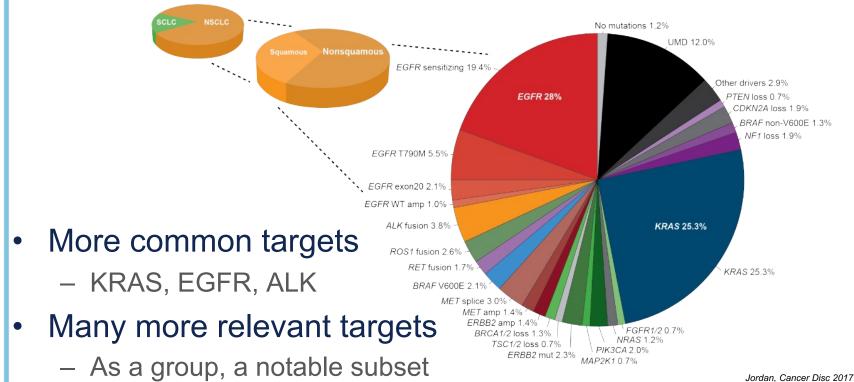
Georgetown | Lombardi

PATIENT CARE RESEARCH EDUCATION COMMUNITY

Uncommon Mutations/Fusions EGFRex20, RET, MET, HER2, NRG1


Stephen V. Liu, MD Associate Professor of Medicine Georgetown University Saturday, April 2, 2022

A Comprehensive Cancer Center Designated by the National Cancer Institute

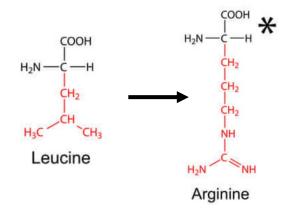
http://lombardi.georgetown.edu Lombardi CancerLine: 202.444.4000

Targeted Therapy

Georgetown | Lombardi

Oncology is Complicated

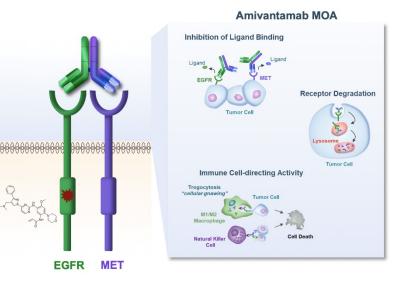
- Expanding roles and responsibilities
 - Medical Oncology
 - Palliative Care
 - Immunology
 - Rheumatology
 - Cardiology
 - Endocrinology
 - Medicinal Chemistry
 - Molecular Pathology


Targeted Therapy

• Details matter!

• "EGFR mutation positive" is not enough detail

- Exon 19 deletion
- Exon 21 L858R
- Atypical (G719X, L861Q, S768I)
- Exon 20 insertion

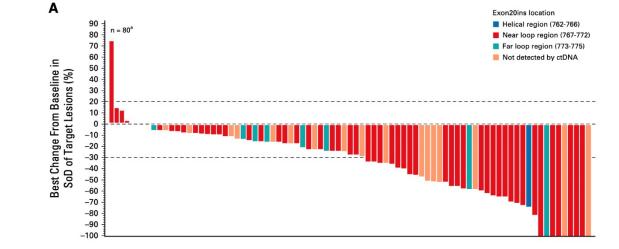

EGFR Exon 20 Insertion

- Easily detected with NGS
- More commonly seen in specific populations
 - Female sex
 - Never smokers
 - Adenocarcinoma histology
- Like del19/L858R, poor responses to immunotherapy
- Unlike del19/L858R, poor responses to standard TKIs
- Standard treatment platinum doublet chemotherapy

Amivantamab

Bispecific antibody targeting EGFR and MET

- Intravenous administration
- Infusion reactions
- Phase I CHRYSALIS
 - Established RP2D
 - 1050mg (<80kg)
 - 1400mg (≥80kg)
 - Weekly C1
 - Q2W C2+


Bauml, ASCO 2021 Georgetown | Lombardi

Amivantamab

EGFR exon 20 insertion after chemotherapy

- 81 pts
- RR 40%
- DOR 11.1m
- PFS 8.3m

• OS 22.8m

FDA accelerated approval May 21, 2021

Sabari, WCLC 2020 Georgetown | Lombardi

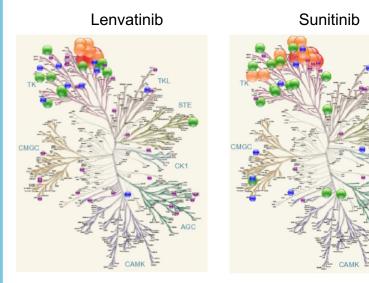
Mobocertinib (TAK-788)

- Potent irreversible pan-ErbB kinase inhibitor
- Post-platinum based chemotherapy cohort (n=114)
 - IRC RR 28%
 - mPFS 7.3m
 - mDOR 17.5m
 - Toxicity
 - 91% diarrhea
 - 21% G3+
 - 45% rash

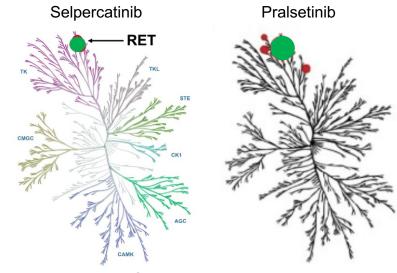
• FDA accelerated approval Sept 15, 2021

- Often altered in medullary thyroid cancer (MEN)
- RET fusions are important drivers in NSCLC
 - Present in ~2% of NSCLC
 - Various fusion partners (KIF5B, CCDC6, NCOA4, others)
 - More common in non-smokers
- Multiple kinase inhibitors have some activity at RET
 - Cabozantinib
 - Vandetanib
 - Sunitinib

RET in NSCLC


 Global retrospective registry of 165 patients with RET fusion positive NSCLC

RET Inhibitor	Complete Response	Partial Response	Stable Disease	Disease Progression	Not Evaluable	Missing Data
All agents (n = 53)	2 (4%)	11 (22%)	16 (32%)	20 (40%)	1 (2%)	3
Cabozantinib (n = 21)	1 (5%)	6 (32%)	5 (26%)	7 (37%)	0	2
Vandetanib (n = 11)	0	2 (18%)	3 (27%)	6 (55%)	0	0
Sunitinib (n = 10)	0	2 (22%)	3 (33%)	3 (33%)	1 (11%)	1
Sorafenib (n = 2)	0	0	2	0	0	0
Alectinib (n = 2)	0	0	0	2	0	0
Lenvatinib (n = 2)	0	1	0	1	0	0
Nintedanib (n = 2)	1	0	1	0	0	0
Ponatinib $(n = 2)$	0	0	2	0	0	0
Regoratenib ($n = 1$)	0	0	0	1	0	0


NOTE. The best response to a multikinase inhibitor with activity against RET is summarized for 53 patients with advanced RET-rearranged lung cancers.

RET in NSCLC

Selective RET inhibitors – wider therapeutic window

Multikinase Inhibitors

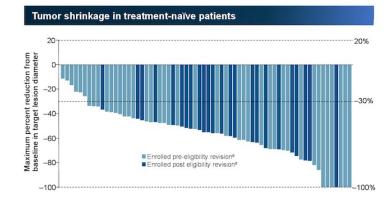
Selective RET Inhibitors

Gautschi, JCO 2017; Gainor, ASCO 2019; Drilon, WCLC 2019; Stjepanovic, Biologics 2014 Georgetown | Lombardi

Selpercatinib (LOXO-292)

- Selpercatinib (LOXO-292) 160mg twice daily
- Phase I/II LIBRETTO trial
 - 105 pts with prior chemo
 - RR 64%, DOR 17.5m, PFS 19.3m
 - 48 treatment naïve
 - RR 85%, DOR NR, PFS 13.0m

TREATMENT-NAÏVE

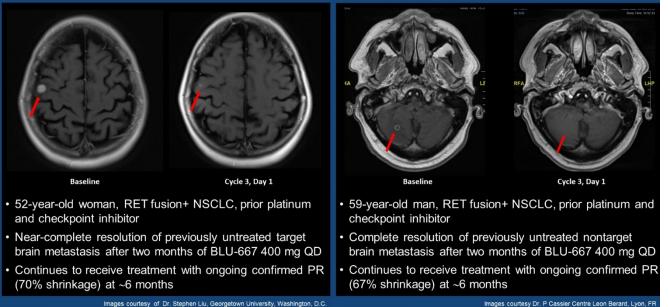

• FDA accelerated approval May 8, 2020

Besse, ASCO 2021 Georgetown | Lombardi

Pralsetinib (BLU-667)

- Pralsetinib (BLU-667) 400mg once daily
- Phase I/II ARROW trial
 - 126 pts with prior chemo
 - RR 62%, DOR 22.3m, PFS 16.5m
 - 68 treatment naïve
 - RR 79%, DOR NR, PFS 13.0m
 - 25 treatment naïve (eligible)
 - RR 88%, DCR 96%, DOR NR, PFS NR

• FDA accelerated approval Sept 4, 2020

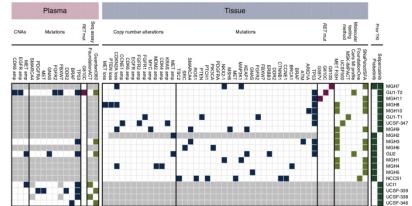


Curialiano, ASCO 2021

Georgetown | Lombardi

Selective RET Inhibitors

Pralsetinib and selpercatinib have CNS efficacy

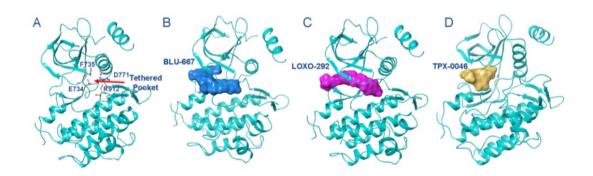

Gainor, ASCO 2019 Georgetown | Lombardi

Selective RET Inhibitors

- Pralsetinib and selpercatinib very well tolerated
 - Only 2-6% discontinue due to adverse event
- Selpercatinib toxicity noted after immunotherapy
 - Hypersensitivity reactions noted in LIBRETTO
 - Rash, fever, arthralgias, myalgias, thrombocytopenia, LFT elevation
 - Less commonly: hypotension, tachycardia, creatinine elevation
 - Occurred in 19/125 patients with prior IO therapy (12.5%)
 - Management: hold therapy, start steroids, rechallenge at 40mg bid and escalate as tolerated

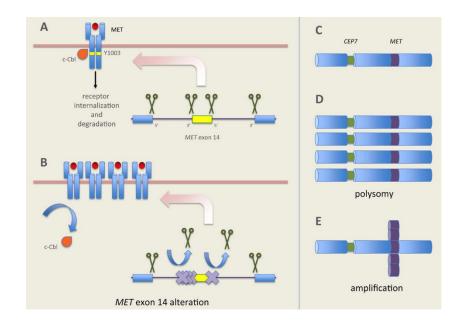
Acquired Resistance

- Early analysis of acquired resistance (n=23)
 - RET G810X mutations (10%)
 - MET amplification (10%)
 - KRAS amplification
- Late resistance may differ
- Biopsy important
 - Histology check



Lin, Ann Oncol 2020 Georgetown | Lombardi

Next Generation RET Inhibitors


• TPX-0046

- Retains potency with G810X solvent front mutations
- Phase I study
- BOS172738
 - Phase I study

MET Exon 14 Skipping Mutations

- Present in 3-5% of NSCLC
 - Diverse family of mutations that promote MET signaling

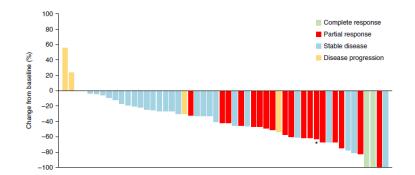
Drilon, JTO 2017 Georgetown | Lombardi

MET Exon 14 Skipping Mutations

• Initial development plan for crizotinib

CLINICAL PROTOCOL

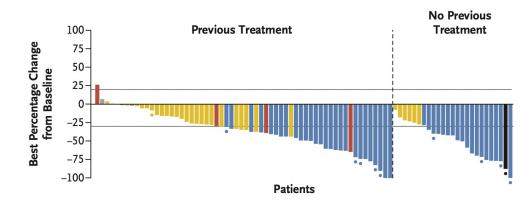
PHASE 1 SAFETY PHARMACOKINETIC AND PHARMACODYNAMIC STUDY OF PF-02341066, A C-MET/FIGFR SELECTIVE TYROSINE KINASE INHIBITOR, ADMINISTERED ORALLY TO PATIENTS WITH ADVANCED CANCER


5 December 2005	N/A
)	5 December 2005

Drilon, ASCO 2016 Georgetown | Lombardi

Crizotinib for METex14

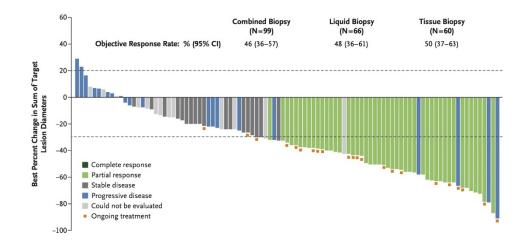
• PROFILE 1001


- 69 patients with METex14 NSCLC
 - 84% adenocarcinoma, 9% sarcomatoid
 - 62% smokers, 38% never-smokers
 - RR 32%, mDOR 9.1m
 - mPFS 7.3m, mOS 20.5m
 - Not FDA approved

Drilon, Cancer Med 2020 Georgetown | Lombardi

Capmatinib for METex14

- Phase II GEOMETRY trial
 - Previously treated (n=100)
 - RR 44%, mDOR 9.7m, mPFS 5.5m
 - Treatment naïve (n=60)
 - RR 67%, mDOR 12.6m, mPFS 12.3m


FDA accelerated approval May 6, 2020

Wolf, NEJM 2020 Georgetown | Lombardi

Tepotinib for METex14

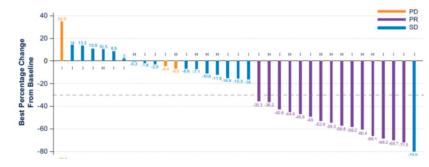
Phase II VISION trial

- 152 pts with METex14 NSCLC
- RR 46%, mDOR 11.1m
- Liquid bx: RR 48%; tissue bx: RR 50%

FDA accelerated approval Feb 3, 2020

Paik, NEJM 2020 Georgetown | Lombardi

METex14

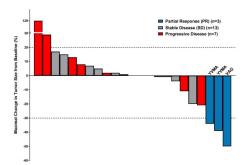

Capmatinib and tepotinib

- Approved, effective targeted agents
- Similar toxicities
 - Peripheral edema
 - Nausea, vomiting
 - Increased creatinine
- Capmatinib
 - 23% dose reduction, 11% discontinued due to adverse event
- Tepotinib
 - 33% dose reduction, 11% discontinued due to adverse event

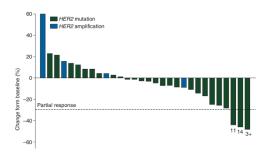
Wolf, NEJM 2020; Paik, NEJM 2020 Georgetown | Lombardi

Telisotuzumab vedotin (Teliso-V)

- Antibody drug conjugate, 1.9mg/kg q2w IV
- Phase II trial
 - MET by IHC (SP44)
 - Non-sq, EGFR wt, RR 35%
 - MET high RR 54%
 - MET in RR 25%
 - Non-sq, EGFR mt, RR 13%
 - Squamous NSCLC, RR 14%
- FDA Breakthrough Designation
 - NSCLC with high c-MET overexpression


Wolf, NEM 2020; Paik, NEJM 2020 Georgetown | Lombardi

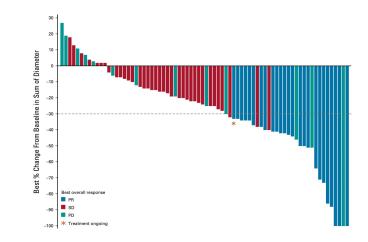
HER2 Mutant NSCLC


- HER2 mutations present in ~3% of NSCLC
 - Mutation relevant in NSCLC, not expression/amplification
 - Agents used in other cancers not necessarily effective
 - Afatinib

- Dacomitinib

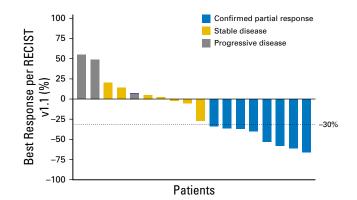
- Retrospective
- 23 HER2 mt, RR 23%

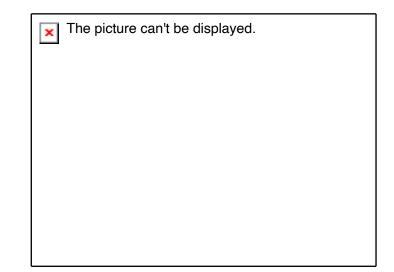
- Prospective
- 26 HER2 mt, RR 12%



Lai, Eur J Cancer 2019; Kris, Ann Oncol 2015

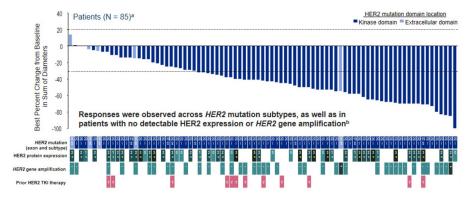
Georgetown | Lombardi


Poziotinib in HER2mt


- Poziotinib is an irreversible pan-ErbB inhibitor
 - ZENITH20 trial
 - HER2 mutant NSCLC
 - Previously treated
 - RR 27.8%, DCR 70%
 - mPFS 5.5m, mDOR 5.1m
 - Toxicities largely EGFR related
 - 77% dose reduction rate
 - G3+ TRAEs
 - Rash (49%), diarrhea (26%), stomatitis (RR 24%)
 - FDA Breakthrough Designation

Trastuzumab Emtansine in HER2mt

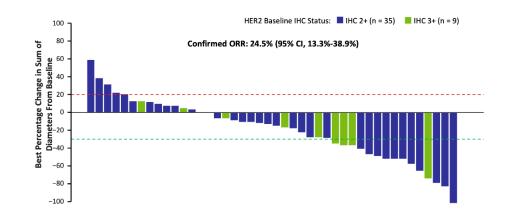
- Trastuzumab emtansine (T-DM1)
 - Antibody-drug conjugate
- Prospective phase II study
 - 18 HER2 mutant NSCLC
 - RR 44%, mPFS 5m



Le, JCO 2022 Georgetown | Lombardi

Trastuzumab Deruxtecan in HER2mt

- Trastuzumab deruxtecan (TDxD) 6.4mg/kg q3w
 - Antibody-drug conjugate (HER2, topoisomerase I, DAR ~8)
- DESTINY-Lung01
 - Cohort 2 (HER2 mutant)
 - 91 patients
 - RR 50%, DCR 92%
 - DOR 9.3m
 - PFS 8.2m, OS 17.8m
- FDA Breakthrough Designation

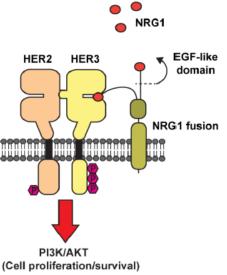

Trastuzumab Deruxtecan in HER2mt

- Trastuzumab deruxtecan 6.4mg/kg q3w
- DESTINY-Lung01
 - 34% dose reduction
 - 25% discontinuation
 - 2% fatal adverse event
 - 18.7% G3 NTP
 - 26.4% pneumonitis
 - 4.4% G3
 - 2.2% G5

n (%)	Any grade	Grade ≥3	
Patients with ≥1 drug-related TEAEs	88 (96.7)	42 (46.2)	
Drug-related TEAEs with ≥20% incidence in all patients			
Nausea	66 (72.5)	8 (8.8)	
Fatigueª	48 (52.7)	6 (6.6)	
Alopecia	42 (46.2)	0	
Vomiting	36 (39.6)	3 (3.3)	
Neutropeniab	32 (35.2)	17 (18.7)	
Anemia°	30 (33.0)	9 (9.9)	
Diarrhea	29 (31.9)	3 (3.3)	
Decreased appetite	27 (29.7)	0	
Leukopeniad	21 (23.1)	4 (4.4)	
Constipation	20 (22.0)	0	

Trastuzumab Deruxtecan in HER2+

- Trastuzumab deruxtecan (TDxD) 6.4mg/kg q3w
 - Antibody-drug conjugate (HER2, topoisomerase I, DAR ~8)
- DESTINY-Lung01
 - Cohort 1 (HER2 IHC)
 - 49 patients
 - RR 24.5%
 - PFS 5.4m, OS 11.3m
 - 55% G3+ AEs
 - ILD in 16.3%

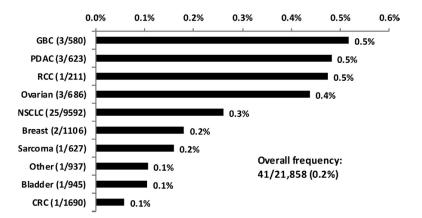


Li, NEJM 2021 Georgetown | Lombardi

NRG1 Fusions

• Neuregulin 1 (NRG1)

- EGF-like domain serves as ligand for HER3
- Promotes heterodimerization (HER2)
- Activates downstream PI3K/AKT/MAPK
- NRG1 fusions
 - Low incidence across tumors
 - Preserves EGF-like domain



Schram, WCLC 2020 Georgetown | Lombardi

NRG1 Fusions

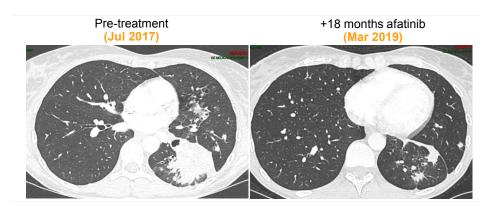
NRG1 fusions

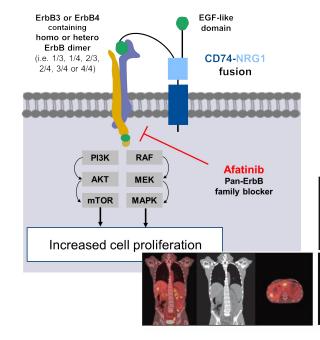
- Difficult to detect
- Large intronic regions
- Multiple fusion partners
- RNA-seq more sensitive
- Seen across tumor types
 - 0.3% NSCLC

NRG1 Fusions

eNRGy1 Global Registry

- 110 NRG1+ NSCLC cases
- Primarily non-smokers, adenocarcinoma
- Poor outcomes with standard therapy

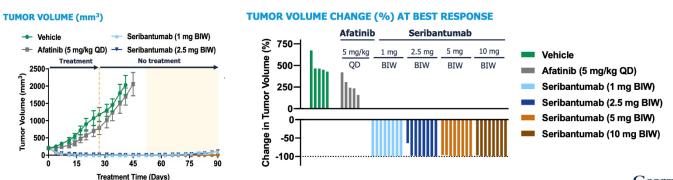

Response	Platinum-Doublet–Based Chemotherapy	Taxane-Based Chemotherapy	Combined Chemotherapy and Immune Therapy	Single-Agent Immunotherapy	Targeted Therapy With Afatinib
Response rate, %	13	14	0	20	25
CR, % (n/N)	0 (0/15)	0 (0/7)	0 (0/9)	0 (0/5)	0 (0/20)
PR, % (n/N)	13 (2/15)	14 (1/7)	0 (0/9)	20 (1/5)	25 (5/20)
SD, % (n/N)	47 (7/15)	14 (1/7)	44 (4/9)	20 (1/5)	15 (3/20)
PD, % (n/N)	40 (6/15)	71 (5/7)	56 (5/9)	60 (3/5)	60 (12/20)
Median PFS (95% CI), range	5.8 months (2.2 to 9.8), 0.7-12.1	4.0 months (0.8 to 5.3), 0.8-5.5	3.3 months (1.4 to 6.3), 1.4-15.2	3.6 months (0.9 to undefined), 0.9-11.2	2.8 months (1.9 to 4.3), 0.3-25.3


Abbreviations: CR, complete response; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease.

Afatinib and NRG1

Afatinib

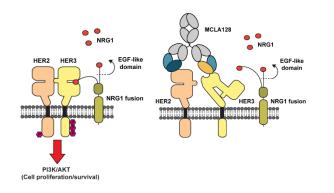
- Irreversible pan-ErbB kinase inhibitor
- Multiple case series showing activity
- Prospective TAPUR study ongoing

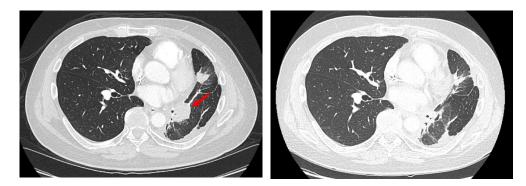


Liu, ESMO 2019, Duruisseaux, WCLC 2019 Georgetown | Lombardi

Seribantumab and NRG1

Seribantumab

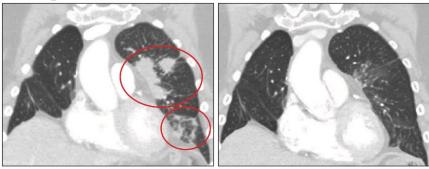

- HER3 monoclonal antibody
- Blocks ligand-dependent activation of HER3
- Blocks heterodimerization
- Tumor agnostic phase II CRESTONE study ongoing



Odintsov, ENA 2020 Georgetown | Lombardi

Zenocutuzumab and NRG1

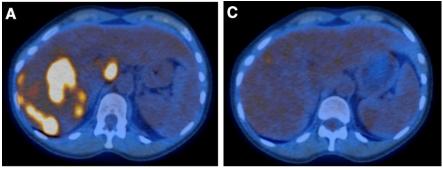
- Zenocutuzumab (MCLA-128)
 - Bispecific antibody targeting HER2 and HER3 with ADCC
 - Blocks NRG1 binding to HER3
 - FDA Fast Track Designation


Acquired Resistance

- Presence of actionable drivers guides initial therapy
- Many of the same drivers mediate resistance
 - MET amplification
 - KRAS mutations
 - RET fusions
 - BRAF mutations/fusions
 - ALK fusions
 - NRG1 fusions

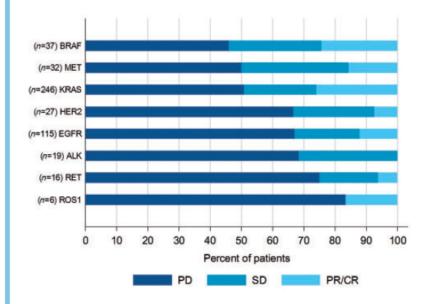
Acquired Resistance

- Biopsies at resistance can guide therapy
 - Histologic transformation (SCLC, squamous NSCLC)
 - New actionable resistance alteration


Response to Osimertinib + Pralsetinib in Patient With EGFR+ NSCLC and a RET Fusion Post Afatinib/Cetuximab

Baseline

Response to Osimertinib + Selpercatinib in Patient With EGFR+ NSCLC and a RET Fusion Post Osimertinib


Baseline

Mo 1 Piotrowska, Cancer Disc 2018; Rehman, JCO Precis Oncol 2021 Georgetown | Lombardi

Driver+ and Immunotherapy

IMMUNOTARGET

Retrospective analysis of IO monotherapy in driver+ NSCLC

	EVT/N	Median PFS [95% CI] (months)		
KRAS	208/271	3.2 [2.7; 4.5]		
EGFR	117/125	2.1 [1.8; 2.7]		
BRAF	34/43	3.1 [1.8; 4.6]		
HER2	23/29	2.5 [1.8; 3.5]		
MET	26/36	3.4 [1.7; 6.2]		
ALK	21/23	2.5 [1.5; 3.7]		
ROS1	-	_		
RET	15/16	2.1 [1.3; 4.7]		

EVT, event; N, number.

Mazieres, Ann Oncol 2019 Georgetown | Lombardi

Biomarker Testing

- Growing number of relevant targets in NSCLC
- Testing rates in the US remain suboptimal
- MYLUNG Consortium
 - Analysis of US hospitals biomarker testing in NSCLC
 - Collected testing rates for those with access to testing
 - Looked only at EGFR, ALK, BRAF, ROS1 and PDL1
 - Only 46% of patients with advanced NSCLC were tested for all 5 markers
- Advantages of DNA & RNA-based testing

Unanswered Questions

- Optimal initial strategy
 - Targeted therapy, if so which one
 - Chemotherapy
 - Combination therapy
- Overcoming, preventing resistance
- Significance of co-mutations
- CNS tropism and efficacy
- Adjuvant and consolidation therapy
- Role of immunotherapy

Summary

- Effective new targeted therapies for smaller, genomically-defined subsets of NSCLC
 - EGFRex20 (amivantamab, mobocertinib)
 - RET (pralsetinib, selpercatinib)
 - MET (capmatinib, tepotinib)
 - HER2 (pending poziotinib, pending TDxD)
 - NRG1 (investigational)
- Important to obtain biomarker testing for all patients
 - At diagnosis and consider at progression