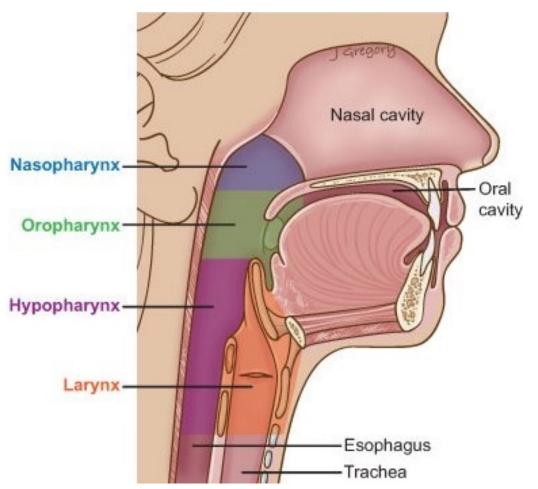
2023 Updates on the Treatment of Head and Neck Cancer

Cristina P. Rodriguez MD

Professor

University of Washington/Fred Hutch Cancer Research Center

May 6, 2023



OUTLINE

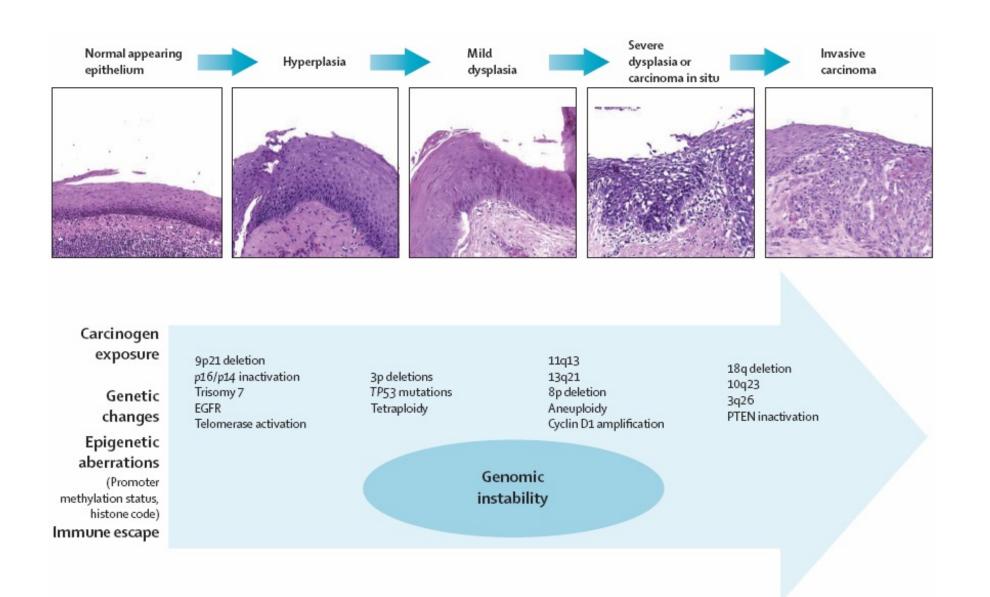
- Introduction/Background
- Locally advanced head and neck cancer (LAHNSCC)
- Recurrent/metastatic head and neck cancer (RMHNSCC)

Epithelial malignancies of the head and neck

• 90% squamous cell carcinomas

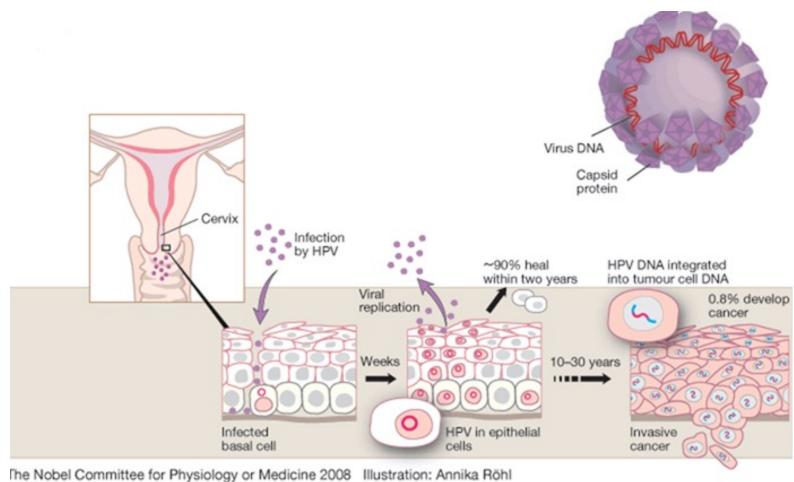
 Most common mucosal sites oropharynx, oral cavity, larynx, hypopharynx

 85% locally advanced at diagnosis and candidates for curative intent therapy

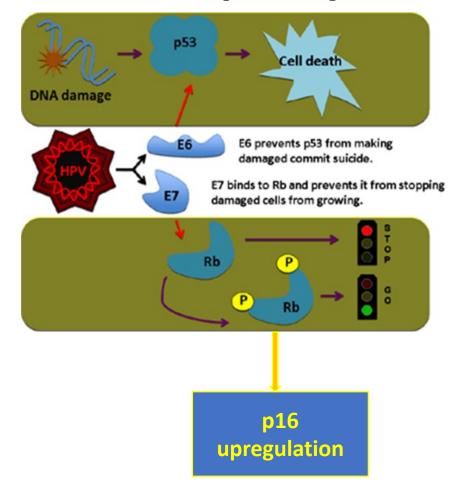

Pathogenesis

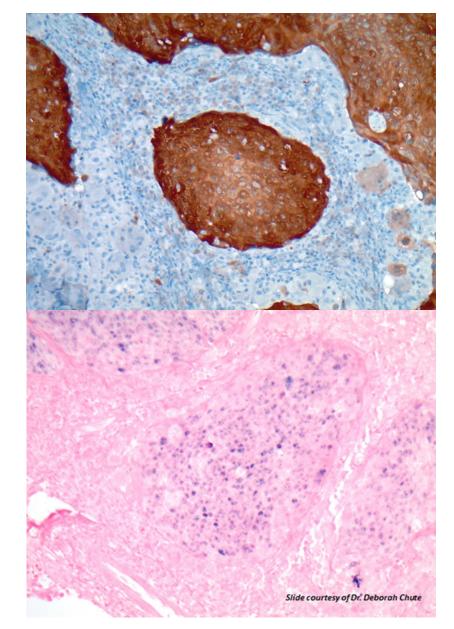
1. Tobacco and alcohol

- oral cavity, larynx, hypopharynx
- declining in incidence
- economic and racial disparity


2. Viral infection

- HPV in oropharynx primaries, NPC
- HPV+ OPC increasing in incidence




Argiris et al. Lancet. 2008 May 17;371(9625):1695-709.

HPV+ oropharynx cancer: a distinct entity with a viral association

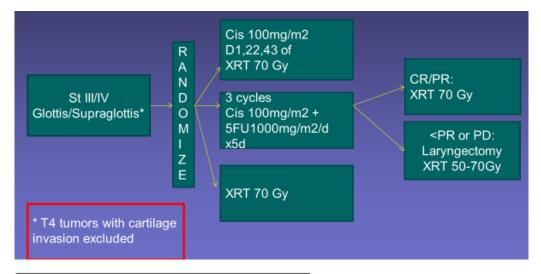
HPV+ oropharynx cancer: a distinct entity

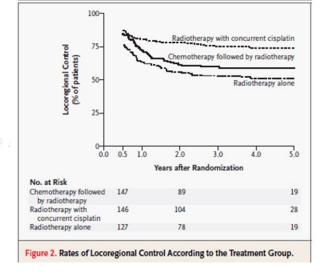
Therapeutic goals in LAHNSCC

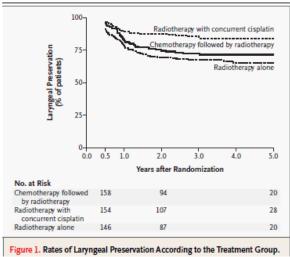
- Most are candidates for curative intent therapy
- Dual challenge of optimizing oncologic and functional outcomes
- Multidisciplinary evaluation is critical

Systemic therapy in LAHNSCC: Definitive nonsurgical therapy

Disease	Standard/s of Care	Evidence
Locally advanced p16+ oropharynx cancer	cisplatin 100mg/m2 day 1, 22, 43 + XRT	RTOG 1016 ¹ DE-ESCALaTE ² OS, LRC benefit vs. cetuxXRT
Unresectable HNSCC of OC, OP, L, HP	cisplatin 100mg/m2 day 1, 22, 43 of XRT	Intergroup Study ³ OS, DSS and LRC advantage vs XRT or splitXRT
Unresectable HNSCC of OC, OP, L, HP	cetuximab weekly concurrent with XRT	Bonner Study ⁴ OS, LRC and PFS advantage vs XRT
St III-IVB Larynx CA (supraglottis or subglottis)	cisplatin 100mg/m2 day 1, 22, 43 of XRT	RTOG 91-11 ⁵ Larynx Preservation and LRC benefit vs XRT or ind.+ XRT


¹Gillison et al. 2019 Jan 5;393(10166):40-50 ²Mehanna et al. Lancet. 2019 Jan 5;393(10166):51-60 ³Adelstein et al. J Clin Oncol, 2003; 21(1):92-8. ⁴Bonner JA. NEJM 2006:354:567-78. ⁵Forastiere AA et al. NEJM. 2003; 22(349) 2091-98.


Systemic therapy in LAHNSCC: Postoperative therapy for high risk features


Disease	Standard/s of Care	Evidence
Resected OP/OC/L/HP with + margins and/or ECE	cisplatin 100mg/m2 bolus + XRT	EORTC 22931 ¹ RTOG 95-01 ²
Unresectable HNSCC of OC, OP, L, HP	Posoperative radiation with cisplatin 40mg/m2	JCOG 1008 ³

¹Bernier et al. N Engl J Med. 2004;350(19):1945 ²Cooper et al. N Engl J Med. 2004;350(19):1937 ³Kiyota et al. J Clin Oncol. 2022 Jun 20;40(18):1980-1990

RTOG 91-11: organ preservation in larynx cancer

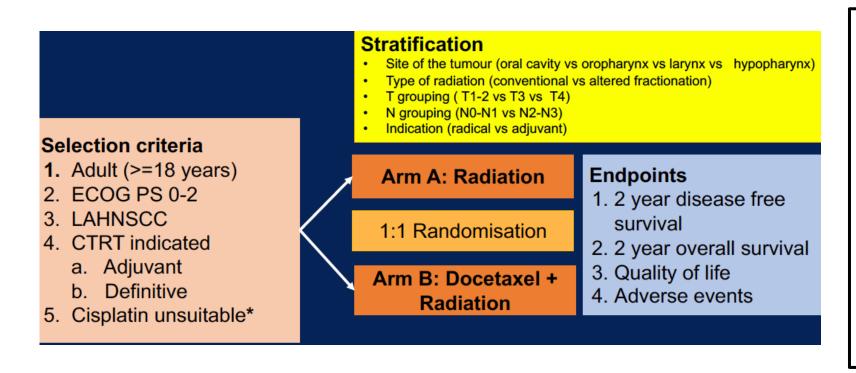
RTOG 91-11: organ preservation in larynx cancer

Table 2. Grade 3 or 4 Acute Toxic Effects, According to the Treatment Group.*												
Toxic Effect	Cisplatin plus Fluorouracil Followed by Radiotherapy			Radiotherapy with Concurrent Cisplatin (N=171)			Radiotherapy Alone (N = 171)					
	Chem	otherapy (N=168)		Radiotherapy Period (N=156)								
	grade 3	grade 4	total	grade 3	grade 4	total	grade 3	grade 4	total	grade 3	grade 4	total
					numbe	r of patier	ıts (percent)					
Hematologic	43	44	87 (52)	13	10	23 (15)	64	17	81 (47)	3	2	5 (3)
Infection	4	5	9 (5)	2	0	2 (1)	7	0	7 (4)	2	0	2 (1)
Mucosal (stomatitis)	27	7	34 (20)	36	2	38 (24)	64	9	73 (43)	40	1	41 (24)
Pharyngeal or esophageal	_	_	_	30	0	30 (19)	60	0	60 (35)	32	0	32 (19)
Laryngeal	_	_	_	20	1	21 (13)	29	2	31 (18)	23	5	28 (16)
Dermatologic (in radiation field)	-	_	_	16	0	16 (10)	10	2	12 (7)	15	0	15 (9)
Nausea or vomiting	20	3	23 (14)	0	0	0	28	7	35 (20)	0	0	0
Renal or genitourinary	3	0	3 (2)	2	0	2 (1)	6	1	7 (4)	0	0	0
Neurologic	5	1	6 (4)	0	0	0	8	1	9 (5)	0	0	0
Other	20	7	27 (16)	16	2	18 (12)	58	11	69 (40)	9	1	10 (6)
Overall maximal severity	62	49	111 (66)	66	13	79 (51)	99	32	131 (77)	71	9	80 (47)

Cisplatin-based chemoradiation (CCRT) in locally advanced HNSCC (LAHNSCC)

- A therapeutic standard in definitive 1-4 or postoperative 5,6 settings
- Toxicities are a significant burden to patients and health care systems
- Comorbidity overrepresented in HPV subset and can preclude CCRT
- · In high risk populations, oncologic outcomes are suboptimal

¹Forastiere AA et al. NEJM. 2003; 22(349) 2091-98. ²Adelstein et al. J Clin Oncol, 2003; 21(1):92-8. ³Gillison et al. 2019 Jan 5;393(10166):40-50 ⁴Mehanna et al. Lancet. 2019 Jan 5;393(10166):51-60 ⁵Bernier et al. N Engl J Med. 2004;350(19):1945 ⁶Cooper et al. N Engl J Med. 2004;350(19):1937


ASCO 2022 Abstracts 6003, 6004, ASTRO 2022 LBA02 ESMO 2022 LBA5

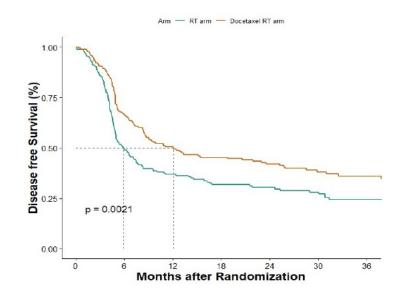
Key questions addressed by these studies:

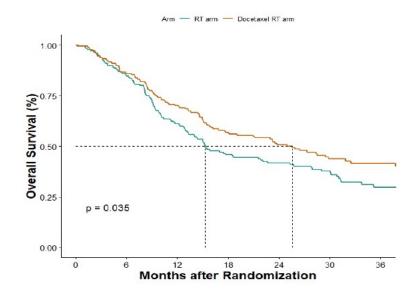
- Can we improve outcomes in patients who are cisplatin ineligible?
 - 6003
 - ASTRO LBA02
- Can we reduce toxicity without compromising efficacy in the platinum eligible patient?
 - 6004
- Can we improve outcomes with CCRT by adding immunotherapy?
 - ESMO LBA5

ASCO'22 Abstract 6003: Design

Results of phase 3 randomized trial for use of docetaxel as a radiosensitizer in patients with head and neck cancer unsuitable for cisplatin-based chemoradiation.

Cisplatin ineligibility¹


- ECOG PS ≥2
- Gr ≥2 organ dysfunction (CTCAE)
- CrCl of <50ml/min or comorbidities, nephrotoxic medications
- Wt loss >10% in last 6 mo, BMI
 ≤16 kg/m2


ASCO'22 Abstract 6003: Results

- 356 of planned 600 patients accrued
 - 16% were ≥70 y.o.
 - ECOG of 2 in 40% vs 50% (nonsignificant)
 - p16+ OPC represented <5% of population
 - 80% of adjuvant XRT was for ECE
 - 65% had CrCl <50 or hearing loss
- Predominantly definitive XRT (60%) with 2D planning
 - High rates of administration of all XRT (91%) and chemo (86%) doses

ASCO'22 Abstract 6003: Results

- Toxicity higher in docetaxel arm (mucositis, odynophagia, dysphagia)
- No difference in hematologic AEs

- Docetaxel XRT 2 year DFS: 42%, 2 year OS 50%
- Unplanned subset analysis appears to benefit all subgroups (HR most robust for definitive XRT)
- PRQOL at 6 mos post XRT favorable for docetaxel XRT

ASCO'22 Abstract 6003: Discussion

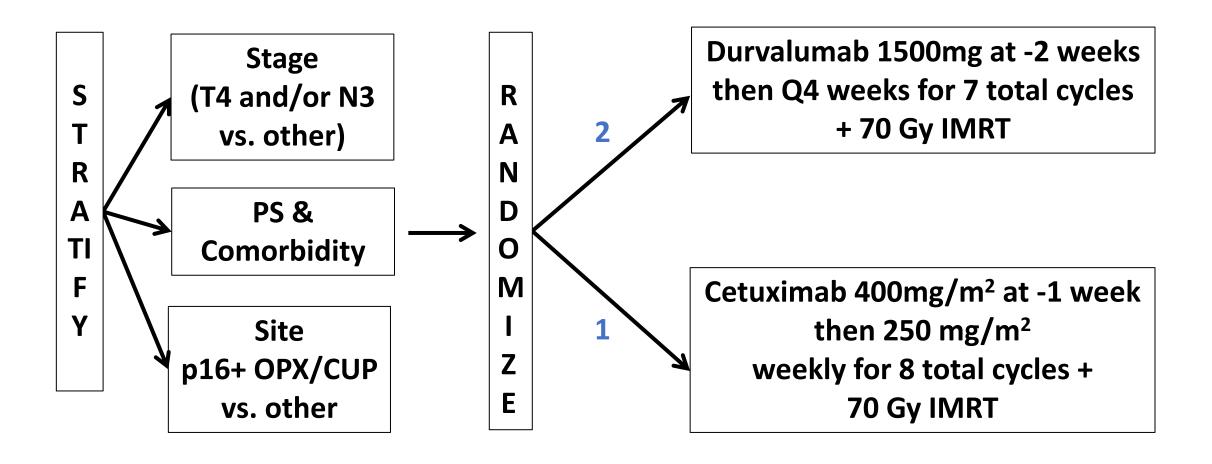
- The cisplatin ineligible pt has been historically excluded from trials
- This is changing

Trial	N	Intervention	Primary endpoint/Results
NCT02707588 ¹ GORTEC 2015-01 PembroRad	133	Pembrolizumab/XRT vs Cetuximab/XRT	2 yr LRC No difference in both arms (60% vs 59%)
NCT02999087 ² GORTEC REACH	277	Avelumab/cetuximab/XRT vs Cetuximab/XRT	2 yr PFS No difference in both arms (44% vs 31%)
NCT03258554 NRG-HN004	523	Durvalumab/XRT vs Cetuximab/XRT	ASTRO LBA2 Discussed today

Noncisplatin concurrent regimens in definitive XRT

Trial	N	Intervention	Exp Arm Results	Exp arm Toxicities
GORTEC 9401 ^{1,2}	226	Carboplatin/5FU/XRT vs. XRT	OS DFS superior	Mucositis/Skin/Nutrition/Heme toxicity worse
GORTEC 2007- 01 ³	406	Carboplatin/5FU/Cetuximab/XRT Vs. Cetuximab XRT	PFS and LRC superior OS similar	LFT elevation, leucopenia, PEG, hospitalizations worse
Bonner IMCL9815 ⁴	253	Cetuximab/XRT vs. XRT	OS and LRC superior	More rash and infusion reactions

- Trials not specific to platinum ineligible population
- Appropriate control arm for this group is unknown


Noncisplatin concurrent regimens in adjuvant XRT

- RTOG 0920
 - cetuximab + XRT vs XRT in intermediate risk resected LAHNSCC
 - Completed and awaiting results
- RTOG 1216
 - Initial randomized Ph II
 - cisplatin/XRT vs docetaxel/XRT vs docetaxel/cetuximab/XRT
 - Ongoing redesigned Randomized Ph III
 - cisplatinXRT vs atezolizumab/cisplatin/XRT vs docetaxel/cetuximab/XRT

ASCO 2022 Abstract 6003: Discussion

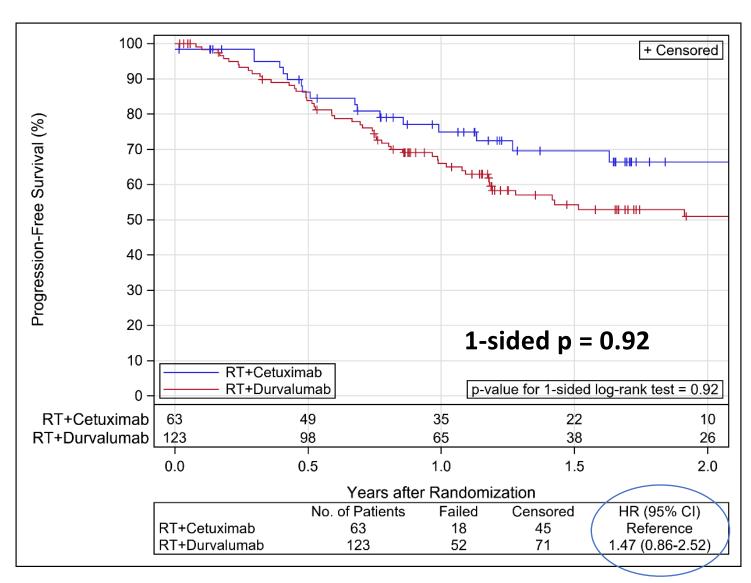
- Concurrent docetaxel and XRT
 - DFS and OS benefit in this cisplatin ineligible population (HPV neg)
 - increased non-hematologic toxicities
- Superiority over other nonplatinum definitive /adjuvant XRT regimens unknown
 - Other studies with noncisplatin regimens awaited

ASTRO '22 LBA02: Design

ASTRO '22 LBA02: Design

- Design: Phase II/III RCT with Safety Lead-In
- Primary Endpoint & Sample Size
 - Lead-In: Safety/Feasibility (N=10)
 - Phase II: PFS (N=234; 69 events (35 for interim analysis))
 - 80% Power; 1-sided α=0.20; "Go/No-Go" HR ≤ 0.806
 - Phase III: OS (N=444)

Population

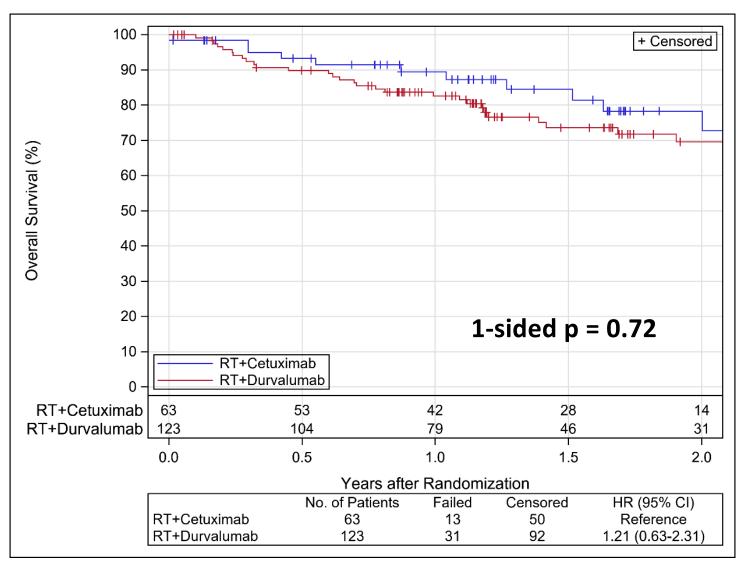

- Cisplatin-Ineligible, Age ≥ 18, Previously Untreated
- Stage III-IVB SCC of larynx, HPX, OC, p16- OPX/CUP
- Stage III or unfavorable risk stage p16+ OPX/CUP

ASTRO '22 LBA02: Results

- 190 patients enrolled from Mar 2019-Jul 2021
 - 186 randomized: 123 to durvalumab, 63 to cetuximab
- Closed to accrual after interim futility analysis
- Key Sample Characteristics
 - Median age was 72 years (59% ≥ 70).
 - 95% had ≥ 3 comorbidities (median 5)
 - 84% had absolute contraindication to cisplatin
 - 58% had T3-4, 49% had N2-3, 47% were p16+

PFS by Treatment Arm

Phase II "Go/No-Go" Decision:
HR ≤ 0.806 to
continue to phase
III



2-yr rates:

Cetux: 66%

Durva: 51%

OS by Treatment Arm

2-yr rates:

Cetux: 78%

Durva: 70%

ASTRO '22 LBA02: Discussion

- Immune checkpoint inhibition with definitive XRT does not confer PFS benefit in cisplatin ineligible cohort
- 2 yr PFS in control arm: 66%
- 2 yr OS in control arm: 78%
 - Higher than observed in docetaxel+XRT study
 - Population differences, p16+
 - Radiation technique differences, interruptions during COVID 19
- CetuxXRT may be appropriate control arm in subsequent studies

ASCO 2022 Abstract 6004:

An open-label, noninferiority phase III RCT of weekly versus three weekly cisplatin and radical radiotherapy in locally advanced head and neck squamous cell carcinoma (ConCERT trial)

- Addresses a longstanding controversy in our field (weekly vs. q3week)
 - Landmark studies of CCRT used cisplatin q3week 100mg/m²
 - Weekly administration more accepted
 - Tolerability
 - Potential radiosensitization benefits
- Randomized open label phase III study
 - Conducted in multiple institutions India
 - Weekly 40mg/m² vs q3 week 100mg/m² in definitive XRT setting
- Primary endpoint: LRC at 2 years

ASCO 2022 Abstract 6004: Results

- Patient population (N=278)
 - p16 positive in 5%
 - 20% with PS 2
- Treatment
 - 75% 2D planning
 - only 44% had no treatment delays
 - 17% received <200mg/m2 cisplatin dose density

ASCO 2022 Abstract 6004: Results

- 2 yr LRC similar 56% (q3week) vs 60% (weekly)
- Similar median OS in mos: 30 (q3week) vs 25 (weekly)
- Toxicity favors weekly arm:
 - Grade 3 mucositis, myelosuppression, renal, vomiting
- Health care utilization metrics favor weekly arm
 - Reduced need for IVF, hospitalization, treatment interruption

Randomized studies of weekly 40mg/m² vs q3week 100mg/m²

Author (year)	N	Setting/Disease	Results for weekly	Toxicity with weekly
Kiyota (2022)	261	Adjuvant high risk resected LAHNSCC	OS noninferior	Gr 3 neutropenia/ infection/renal/oto lower Gr 3Thrombocytopenia higher
Liang (abst 2017)	529	Definitive NPC	Similar 2yr FFS	Similar Gr 3/4 tox Neutropenia/ thrombocytopenia higher
Lee (2016)	109	Definitive NPC	Similar 3yr PFS	Similar Gr3/4 tox

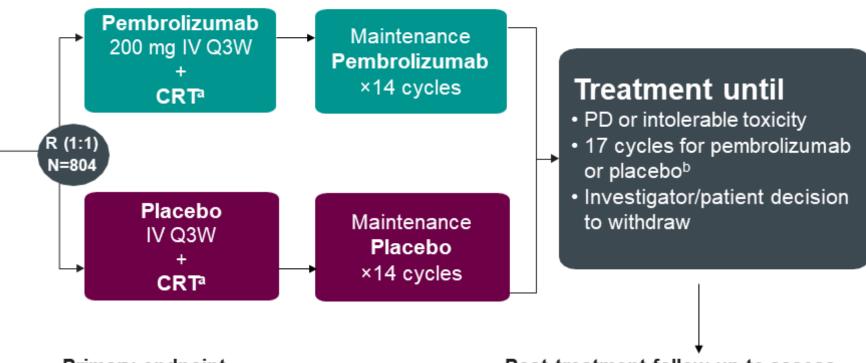
ASCO 2022 Abstract 6004: Discussion

- Supports use of weekly cisplatin concurrent with XRT
 - Predominantly HPV negative population
 - Ongoing HN009 exploring both HPV+ and negative subset
- Acute toxicities more favorable and consistent with Kiyota et al.
 - Ototoxicity similar
- Attractive from healthcare utilization standpoint

ESMO Abstract LBA5

- Immune checkpoint inhibitors have an established role in R/M HNSCC
- Incorporation into curative intent therapy under active investigation

Trial	Treatment Population	N	Intervention
KEYNOTE- 412 ¹	LAHNSCC (HPV+ for select stages/primary sites)	780	Pembro + cis + RT vs. placebo + cis + RT
IMSTAR- HN ²	Stage III/IV p16- OPC, L, HP, OC	276	Neoadjuvant nivo, surgery, and adj chemoRT + adj nivo ± ipi vs SOC surgery + chemoRT
KEYNOTE- 689 ³	Resectable stage III/IVa L, HP, OC, p16-OPC Stage III p16+ OPC	600	Pembro prior to surgery/with adj chemoRT vs surgery
IMvoke010 ⁴	LAHNSCC treated with curative- intent therapy	400	Atezo vs placebo after chemoRT
KEYCHAIN5	LAHNSCC p16+ OPC, L, OC	114	Cis + RT vs pembro + RT
HN005 ⁶	Locally advanced good risk p16+ OPC	711	Cis 70GyRT vs Cis 60GyRT vs Nivo 60GyRT
EA3161 ⁷	High risk p16+ OPC treated with cisXRT	744	Adjuvant nivolumab vs observation


KEYNOTE-412 Study Design (NCT03040999)

Patients

- Newly diagnosed, pathologically proven, treatment-naive unresected LA HNSCC
- T3-T4 [N0-N3] or any N2a-3 [T1-T4] larynx/hypopharynx/oral cavity/ p16-negative oropharynx cancers
- T4 or N3 p16-positive oropharynx cancer
- Evaluable tumor burden per RECIST v1.1
- ECOG PS 0 or 1
- Candidates for definitive high-dose cisplatin-based CRT

Stratification Factors

- · Radiotherapy regimen (AFX vs SFX)
- Tumor site/p16 status (oropharynx [p16+ vs p16-] or larynx/hypopharynx/oral cavity)
- Disease stage (III vs IV)

Primary endpoint

· Event-free survival (EFS)

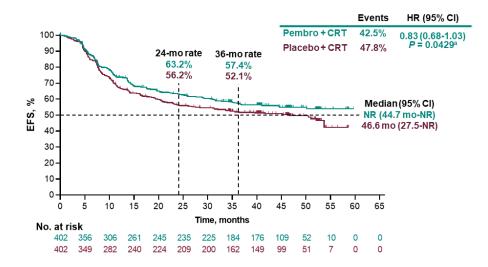
Secondary endpoints included:

- OS
- · Safety/tolerability

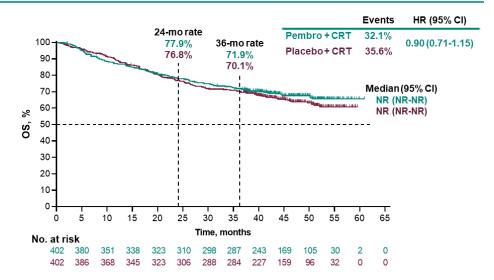
Efficacy boundary

- EFS: one-sided P = 0.0242
- OS: not tested

Post-treatment follow-up to assess

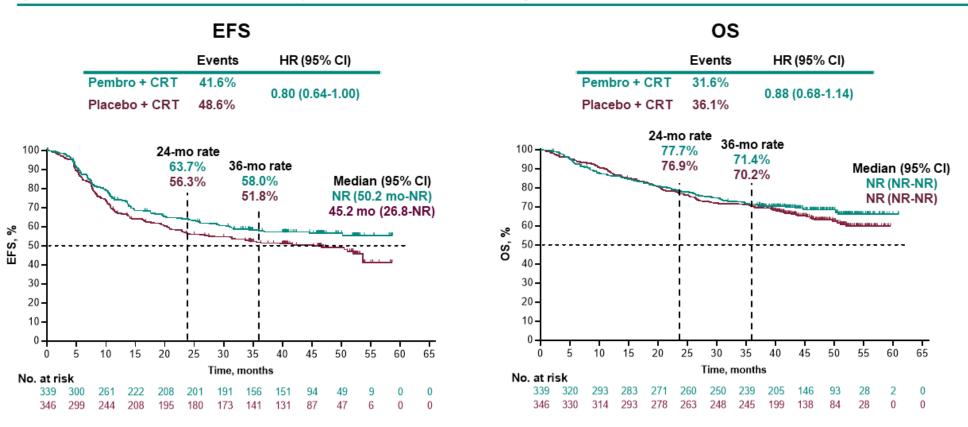

- Safety
- · Disease status
- Survival

ESMO Abstract LBA5: Results

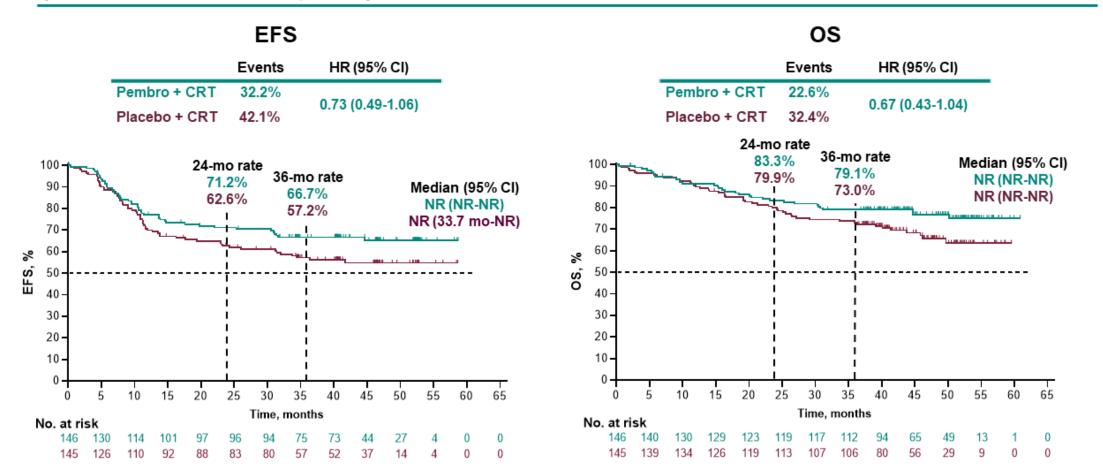

n (%)	Pembro + CRT N = 402	Placebo + CRT N = 402
Age, median (range), years ≥65 years, n (%)	59.0 (27-81) 109 (27.1)	59.0 (36-79) 96 (23.9)
Male	331 (82.3)	329 (81.8)
Race, white	311 (77.4)	311 (77.4)
Region North America Western Europe Rest of the world PD-L1 CPS ≥1	43 (10.7) 198 (49.3) 161 (40.0) 339 (84.3)	43 (10.7) 182 (45.3) 177 (44.0) 346 (86.1)
PD-L1 CPS ≥20	146 (36.3)	145 (36.1)
ECOG PS 1	137 (34.1)	151 (37.6)
Primary tumor site Oropharynx Oral cavity Larynx Hypopharynx	200 (49.8) 39 (9.7) 92 (22.9) 71 (17.7)	204 (50.7) 39 (9.7) 86 (21.4) 73 (18.2)
HPV+	109 (27.1)	104 (25.9)
Former/current smoker	346 (86.1)	346 (86.1)

ESMO Abstract LBA5: Results

Event-Free Survival, ITT Population



Overall Survival, ITT Population


ESMO Abstract LBA5: Results

EFS and OS in Patients With PD-L1 CPS ≥1 (Prespecified Subgroup Analysis)

ESMO Abstract LBA5: Results

EFS and OS in Patients With PD-L1 CPS ≥20 (Post Hoc Analysis)

ESMO Abstract LBA5: Discussion

- Consistent with 2 other randomized trials
 - JAVELIN HN001 (atezolizumab)
 - GORTEC-REACH (cisplatin eligible cohort, avelumab)
- Concurrent PD1 or PDL1 with q3 week cisplatin has no impact on outcome
- Timing or cisplatin dosing may be a factor
 - EA3161
 - RTOG 1216
 - HN005

Metastatic head and neck cancer

- Incurable disease with poor prognosis
- High symptom burden especially with local/regional recurrence
- Survival expectation is longer in HPV+ OPC
- Chemosensitive disease with multiple active agents
- Genomic instability/mutation status and viral mediation makes it ideal for immunotherapy approaches

Immune checkpoint inhibitor indications in R/M HNSCC

Line of therapy (biomarker)	Drug or Regimen	Evidence
1st line (CPS >1)	Pembrolizumab monotherapy	¹ Keynote-48 Phase III trial
1st line (any CPS)	Pembrolizumab + platinum + 5FU	¹ Keynote-48 Phase III trial
2nd line post cisplatin	Nivolumab	² Checkmate 141 Phase III trial
2nd line post cisplatin	Pembrolizumab	³ Keynote-40 Phase III trial

¹Burtness et al. Lancet 2019 Nov 23; 394 (10212): 1915-1928.

²Ferris, et al. NEJM 2016 Nov 10;375(19):1856-1867

³Cohen et al. Lancet 2019 Jan 12;393(10167):156-167

ASCO 2022 Abstract 6036

- Standard of care in post immune checkpoint inhibitor is undefined
- Retrospective study of R/M HNSCC in 7 French hospitals
- 99 patients included
 - 63 received taxane+cetuximab
 - 36 received taxane+platinum+cetuximab
- Oral cavity (35%) and oropharynx cancer (35%) most common primary sites

ASCO 2022 Abstract 6036: Results

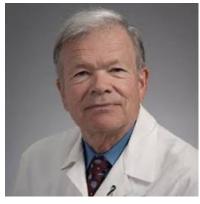
- Overall response rate to post IO chemo 63%
- ORR for taxane+ cetuximab 57%
- ORR for taxane+platinum+cetuximab 69%
 - Published pre-IO era ORR of combination is 48%¹

ASCO 2022 Abstract 6036: Discussion

- Taxane based combinations are efficacious in patients progressing on immune checkpoint inhibitors
- Represent active regimens for patients in need of systemic therapy in the second line palliative intent setting

FHCC Head and Neck R/M Studies

Trial	Design Investigational Agent	Population/Line of therapy	
OPEN AND ENROLLING			
RG1005866	Phase I/II CUE101: novel fusion protein to E7 CUE 101 with pembrolizumab	1st line R/M p16+ OPC	
RG1122874	Phase I/II ONC-392 novel antiCTLA 4 agent Arm K2 (ONC-392 monotherapy)	1 st line R/M HN, all squamous and nonadenoid cystic	
	ARM D (ONC-392 + pembro)	IO naïve NSCLC TPS ≥1%	
RG1122942	Phase I/II Tisotumab vedotin (TF directed ADC) Part C: HN and lung squamous cell CA	2 nd /3 rd /4 th line RM, cis and prior pembro required (looser language for lung)	
RG1121396	Phase II Brentuximab vedotin + Pembro Cohort 6: HN	1st line, CPS ≥1	
IN STARTUP			
Adagene NCT05405595	Phase I/II ADG126 novel antiCLTA4 Monotherapy In combination with pembro	HNSCC IO naïve and IO exposed	


Trial	Design Investigational Agent	Population/Line of therapy	
OPEN AND ENROLLING IN OTHER GROUPS			
RG1006384	Phase I/II Anti Integrin + Pembro	1 st line R/M HNSCC	
RG1121520	Phase I/II Oral CC4 agonist + Pembro	1st line p16+ OPC and endemic NPC	
RG1121319	Phase I ICT-01 (γ9δ2 T Cell-activating mAb) + Pembro	Previously IO treated HNSCC Needs screening for γδ T cells	
RG1006339	Phase I CYT-0851-01 with gemcitabine	HNSCC pretreated WAITLIST only	
RG1122132	Phase I STAT 3 degrader	Any line of therapy, HN cancer preferred non squamous ok	
NONTHERAPEUTIC STUDIES			
RG1007831	R01 Benaroya blood collection study		

The Head and Neck Oncology Program

THANK YOU!

rodrigcr@uw.edu

