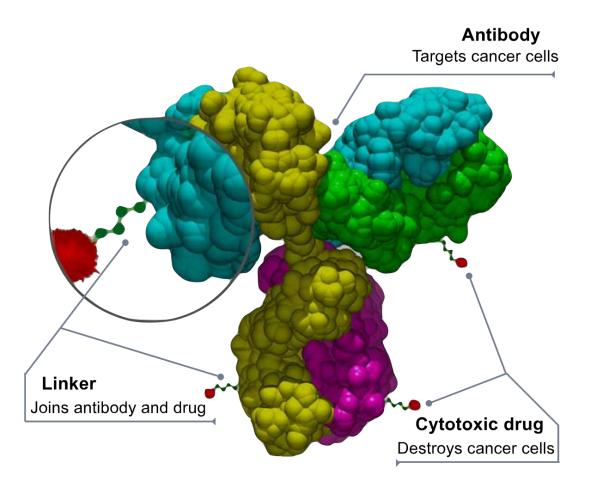
Antibody-Drug Conjugates (ADCs) in the treatment of breast cancer


Jane Lowe Meisel, MD

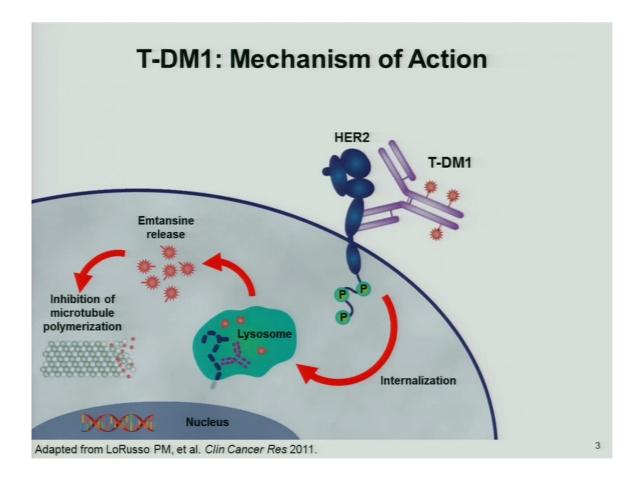
Miami Cancer Meeting

May 30, 2023

Antibody-Drug Conjugates (ADCs) 101

- Class of drugs intended to target and kill tumor cells while sparing healthy cells
- The <u>antibody</u> is linked to a <u>cytotoxic</u> <u>drug</u> (payload) that then destroys the cancer cells
- Combines the principles of the monoclonal antibody (targeting the antigen) with the cell-killing abilities of cytotoxics - - almost a more 'targeted' form of chemotherapy

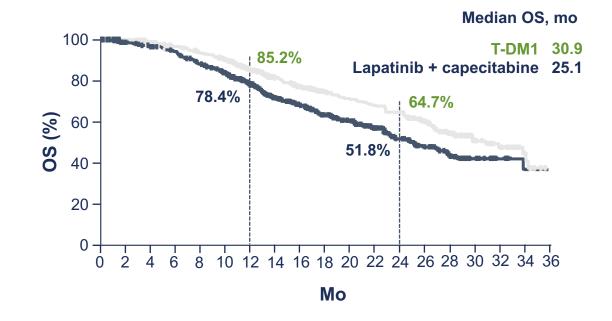
Overview

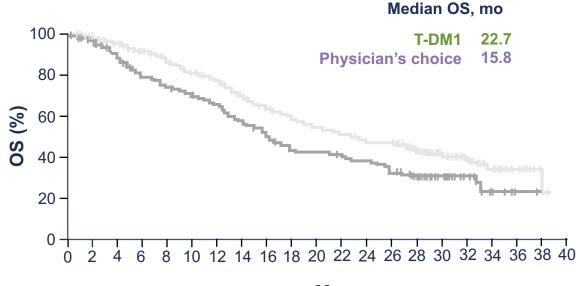

- Current ADCs available for use in breast cancer
 - Trastuzumab emtansine
 - HER2+ metastatic breast cancer, high-risk early stage HER2+ breast cancer
 - Trastuzumab deruxtecan
 - HER2+ metastatic breast cancer, HER2-low metastatic breast cancer
 - Sacituzumab govitecan
 - Metastatic TNBC, metastatic heavily pre-treated ER+ MBC

Possible new directions for these agents, clinical scenarios

• New ADCs on the horizon

Trastuzumab emtansine

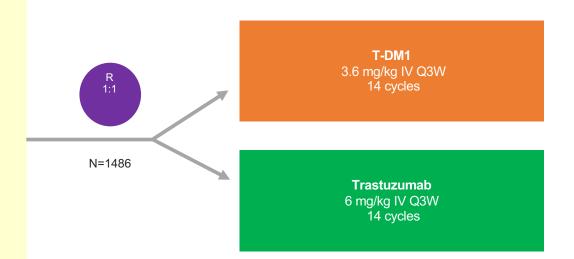

- The antibody: <u>trastuzumab</u>
- The cytotoxic payload: emtansine (or DM1)
- Drug-to-antibody ratio =3.5
- Adverse effects: fatigue, nausea, muscle pain, thrombocytopenia, increased LFTs



EMILIA and TH3RESA: Standard Second-line Therapy for HER2+ MBC With T-DM1 After Progression on HER2-Targeted Agents

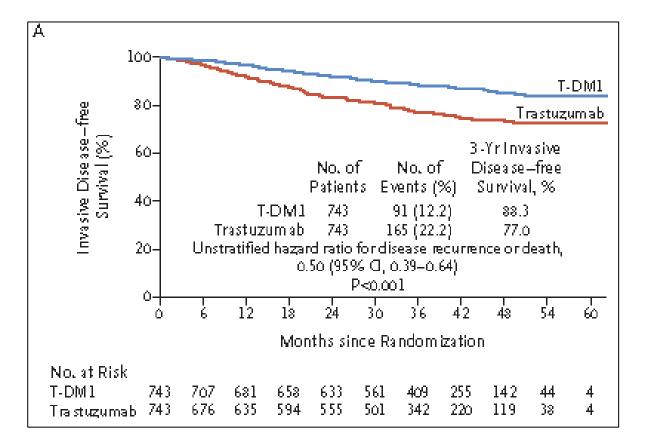
EMILIA: Randomized phase 3 study of T-DM1 vs lapatinib + capecitabine for HER2+ MBC with progression on trastuzumab + taxane (N = 991)

TH₃**RESA:** Randomized phase 3 study of T-DM1 vs physician's choice for HER2+ MBC with progression on taxane, lapatinib, and \geq 2 HER2-targeted regimens including trastuzumab (N = 602)



Мо

KATHERINE trial design


- cT1-4/N0-3/M0 at presentation (cT1a-b/N0 excluded)
- Centrally confirmed HER2-positive breast cancer
- Neoadjuvant therapy must have included:
 - Minimum of 6 cycles of chemotherapy
 - Minimum of 9 weeks of taxane
 - Anthracyclines and alkylating agents allowed
 - All chemotherapy prior to surgery
 - Minimum of 9 weeks of trastuzumab
- Second HER2-targeted agent allowed
 Residual invasive tumor in breast or axillary nodes
- Randomization within 12 weeks of surgery

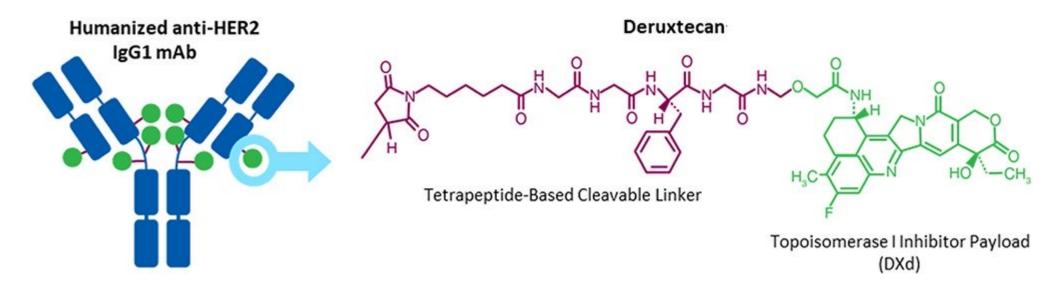
Stratification factors:

- Clinical presentation: Inoperable (stage cT4 or cN2–3) vs operable (stages cT1-3N0-1)
- Hormone receptor: ER or PR positive vs ER negative and PR negative/unknown
- Preoperative therapy: Trastuzumab vs trastuzumab plus other HER2-targeted therapy
- Pathological nodal status after neoadjuvant therapy: Positive vs negative/not done

KATHERINE trial results

Subgroup	T-DM1 Trastuzumab		Hazard Ratio for Invasive Disease Event (95% CI)				3-Yr Invasive Disease—free Survival Rate		
· ·		patients with an invasive-disease event/total no.				T-DM1	Trastuzumat %		
All patients	91/743	165/743					0.50 (0.39-0.6	4) 88.3	77.0
Age group				1					
<40 yr	20/143	37/153	H	-			0.50 (0.29-0.8	6) 86.5	74.9
40-64 yr	64/542	113/522					0.49 (0.36-0.6	7) 88.8	77.1
≥65 yr	7/58	15/68		-		—	0.55 (0.22-1.3	4) 87.4	81.1
Clinical stage at presentation									
Inoperable breast can cer	42/185	70/190			-		0.54 (0.37-0.8	0) 76.0	60.2
Operable breast cancer	49/558	95/553					0.47 (0.33-0.6	6) 92.3	82.8
Hormone-receptor status									
Negative (ER-negative and progesterone-receptor-negative or unknow	n) 38/209	61/203			-		0.50 (0.33-0.7	4) 82.1	66.6
Positive (ER-positive, progesterone-receptor-positive, or both)	53/534	104/540					0.48 (0.35-0.6	7) 90.7	80.7
Preoperative HER2-directed therapy									
Trastuzumab alon e	78/600	141/596					0.49 (0.37-0.6	5) 87.7	75.9
Trastuzumab plus additional HER2-directed agent or agents	13/143	24/147					0.54 (0.27-1.0	6) 90.9	81.8
Pathological nodal status after preoperative therapy									
Node-positive	62/343	103/346					0.52 (0.38-0.7	1) 83.0	67.7
Node-negative or NE	29/400	62/397					0.44 (0.28-0.6	8) 92.8	84.6
Primary tumor stage at definitive surgery									
урТ0, урТ1а, урТ1b, урТ1mic, урТis	40/331	52/306		_ 	_		0.66 (0.44-1.0	0) 88.3	83.6
ypT1, ypT1c	14/175	42/184	-				0.34 (0.19-0.6	Z) 91.9	75.9
ypT2	25/174	44/185	H		-		0.50 (0.31-0.8	Z) 88.3	74.3
урТ 3	9/51	21/57	-	-			0.40 (0.18-0.8	8) 79.8	61.1
урТ4	3/12	6/11	-				0.29 (0.07-1.1	7) 70.0	30.0
Regional lymph-node stage at definitive surgery									
γpNo	28/344	56/335	+	-	1		0.46 (0.30-0.7	3) 91.9	83.9
урN1	29/220	50/213	F		-		0.49 (0.31-0.7	·	75.8
ypN2	16/86	38/103		-	-		0.43 (0.24-0.7		58.2
урN3	17/37	15/30			-	—-I	0.71 (0.35-1.4	·	40.6
урNX	1/56	6/62				<u> </u>	0.17 (0.02–1.3	8) 98.1	88.7
			0.20	0.50	1.00	2.00	5.00		
			T-	DM1 Better		Trastuzumab Be	tter		

Case example

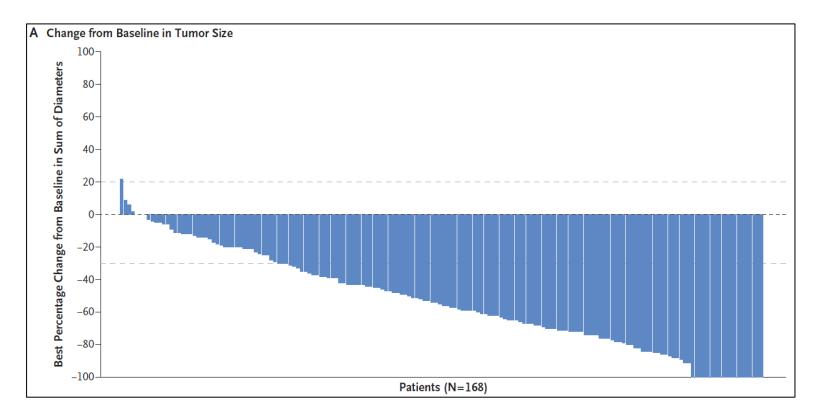

47F with a newly diagnosed ER+PR+HER2 3+ IDC that is clinically T2N1.

She undergoes neoadjuvant TCHP x 6 followed by lumpectomy and sentinel node biopsy.

Pathology reveals 1.8cm of residual with 40% cellularity, still ER+PR+ HER2 3+, and one node with 3mm of tumor; a second node with evidence of treatment effect.

First IDFS Event, %	T-DM1	т
Any	12.2	22.2
Distant recurrence	10.5*	15.9 [†]
Locoregional recurrence	1.1	4.6
Contralateral breast cancer	0.4	1.3
Death without prior event	0.3	0.4

Trastuzumab deruxtecan



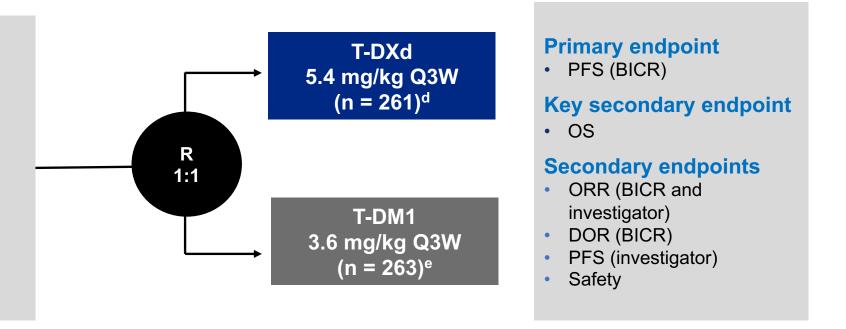
Unique features:

-High potency payload
-High drug to antibody ratio (~8)
-Payload with short systemic half-life
-Tumor selective cleavable linker
-Membrane permeable payload

DESTINY-Breast01 (NCT03248492)

- Single-arm phase 2 study of trastuzumab deruxtecan for HER2+ metastatic breast cancer
- Median 6 prior lines of therapy
- ORR= 61% (58% in patients with brain metastases)
- Median PFS 16.4 months (18.1 months in patients with brain metastases

DESTINY-Breast03: First Randomized Phase 3 Study of T-DXd

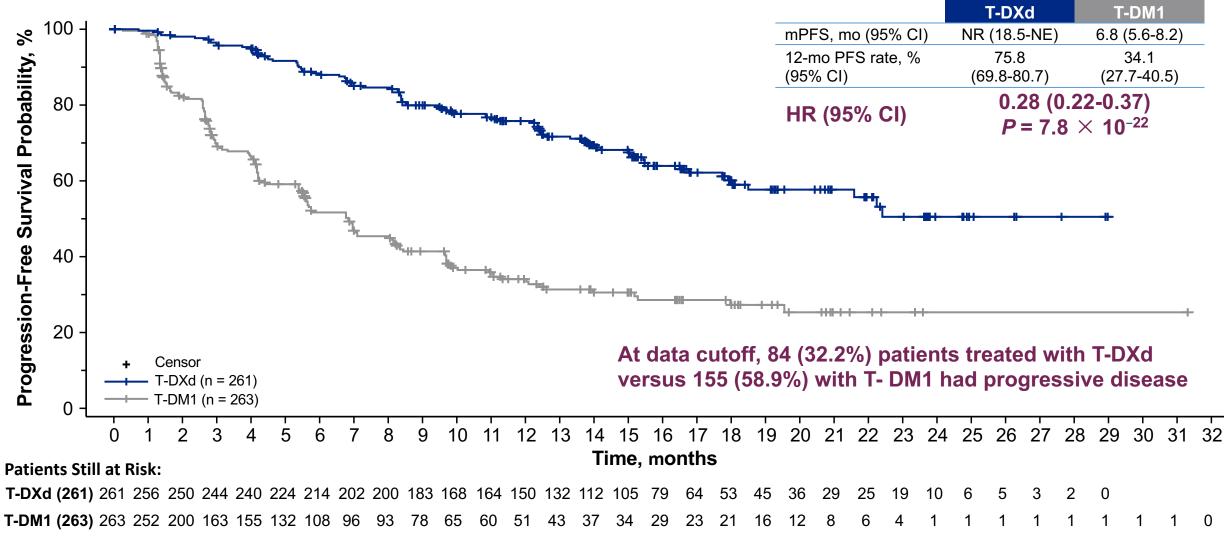

An open-label, multicenter study (NCT03529110)

Patients (N = 524)

- Unresectable or metastatic HER2-positive^a breast cancer that has been previously treated with trastuzumab and a taxane^b
- Could have clinically stable, treated brain metastases^c
 - ≥2 weeks between end of whole brain radiotherapy and study enrollment

Stratification factors

- Hormone receptor status
- Prior treatment with pertuzumab
- History of visceral disease

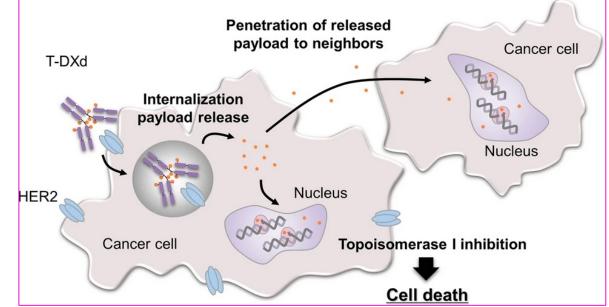


- At the time of data cutoff (May 21, 2021), 125 (48.6%) T-DXd patients and 214 (82.0%) T-DM1 patients had discontinued treatment
- Median follow up was 15.9 months
- BMs were measured at baseline by CT or MRI and lesions were monitored throughout the study

BICR, blinded independent central review; BM, brain metastasis; CT, computed tomography; DOR, duration of response; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; MRI, magnetic resonance imagining; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; R, randomization; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. ^aHER2 IHC3+ or IHC2+/ISH+ based on central confirmation. ^bProgression during or <6 months after completing adjuvant therapy involving trastuzumab and a taxane. ^cPrior to protocol amendment, patients with stable, untreated BM were eligible. ^d4 patients were randomly assigned but not treated. ^e2patients were randomly assigned but not treated.

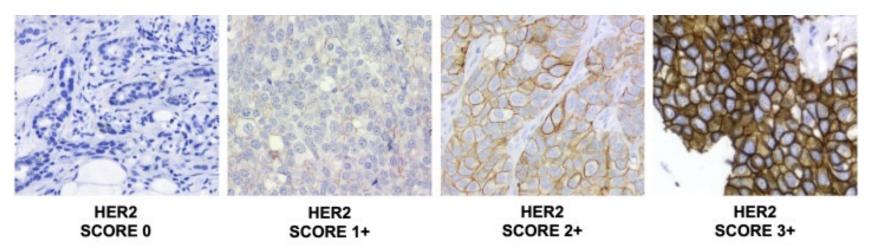
Primary Endpoint: PFS by BICR

BICR, blinded independent central review; HR, hazard ratio; mPFS, median progression-free survival; NE, not estimable; NR, not reached; PFS, progression-free survival; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. Median PFS follow-up for T-DXd was 15.5 months (range, 15.1-16.6) and was 13.9 months (range, 11.8-15.1) for T-DM1.


Cortés et al. Ann Oncol. 2021; 32(suppl_5):S1283-S1346. 10.1016/annonc/annonc741

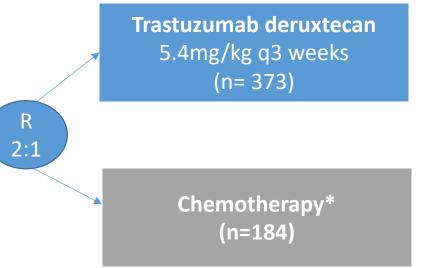
Trastuzumab deruxtecan

- After DESTINY-Breast 03, rapidly became a second-line standard of care
- Important to prepare patients for side effect profile that is different than T-DM1
 - Nausea, cytopenias, fatigue, alopecia
 - Have a low threshold to suspect ILD if symptoms develop
- In real-world practice, dose reductions and spacing out dosing can make the drug much more tolerable
- The every-three-week dosing and extremely short time to response make it a wonderful option for our patients


What about T-Dxd for HER2-low mBC?

- Drug biology:
 - Highly potent topoisomerase-1 inhibitor payload
 - 8:1 drug-antibody ratio
 - Bystander effect
- Results from a phase 1b study reported efficacy in Her2-low MBC with a median PFS of 11.1 months and ORR 37%

HER2-low advanced breast cancer

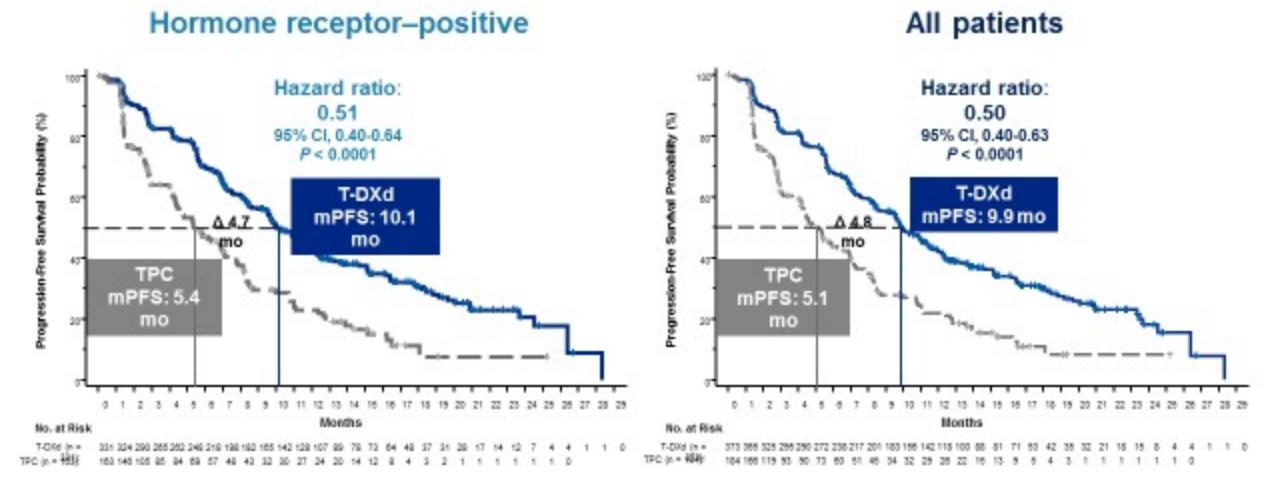

- Defined as cancer with HER2 IHC scores of 1+/2+ but ISH negative
 - Heterogeneous, lots of HR co-expression
- Until recently, HER2-low was treated as HER2 negative
- **DESTINY-Breast 04**: the first study to look at a medication specifically in a HER2-low population (trastuzumab deruxtecan)

DESTINY-Breast04: First Randomized Phase 3 Study of T-Dxd for HER2-low MBC

• International, randomized, open-label phase III study

Eligibility: -HER2-low (IHC 1+ or IHC 2+/ISH negative) unresectable or metastatic breast cancer -If HR+, must have progressed on endocrine therapy and 1-2 prior lines of chemotherapy -If HR+, must have disease considered endocrine refractory

Primary Endpoint: -PFS by BICR (HR+)


Key Secondary Endpoints: -PFS by BICR (all patients) -OS (HR+ and all patients)

Primary endpoints: PFS per BICR

*Investigator's choice of capecitabine, eribulin, gemcitabine, paclitaxel, or nabpaclitaxel.

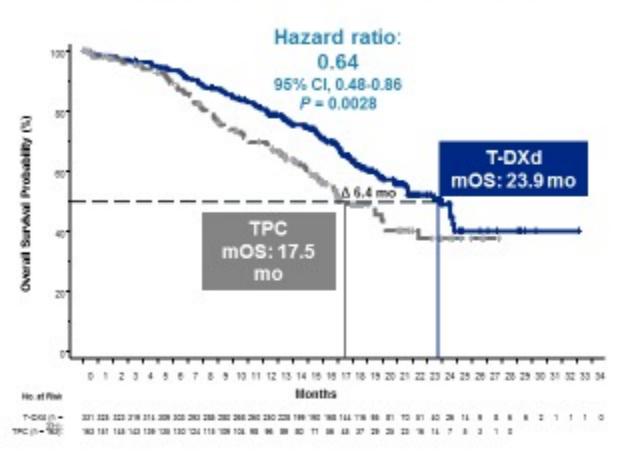
Secondary endpoints: OS, DoR, ORR, PFS per investigator

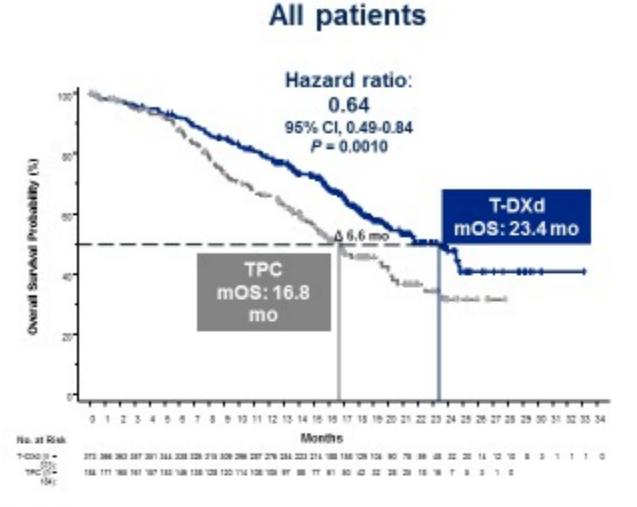
PFS by blinded independent central review.

#ASC022

HR, hormone receptor; mPFB, median progression-free sunival; PFB, progression-free sunival; T-DXId, trastuzunab deruxtecan; TPC, treatment of physician's choice.

Shanu Modi, MD


Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

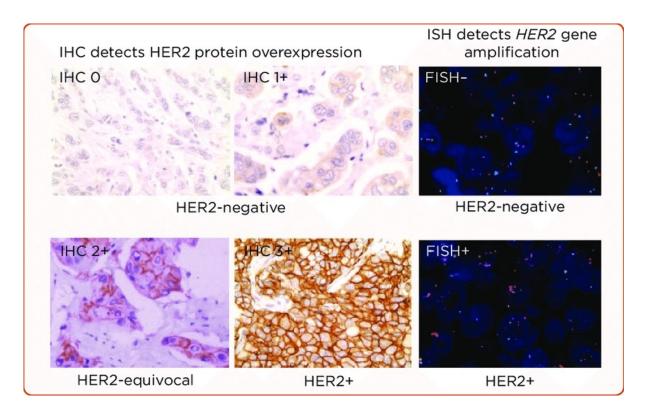


OS in HR+ and All Patients

Hormone receptor-positive

HR, hormone receptor; mDS, median overall survival; OS, overall survival; T-DKd, trastucursals derustadan; TPC, treatment of physician's choice.

#ASC022


Shanu Modi, MD

Content of this presentation is the property of the author, licensed by ASCD. Permission required for reuse.

Clinical implications

- DESTINY Breast-04 changed the standard of care immediately
 - Practically, all currently "HER2 negative" metastatic patients will need to be reclassified as either HER2 0 or HER2-low (1+ or 2+)
- Accurate methods for IHC testing now become particularly important
 - Studies suggest up to 20% of HER2 IHC testing performed in the real world may be inaccurate^{1, 2}

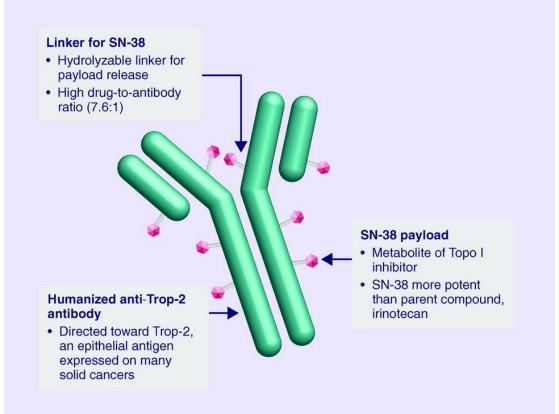
A Clinical Example

- 75F whose history includes:
 - Early stage ER+PR+HER2- breast cancer in the late 1990s; s/p surgery, FAC x 6, tamoxifen x 7 years
 - Late 2018: develops metastatic ER+PR+HER2- metastatic breast cancer to bone, lung, mediastinal nodes
 - Palbociclib + letrozole: 25 months
 - Fulvestrant: 3 months
 - Capecitabine: 16 months
 - Exemestane/everolimus: 5 months
 - Then: progression with multiple new, enlarging liver lesions as well as progression elsewhere

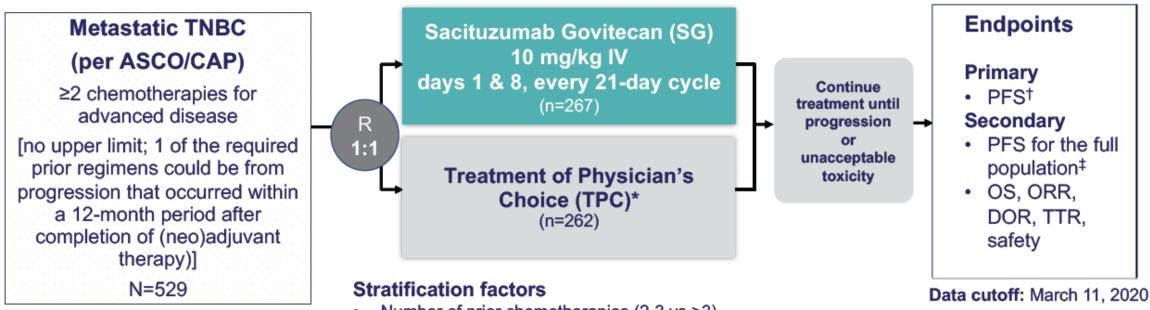
A Clinical Example, cont.

• What is the next best option for this patient (s/p 3 lines endocrine therapy, one line of chemo for metastatic disease)?

Pre-June 2022	Post-June 2022
Chemotherapy options or clinical trial	Look back at HER2 status and decide


- 6/18/2018: ER 100% 3+ PR 99% 3+ HER2 1+ Ki67 37% 3+
 - (also would not have been unreasonable to test again)
- She started trastuzumab deruxtecan in 7/2022 (started at 4.4mg/kg, titrated up to 5.4mg/kg with cycle 3); LFTs and tumor markers declined and normalized; in 1/2023 had her first NED scan

Future directions for T-Dxd


- DESTINY-Breast 05: comparison of TDxd vs TDM1 in patients with residual disease after neoadjuvant chemotherapy for HER2+ breast cancer
- Trastuzumab deruxtecan +/- anastrozole as neoadjuvant therapy in early-stage ER+ HER2-low breast cancer (NCT04553770)
- DESTINY-Breast 06: HER2-low, HR+ advanced breast cancer who have had disease progression on more than 2 lines of endocrine therapy
- Trastuzumab deruxtecan in combination with other drugs in metastatic HER2-low breast cancer (NCT04556773)
 - Durvalumab, paclitaxel, capivasertib, AI, fulvestrant, capecitabine

Sacituzumab govitecan

- <u>Antibody</u>: Humanized monoclonal antibody to Trop2
- <u>Payload</u>: SN-38, a metabolite of irinotecan
- <u>Drug-antibody ratio</u> = 7.6

ASCENT: Randomized Phase III Sacituzumab vs. TPC

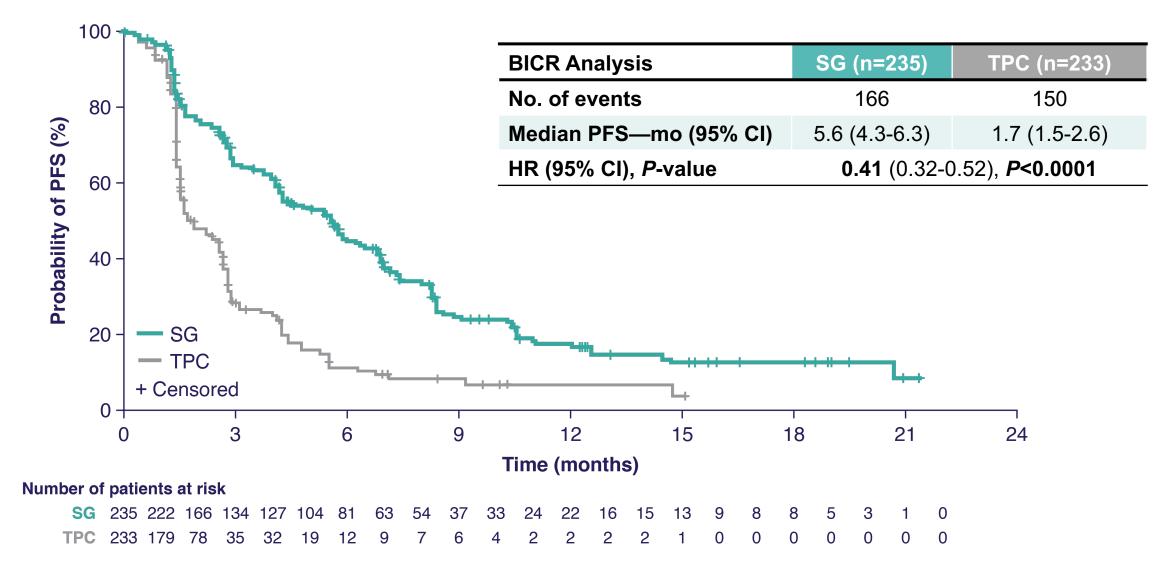
NCT02574455

Number of prior chemotherapies (2-3 vs >3)

- Geographic region (North America vs Europe)
- Presence/absence of known brain metastases (yes/no)

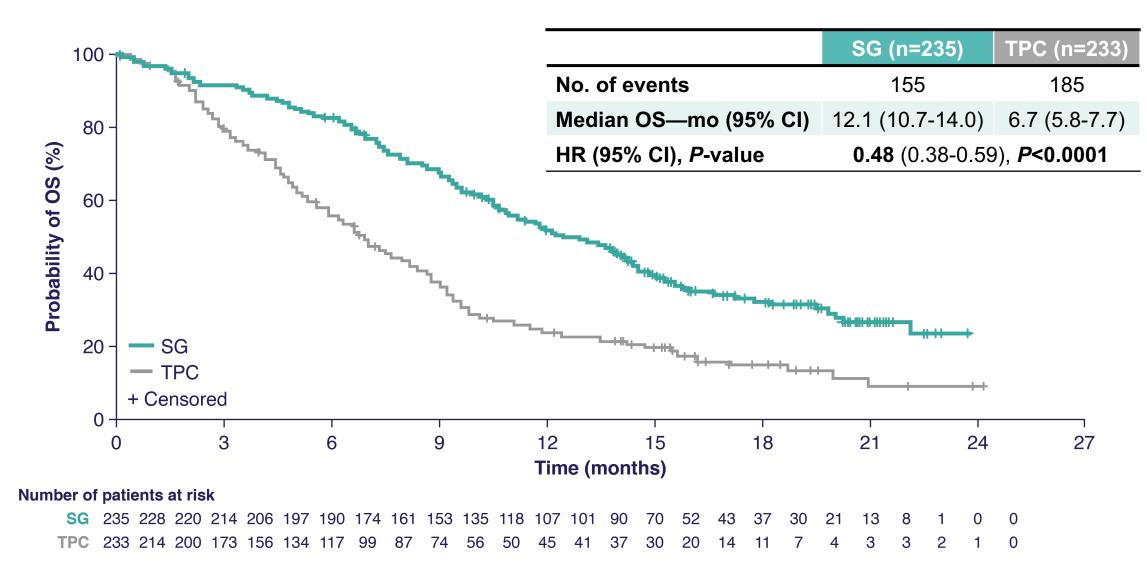
* TPC options: capecitabine, eribulin, gemcitabine, vinorelbine

Bardia et al ESMO 2020 LBA17


Patient characteristics

	SG (n=235)	TPC (n=233)	
Female—no. (%)	233 (99)	233 (100)	Previous antic
Median age—yr (range)	54 (29-82)	53 (27-81)	—median no.
Race or ethnic group—no. (%)			Most common
White	188 (80)	181 (78)	Taxane [‡]
Black	28 (12)	28 (12)	Anthrac
Asian	9 (4)	9 (4)	Antinat
Other or not specified	10 (4)	15 (6)	Cycloph
ECOG PS—no. (%)			Carbop
0	108 (46)	98 (42)	Capecit
1	127 (54)	135 (58)	
BRCA 1/2 mutational status—no. (%)			Previous PAR
Positive	16 (7)	18 (8)	Previous use
Negative	133 (57)	125 (54)	Most common
Unknown	86 (37)	90 (39)	WOSt COMMON
TNBC at initial diagnosis*			Lung or
Yes	165 (70)	157 (67)	Liver
Νο	70 (30)	76 (33)	Bone

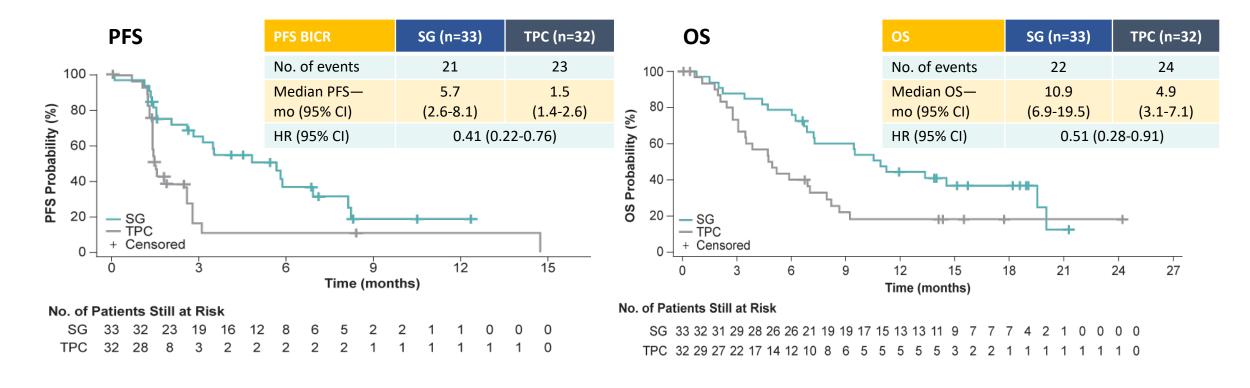
	SG (n=235)	TPC (n=233)
Previous anticancer regimens† —median no. (range)	4 (2-17)	4 (2-14)
Most common previous chemotherapy—no. (%)		
Taxane [‡]	235 (100)	233 (100)
Anthracycline [§]	191 (81)	193 (83)
Cyclophosphamide	192 (82)	192 (82)
Carboplatin	147 (63)	160 (69)
Capecitabine	147 (63)	159 (68)
Previous PARP inhibitor—no. (%)	17 (7)	18 (8)
Previous use of checkpoint inhibitors—no. (%)	67 (29)	60 (26)
Most common sites of disease ^{II} —no. (%)		
Lung only	108 (46)	97 (42)
Liver	98 (42)	101 (43)
Bone	48 (20)	55 (24)


Bardia et al, ESMO 2020

Sacituzumab prolongs PFS by 60%

Bardia et al, ESMO 2020

Sacituzumab associated with 52% increase in OS!


Bardia et al, ESMO 2020

Clinical case

- 39F with PDL1+ BRCA- TNBC that recurs 10 months after completion of ddAC-T, in the liver and lungs at the time of this recurrence.
- She responds for 13 months to gem/carbo/pembrolizumab and then progresses with worsening liver/lung involvement and adenopathy.

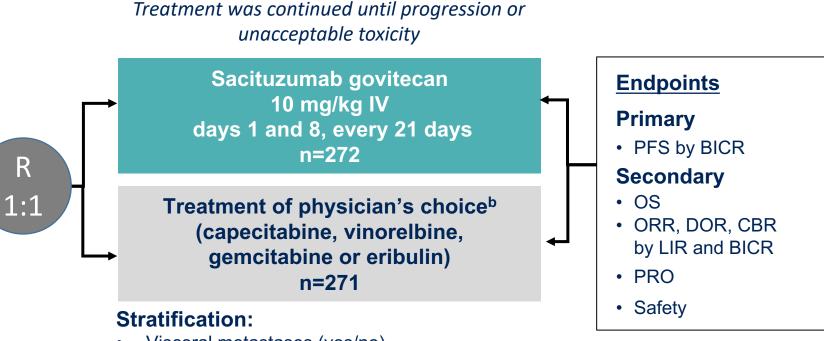
ASCENT: PFS and OS in the Second-Line Setting for Metastatic TNBC

- Patients with recurrence ≤1 year after (neo)adjuvant chemotherapy and received only 1 line of therapy in the metastatic setting were eligible for ASCENT
- Patients who received SG as 2L therapy had a clinical benefit comparable to the overall ASCENT study population ٠

Assessed in the brain metastasis-negative population who recurred ≤12 months after (neo)adjuvant chemotherapy and received 1 line of therapy in the metastatic setting, prior to study enrollment. SG, sacituzumab govitecan; TPC, treatment of physician's choice. Carey LA, et al. ASCO 2021. Poster 1080.

Clinical case

- 39F with PDL1+ BRCA- TNBC that recurs 10 months after completion of ddAC-T, in the liver and lungs at the time of this recurrence.
- She responds for 13 months to gem/carbo/pembrolizumab and then progresses with worsening liver/lung involvement and adenopathy.
- In the absence of a trial, she is a perfect candidate for sacituzumab govitecan


TROPiCS-02: A Phase 3 Study of SG in HR+/HER2- Locally Recurrent Inoperable or Metastatic Breast Cancer

NCT03901339

Metastatic or locally recurrent inoperable HR+/HER2- breast cancer that progressed after^a:

- At least 1 endocrine therapy, taxane, and CDK4/6i in any setting
- At least 2, but no more than 4, lines of chemotherapy for metastatic disease
 - (Neo)adjuvant therapy for early-stage disease qualified as a prior line of chemotherapy if disease recurred within 12 months
- Measurable disease by RECIST 1.1

N=543

- Visceral metastases (yes/no)
- Endocrine therapy in metastatic setting ≥6 months (yes/no)
- Prior lines of chemotherapies (2 vs 3/4)

^aDisease histology based on the ASCO/CAP criteria. ^bSingle-agent standard-of-care treatment of physician's choice was specified prior to randomization by the investigator. ASCO/CAP, American Society of Clinical Oncology/College of American Pathologists; BICR, blinded independent central review; CBR, clinical benefit rate; CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; DOR, duration of response; HER2-, human

epidermal growth factor receptor 2-negative; HR+, hormonal receptor-positive; IV, intravenously; LIR, local investigator review; (Neo)adjuvant, neoadjuvant or adjuvant; ORR, objective response rate; OS, overall survival; PFS, progression-free survival, PRO, patient-reported outcomes; R, randomized; RECIST, Response Evaluation Criteria in Solid Tumors.

Demographics and Baseline Characteristics

	SG (n=272)	TPC (n=271)	
	(11-272)	(11-271)	
Female, n (%)	270 (99)	268 (99)	Median time from initial metastatic diagnosis to
Median age, y (range)	57 (29-86)	55 (27-78)	randomization, mo (range)
<65 y, n (%)	199 (73)	204 (75)	
≥65 y, n (%)	73 (27)	67 (25)	Prior chemotherapy in (neo)adjuvant setting, n
Race or ethnic group, n (%)			(%)
White	184 (68)	178 (66)	
Black	8 (3)	13 (5)	Prior endocrine therapy use in the metastatic
Asian	11 (4)	5 (2)	setting ≥6 mo, n (%)
Other ^a / Not reported ^b	69 (25)	75 (28)	Prior CDK4/6 inhibitor use, n (%)
ECOG PS, n (%)			
0	116 (43)	126 (46)	≤12 months
1	156 (57)	145 (54)	>12 months
Visceral metastases at baseline, n (%)	259 (95)	258 (95)	Unknown
Liver metastases, ^c n (%)	229 (84)	237 (87)	Median prior chemotherapy regimens in the
De novo metastatic breast cancer, n (%)	78 (29)	60 (22)	metastatic setting, n (range) ^d

a Includes American Indian or Alaska Native, Native Hawaiian or other Pacific Islander. bNot reported indicates local regulators did not allow collection of race or ethnicity information. Presence of baseline target/non-target liver metastases per RECIST1.1 by local investigator review. The reported number of prior therapies were miscounted at screening for some patients; 9 patients received prior chemotherapy regimens in the metastatic setting outside the per protocol range for inclusion criteria and were included in the intent-to-treat population.

CDK4/6, cyclin-dependent kinase 4/6; ECOG PS Eastern Cooperative Oncology Group performance status, ER estrogen receptor, (neo)adjuvant, neoadjuvant or adjuvant; PR progesterone receptor; SG, sacituzumab govitecan; TPC, treatment of physician's choice.

TPC

(n=271)

46.6

(3.0-248.8)

184 (68)

234 (86)

166 (61)

102 (38)

3 (1)

3 (1-5)

SG

(n=272)

48.5

(1.2 - 243.8)

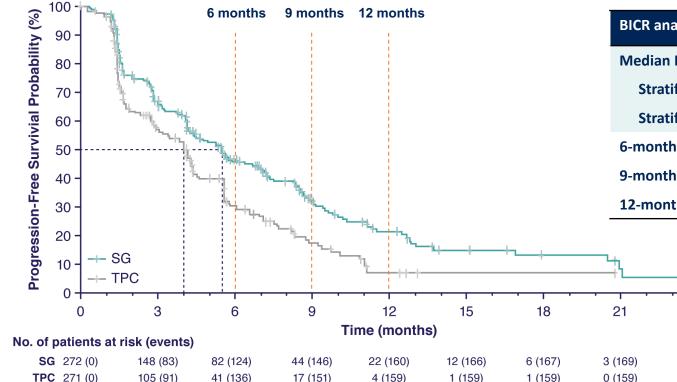
173 (64)

235 (86)

161 (59)

106 (39)

5 (2)


3 (0-8)

Primary Endpoint: BICR-Assessed PFS per RECIST v1.1 in the ITT Population

SG demonstrated a statistically significant improvement in PFS vs TPC with a 34% reduction in the risk of disease progression/death; a higher proportion of patients were alive and progression-free at all landmark timepoints

24

0 (170)

BICR analysis	SG (n=272)	TPC (n=271)		
Median PFS, mo (95% CI)	5.5 (4.2–7.0)	4.0 (3.1–4.4)		
Stratified HR (95% CI)	0.66 (0.53–0.83)			
Stratified Log Rank P value	0.0003			
6-month PFS rate, % (95% CI)	46.1 (39.4–52.6)	30.3 (23.6–37.3)		
9-month PFS rate, % (95% CI)	32.5 (25.9–39.2)	17.3 (11.5–24.2)		
12-month PFS rate, % (95% CI)	21.3 (15.2–28.1)	7.1 (2.8–13.9)		

Median follow-up was 10.2 months.

BICR, blinded independent central review; ITT, intent-to-treat; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; SG, sacituzumab govitecan; TPC, treatment of physician's choice.

Take-home points

ASCO 2022:

- Median PFS benefit may have been small, but given the heavily pretreated population, the landmark timepoints (6 mo, 12 mo) important to consider
- This is definitely a potential treatment option for patients with HR+ endocrine refractory metastatic breast cancer

ESMO 2022:

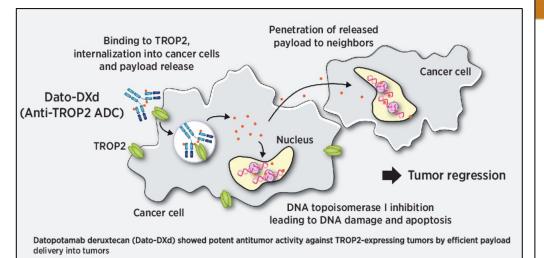
 Median OS reported: 14.4 months with sacituzumab vs 11.2 months for TPC (HR 0.79 (0.65-0.96), p=0.02).

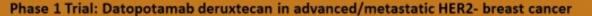
Ongoing trials of sacituzumab

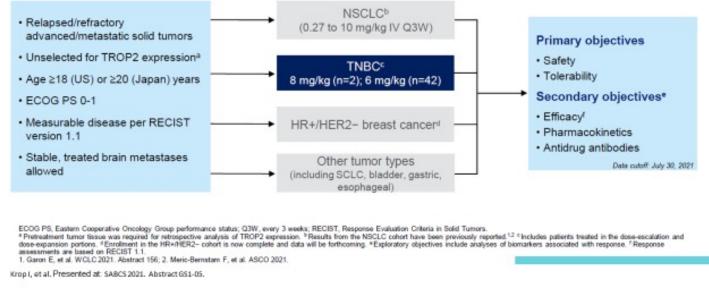
Metastatic breast cancer

- Sacituzumab + talazoparib for metastatic TNBC (NCT04039230)
- Sacituzumab +/- pembrolizumab in metastatic ER+ breast cancer (NCT04468061)

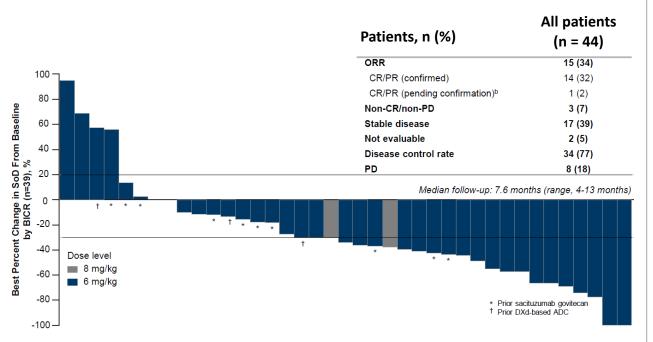
Early stage breast cancer

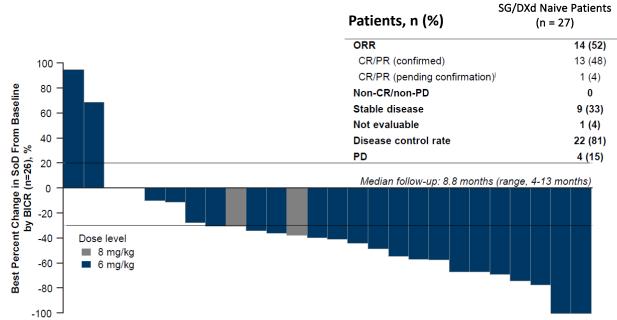

 Sacituzumab + pembrolizumab vs TPC in patients with TNBC who have residual disease after neoadjuvant chemotherapy (NCT05633654, ASCENT-05)


What about other ADCs?


- Datopotomab deruxtecan (anti-TROP2)
- Ladiratuzumab vedotin (anti-LIV1A)
- ARX788 (anti-HER2)
- Patritumab deruxtecan (anti-HER3)

Datopotamab deruxtecan (Dato-DXd, DS-1062a)



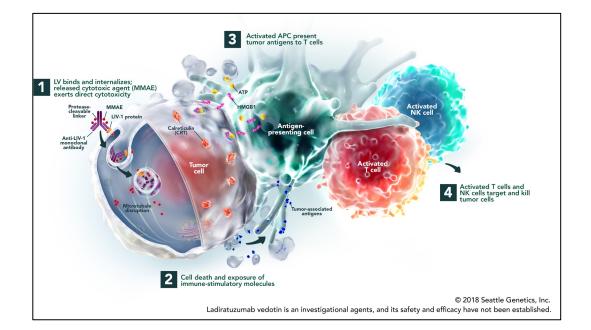


TROPION-PanTumor01: Antitumor Responses by BICR

All Patients With TNBC

Patients With TNBC Without Prior Topo I Inhibitor-Based ADC

• Krop I, et al. Presented at: SABCS 2021. Abstract GS1-05.


Datopotamab: next steps

- Front-line therapy for mTNBC that is not PDL1+ (against physician's choice chemotherapy) (TROPION-Breast 02)
- In combination with durvalumab for patients with triple negative breast cancer as one arm of BEGONIA
- ER+ pretreated mBC (TROPION-Breast 01)

Ladiratuzumab vedotin (LV)

- LIV-1 is a transmembrane protein involved in the signaling pathway leading to epithelialmesenchymal transition (EMT) and expression has been linked with malignant progression to metastasis in breast cancer^{1,3}
- LIV-1 is expressed in ≥90% of all clinical subtypes of metastatic breast cancer tumors with low expression in normal tissues⁴
- LV is an ADC directed against LIV-1, with MMAE as the payload

3. Manning DL, et al. Eur J Cancer. 1994;30A(5):675-8.

^{1.} Lue H-W, et al. PLOS One. 2011;6(11):e27720.

^{2.} Hogstrand C, et al. Biochem J. 2013;455:229-37.

^{4.} Sussman D, et al. Mol Cancer Ther. 2014;13(12):2991-3000.

Jane Meisel. Phase 1b/2 Study of Ladiratuzumab Vedotin (LV) in Combination with Pembrolizumab for First-Line Treatment of Triple-Negative Breast Cancer (SGNLVA-002, Trial in Progress)

Current Study Design

- SGNLVA-002 (NCT03310957) is an ongoing global single-arm, open-label, phase 1b/2 study of LV + pembrolizumab as 1L therapy for patients with unresectable locally advanced or mTNBC
- LV 1.5 mg/kg administered on Day 1 and Day 8 (off Day 15) of every 21-day cycle in combination with pembrolizumab administered on Day 1 of every cycle
 - Rationale for the combination: LV-induced immunogenic cell death elicits an inflammatory response, leading to enhanced antitumor immunity, antigen presentation, and tumor cell immune infiltration
- Eligible patients have metastatic TNBC, no prior cytotoxic treatment in the metastatic setting, tumor tissue PD-L1 CPS <10 using the PD-L1 IHC 22C3 clone, and at least 6 months since prior treatment with curative intent

Conclusion

- ADCs are revolutionizing the treatment of breast cancer
- Like many things that are successful in the metastatic setting, we may see these make their way into early stage disease as well
- Much research still remains to be done
 - How to optimally manage side effects
 - How to safely and effectively sequence ADCs
- Clinical trials continue to push the path forward, and we are grateful to all the patients who have made these new treatments a possibility for the women of today

Thank you!

Interstitial Lung Disease and T-Dxd

- Occurs in ~10% of patients
- Important to perform lung imaging frequently even in patients with stable or minimal disease involvement
- Grade 1 (asymptomatic, radiographic only): ok to hold treatment and if radiographic changes resolve, restart at lower dose
- Grade 2 or higher: discontinue and initiate steroids
- No known risk factors for ILD with T-Dxd, so at this time hard to predict who is likely to suffer from this – but important to note that T-Dxd was not studied in patients with pre-existing pneumonitis

