	164	303	636
G1202R/G1269A/L1204V	14.9	634	6740	176	345	673
G1202R/G1269A/L1198F	0.2	596	>10000	907	1670	6330

NVL-655: a selective, potent 4G ALK TKI

Ba/F3. I1171T

Cell expressing ALK fusion NVL-655 Crizotinib Ceritinib Alectinib Brigatinib Lorlatinib NCI-H3122 (EML4-ALK v1) 2.3 180 36 23 21 3.5 NCI-H2228 (EML4-ALK v3) 0.70 55 13 13 90 < 1.1 Karpas299 (NPM1-ALK) 2.0 25 59 18 7.8 3.5 270 90 25 Ba/F3 EML4-ALK v1 1.6 42 < 3.6 Ba/F3, G1202R < 0.73 950 570 1600 400 87 Ba/F3, G1202R/L1196M 7.0 1500 1400 2200 820 3600 3.0 Ba/F3, G1202R/G1269A 1100 350 1300 240 970 Ba/F3, L1196M 29 79 120 1100 100 86 Non-Ba/F3, I1171N 27 320 140 570 30 59 Ba/F3, I1171S 29 350 140 390 18 59

400

140

260

IC₅₀ of NVL-655 and other ALK TKIs in Ba/F3 cell proliferation assays

 Fold ALK IC₅₀
 Kinase

 • 1x
 ALK, ROS1

>50x

- 1 10x LTK, PYK2, TRKB, FAK
 10 50x SLK, TRKA, FER, MUSK, EPHA6, TRKC
 - 323 other kinases
- Potent WT ALK and ALK G1202R Potent against G1202R-based compound mutations

35

Potency color legend $IC_{50} \le 10 \text{ nM}$ $10 \text{ nM} \le IC_{50} \le 100 \text{ nM}$ $IC_{50} \ge 100 \text{ nM}$

51

16

Preclinical Activity against many compound mutations/G1202R

ROS-1 NSCLC

- Unknown physiologic role
- Fusions seen in 1-2% NSCLC
- Typically, adenocarcinoma, occasional large cell and squamous histologies
- Seen in younger, light/never smokers
- ~70% homology with ALK kinase domain

Phase 1 PROFILE 1001 Study: Crizotinib in *ROS1*-Rearranged NSCLC—Updated Analysis

- 53 patients received crizotinib; median duration of treatment: 22.4 mo
- ROS1 status determined by FISH or RT-PCR; all patients received crizotinib 250 mg BID starting dose
- Median follow up: 62.6 mo
- ORR- 72% (58-83)
- mPFS- 19.3 (15.2-39.1)

Shaw AT, et al. Ann Oncol. 2019; 30(7):1121–1126.

Integrated Analysis of 3 Studies: Entrectinib in ROS1+ NSCLC

Integrated analysis **Efficacy population** 53 ROS1+. ROS1-inhibitor-naïve **NSCLC** patients Safety population 355 patients have received entrectinib (all tumor types and gene rearrangements)

STARTRK-2¹ Phase II, multicenter, global basket study 600 mg QD, 28-day cycle N=37 ROS1+ patients

> STARTRK-1² Phase I dose escalation N=7 ROS1+ patients

> ALKA-372-001² Phase I dose escalation N=9 ROS1+ patients

Primary endpoints* ORR and DOR Secondary endpoints* PFS and OS Intracranial ORR and DOR[†] Safety and tolerability

1. https://clinicaltrials.gov/ct2/show/NCT02568267 2. Drilon, et al. Cancer Discov 2017

Entrectinib in ROS1-Fusion-Positive NSCLC: Updated Analysis

- Updated integrated analysis of 3 phase I/II clinical trials (ALKA-372-001, STARTRK-1, and STARTRK-2) of entrectinib, in ROS1 fusion-positive NSCLC
- 161 patients with a follow-up of \geq 6 months were evaluable
- Median duration of follow-up, 15.8 months
- Median treatment duration was 10.7 months

Intracranial ORR: 79.2% (n = 19/24)^b; median intracranial DoR: 12.9 months (12-mo rate, 55%)

Dziadziuszko R, et al. J Clin Oncol. 2021;39(11):1253-1263.

Entrectinib in *ROS1*-Fusion-Positive NSCLC: PFS and OS— Updated Analysis

В Progression-Free Survival (%) 100 Total (N = 161) Censored 80 60 40 77% (95% CI, 70 to 84) 55% 20 (95% CI, 47 to 64) 12 18 24 30 36 42 6 0 Time (months) No. at risk Total 161 131 112 85 60 31 46 23 Median PFS: 15.7 months

12-month PFS: 55%

Side effects: hyperuricemia, weight gain, dizziness/CNS taste changes, edema, GI side effects, AST/ALT evlevation

Median OS: NE 12-month PFS: 81%

> Median duration of follow-up, 15.8 months Dsziadziuszko R, et al. *J Clin Oncol*. 2021;39(11):1253-1263.

Median Time to CNS Progression With Entrectinib

- Overall population: NE (exploratory) progression (exploratory end point;
- Scan-confirmed CNS progression
 - No baseline CNS mets: 3/105 (2.9%)
 - Baseline CNS mets: 27/56 (48.2%)

Dsziadziuszko R, et al. J Clin Oncol. 2021;39(11):1253-1263.

Summary of ROS1 TKIs in TKI-Naïve ROS1+ NSCLC

	Crizotinib* (PROFILE 1001)	Entrectinib* (ALKA-372-001, STARTRK-1, STARTRK-2)	Ceritinib (Korean Phase 2)	Taletrectinib (Chinese Phase 2)	Lorlatinib (Phase 1/2)	Repotrectinib [#] (TRIDENT-1 Phase 1/2)
N	53	161	20	15	21	22
ORR	72%	67% (n=108)	67%	93%	62%	91%
Median PFS	19.3 months	15.7 months	19.3 months	N/A	21.0 months	Not available
CNS activity	N/A	19/24 (79%) patients with measurable intracranial disease	2/5 (40%) patients with measurable or nonmeasurabl e intracranial disease	N/A	7/11 (64%) patients with measurable or nonmeasurabl e intracranial disease	3/3 (100%) patients with measurable intracranial disease
Reference	Shaw et al. Ann Oncol 2019	Dziadziuszko et al. JCO 2021	Lim et al. JCO 2017	Zhou C et al., ASCO 2021	Shaw et al. Lancet Oncol 2019	Cho et al. WCLC 2020; ASCO 2019

*FDA-approved

[#]granted FDA breakthrough therapy designation in 2020 for ROS1 TKI-naïve NSCLC

ROS1-Dependent Resistance to ROS1 TKIs

Detection of ROS1 G2032R

Awad MM et al., N Engl J Med 2013;368:2395-401

Lin JJ et al., Clin Cancer Res 2021;27:2899-909

Addressing ROS1-Dependent Resistance: ROS1 TKIs in Crizotinib/TKI-Pretreated *ROS1*+ NSCLC

	Lorlatinib (Phase 1/2) / (Real World*)	Repotrectinib (TRIDENT-1 Phase 1/2)	Taletrectinib (Chinese Phase 2)
Patients	N=40/N=80	N=72	N=5
ORR	35%/45%	30-39% (depending on prior Tx history)	60%
Median PFS	8.5 months /(7.1 mo*)	Not available	Not available
CNS activity	12/24 (50%) patients with measurable or nonmeasurable intracranial disease	Reported to have CNS activity in patients with baseline CNS metastases	Reported to have CNS activity in patients with baseline CNS metastases
Clinical ROS1 G2032R activity	Response in 0/6 (0%) patients with a baseline ROS1 G2032R in plasma	Responses in 8/15 (53%) patients with a baseline ROS1 G2032R	Response in 1/3 (33%) patients with a baseline ROS1 G2032R
Reference	Shaw et al., Lancet Oncol 2019/N. Girard et al. ESMO Open 2022	Lin et al., AACR-NCI-EORTC 2021	Zhou C et al., ASCO 2021

Pemetrexed Based Chemotherapy and in ROS1+ NSCLC

Table 1	Summary of ROS1 Cases				
Case	Sex	Age, years	Treatment	PFS During Pemetrexed Treatment (mo)	
1	F	35	$\begin{array}{l} \text{CPB} \times 6 \rightarrow \\ \text{PB} \times 21 \rightarrow \\ \text{P} \times > 14^{a} \end{array}$	>36	
2 ^b	М	64	$\begin{array}{l} \text{CPB} \times \ 6 \rightarrow \\ \text{PB} \times \ 37 \rightarrow \\ \text{P} \times > 19^{\text{c}} \end{array}$	>47	
3	F	56	$\begin{array}{c} CP \times 4 \rightarrow \\ P \times 18 \rightarrow \\ crizotinib \end{array}$	18	
4 ^d	F	65	$\begin{array}{c} \text{C-Pac} \times 4 \rightarrow \\ \text{P} \times 24 \end{array}$	24	

Abbreviations: B = bevacizumab; C = carboplatin; F = female; M = male; P = pemetrexed; Pac = paclitaxel; PFS = progression-free survival.

^aBevacizumab discontinued because of nonspecific neurologic complaints.

^bCase 2 initially stage IIIB at diagnosis and received concurrent chemoradiation with biopsy proven recurrence 1 year later.

^cBevacizumab discontinued because of proteinuria.

^dCase 4 is the only patient who received pemetrexed as second-line treatment. She died from treatment-related complications, not progression.

HR (95% CI), compared to quadruple negative cohort:						
ROS1 fusion	HR 0.48 (0.28 - 0.83),	p=0.008				
EML4-ALK fusion	HR 0.96 (0.64 - 1.45),	p=0.852				
EGFR mutation	HR 1.29 (0.96 - 1.72),	p=0.083				

YF Chen et al JTO 2016

JW Riess et al. CLC 2013.

Advanced ALK/ROS1 Fusion+ NSCLC: My Treatment Paradigm

BRAF in NSCLC: It's In a Different Class

- ~2-3% NSCLC
- More Frequent in Adenocarcinoma
- More likely than EGFR/ALK to have smoking history
- Different distribution than melanoma
- Different Classes of BRAF mutations have therapeutic implications
- Maybe responsive to PD(L)1 ICI

P. Paik et al. JCO 2011

J. Bracht et al Cancers 2019

J. Bracht et al Cancers 2019

MEKi Improved Clinical Outcomes When Added to BRAFi in BRAF V600E mutant NSCLC

D. Planchard et al Lancet Onc 2016

BRAFi + MEKi in BRAF V600E NSCLC

Patient

Dabrafenib + Trametinib in Untreated BRAF V600E NSCLC

N=39

N-33

ORR = 64%

mPFS 10.9 mo

mDoR 10.4 mo

PHAROS Trial – Encorafenib plus binimetinib in BRAF V600E/K NSCLC

D. Planchard et al Lanet Onc 2017. G. Riely et al Fut Onc 2021.

Thank you!