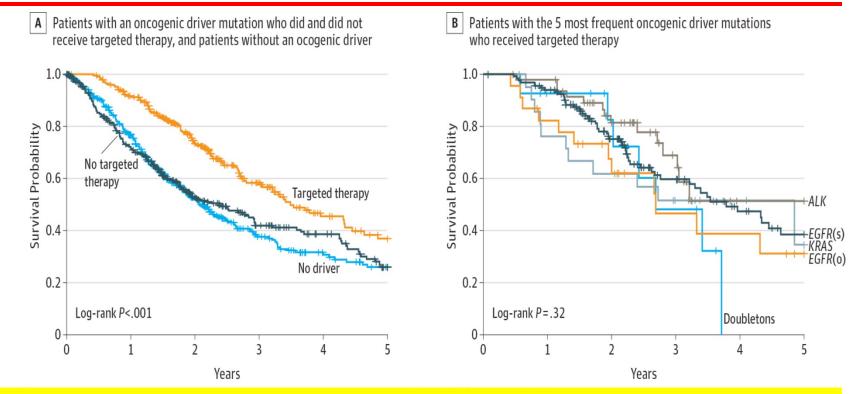
Predictive and Prognostic Biomarkers for IO: Value of TMB, MSI, PD-L1 and Others in Liquid and Solid Tumor Specimens

Alberto Chiappori, MD Senior Member Department of Thoracic Oncology Moffitt Cancer Center

> 18th Annual Miami Cancer Meeting JW Marriott Miami Miami, Florida April 1-3, 2022


Biomarkers Definitions

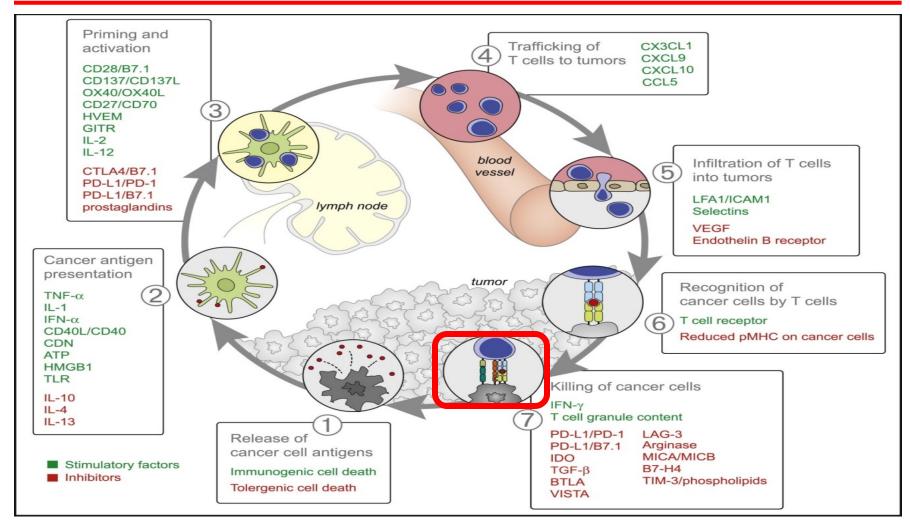
- **Prognostic** biomarkers are associated with the clinical outcome and are used to ulletidentify patien SELECT POPULATIONS of "stronger" OUTCOME INDEPENDENT OF TREATMENT of "stronger" OF TREATMENT of the second secon bws for the selection
- Predictive biomarkers are associated with the likelihood of response to a particular ullettherapy and al SELECT TREATMENTS OUTCOME DEPENDENT OF TREATMENT thus snaring other patients from toxicities of menective therapies. fit from that therapy,

- **PPV** positive predictive value is referring to the number of correctly predicted responders or survivors divided by the total number of patients with a positive biomarker result,
- NPV negative predictive value is referring to the number of correctly predicted non-responders or non-survivors divided by the total number of patients with a negative biomarker result.

Targeted Therapies

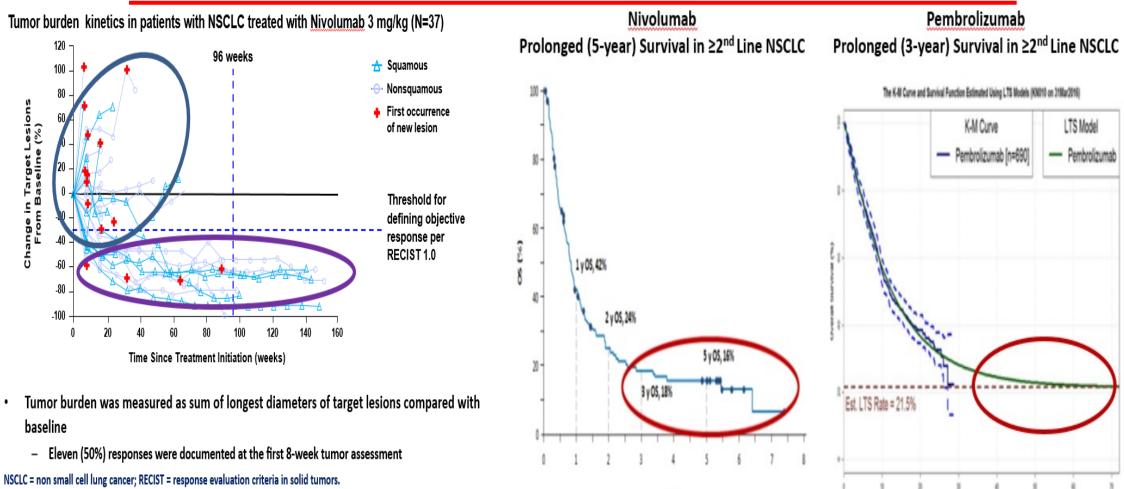
Oncogenic Drivers – Predictive Biomarkers

Driver Mutation identified Targeted Treatment Leads to Improved Survival


JAMA. 2014;311(19):1998-2006. doi:10.1001/jama.2014.3741

NSCLC

Prognostic and Predictive Biomarkers for Immunotherapy


Immunotherapy

Anti-Tumor Immune Response

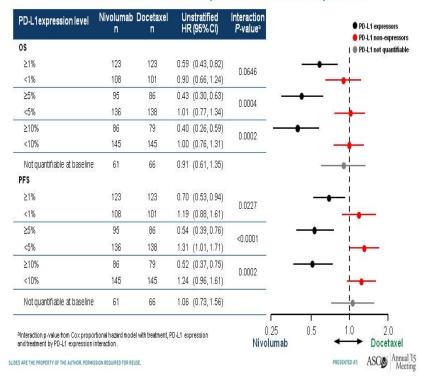
Chen DS, et al. Immunity. 2013;39:1-10.

Anti-Tumor Immune Response Identifiable NSCLC Sub-populations

Time incode

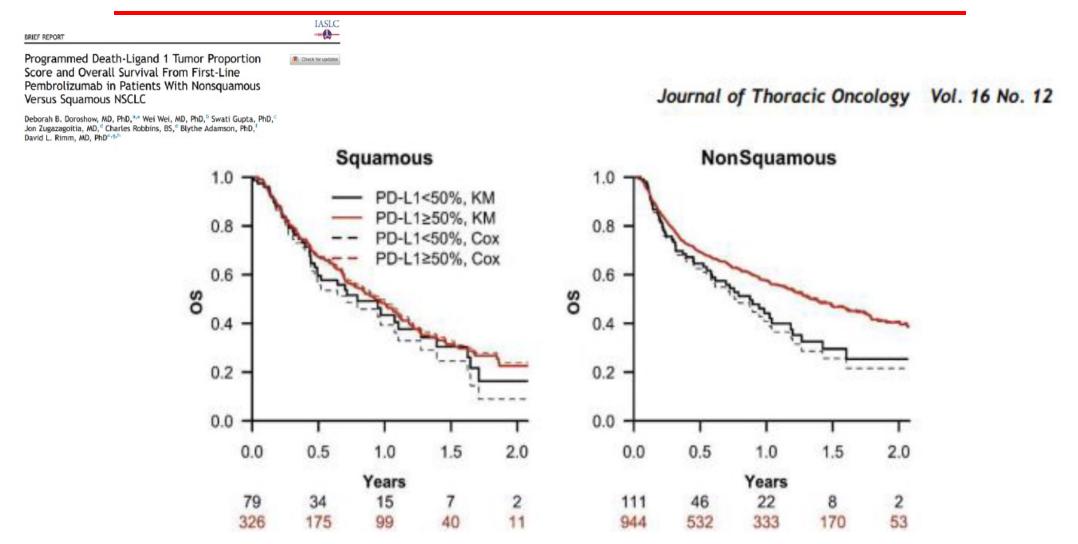
Gettinger SN, et al. J Clin Oncol. 2015;33:2004-2012.

Histology

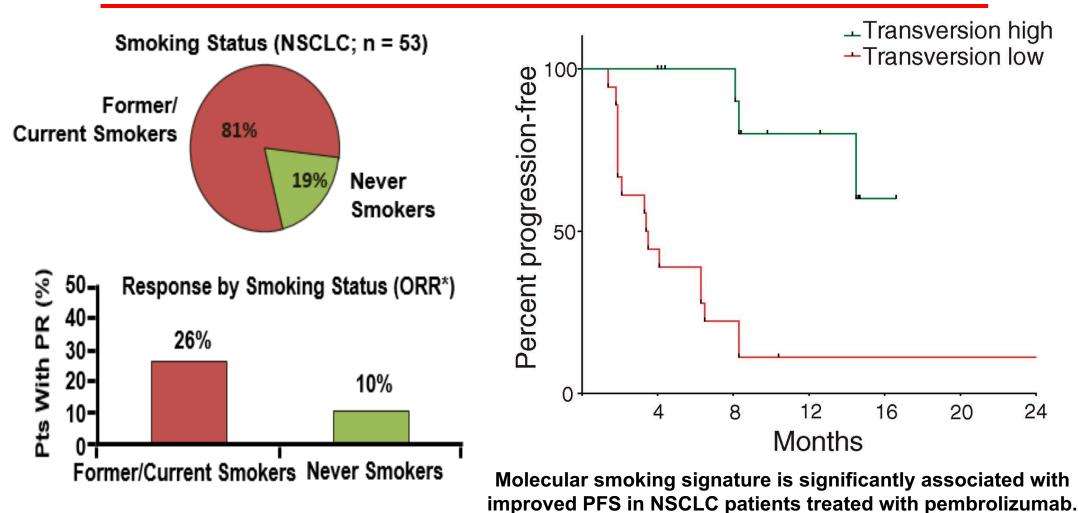

Squamous - CheckMate 017

OS and PFS by PD-L1 Expression

PD-L1 expression	Patie Nivolumab	nts, n Docetaxel	Unstratified HR (95% Cl)	Interaction P-value	PD-L1 positive expression PD-L1 negative expressio Not quantifiable
OS	1.0000000000000000000000000000000000000	2202.2010910910920000		4. 52/40/2001	
≥1%	63	56	0.69 (0.45, 1.05)	0.50	-
<1%	54	52	0.58 (0.37, 0.92)	0.56	
≥5%	42	39	0.53 (0.31, 0.89)	0.47	
<5%	75	69	0.70 (0.47, 1.02)	0.47	
≥10%	36	33	0.50 (0.28, 0.89)	0.41	
<10%	81	75	0.70 (0.48, 1.01)	0.41	
Not quantifiable	18	29	0.39 (0.19, 0.82)		
PFS					_
≥1%	63	56	0.67 (0.44, 1.01)	0.70	-
<1%	54	52	0.66 (0.43, 1.00)	0.70	
≥5%	42	39	0.54 (0.32, 0.90)	0.46	
<5%	75	69	0.75 (0.52, 1.08)	0.16	
≥10%	36	33	0.58 (0.33, 1.02)	0.35	
<10%	81	75	0.70 (0.49, 0.99)	0.55	
Not quantifiable	18	29	0.45 (0.23, 0.89)		


Non-squamous - CheckMate 057

OS and PFS Hazard Ratios by Baseline PD-L1 Expression

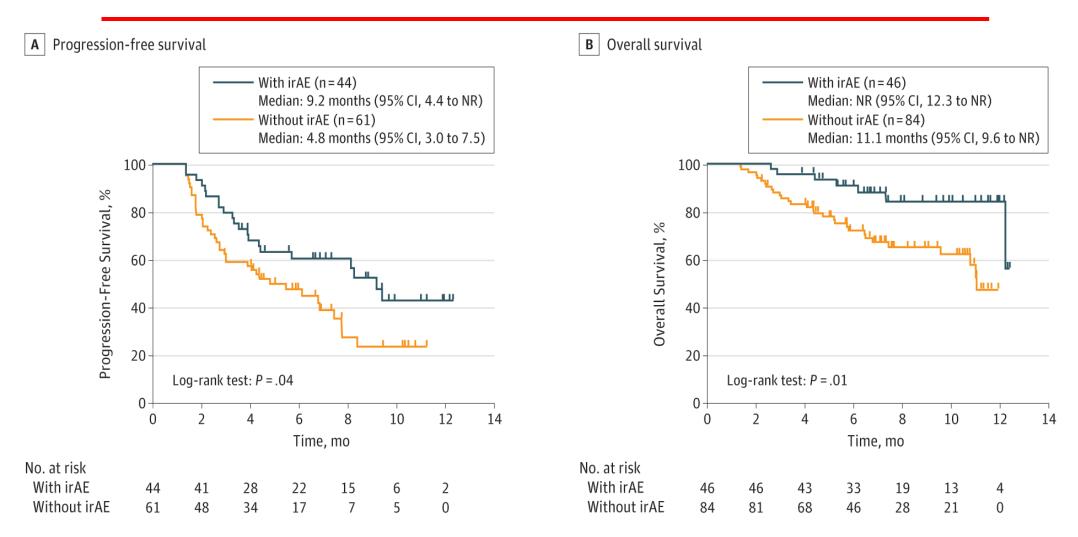


J Thorac Oncol. 2013; 8(6): 803-805.

Histology

Smoking status and Molecular smoking signature

Horn L, et al. WCLC 2013. Abstract MO18.


Naiyer A. Rizvi et al. Science 2015;348:124-128

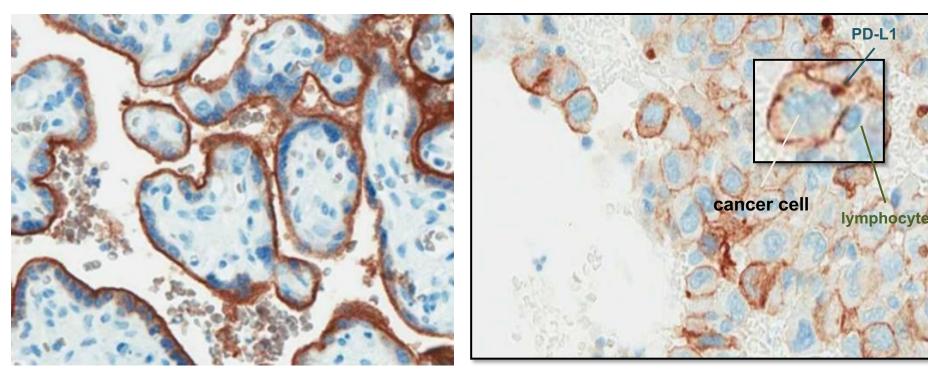
Immune Related Adverse Events

Study	n=	IO Drug	irAE (% of patients)	oS in irAE+ (months)	OS in irAE- (months)	rS in irAE+ (months)	PFS in irAE- (months)	ORR in irAE+ (%)	ORR in irAE- (%)	Comments
Topalian et al [9]	129	Nivolumab	70.50%	11	7.5	-	_	23%	3%	
Fujimoto et al [46]	613	Nivolumab	10%	-	-	5.8	2.1	37%	18%	
Haratani et al [52]	134	Nivolumab	51%	Not reached	11.1	9.2	4.8	-	-	
Hasan Ali et al [21]	40	Nivolumab	17%	-	-	-	_	42%	7%	Skin Toxicity only
Osorio et al [22]	48	Pembrolizumab	21%	40	14	8	2	-	-	Thyroid toxicity only
Teraoka et al [47]	43	Nivolumab	44%	-	-	6.4	1.5	37%	17%	
Sato et al [49]	38	Nivolumab	28.90%	-	-	not reached (HR 0.10)	1.63	63.60%	7.40%	
Ricciuti et al [43]	195	Nivolumab	43.60%	17.80	4	8.50	2.00	43.50%	10%	
Cortellini et al [44]	559	Nivolumab Pembrolizumab	41.30%	20.50	8.50	10.10	4.10	46.50%	25.70%	
Campredon et al [25]	105	Nivolumab	14.30%	Please see comments		-	_	-	-	
Owen et al [45]	91	Nivolumab Pembrolizumab Atezolizumab	30%	24.30	5.3	-	_	-	-	
Toi et al [48]	70	Nivolumab	40%	-	-	12	3.6	57%	12%	
Ahn et al [50]	155	Nivolumab Pembrolizumab	38.1%	24.05	11.63	7.39	3.27	-	-	
Berner et al [53]	73	Nivolumab Pembrolizumab	34.2%	HR 0.29		HR 0.22		-	-	Skin toxicity only
Fukihara et al [26]	170	Nivolumab Pembrolizumab	16%	8.7	23	3.4	6.1	43%	25%	Pneumonitis only
Jin Lee et al [17]	211	Nivolumab Pembrolizumab	16.4%	HR 0.29		-	-	-	-	Skin Toxicity only
Peiro et al [18]	55	Nivolumab	14.6%	HR 0.40		-	_	-	-	Thyroid toxicity only
Sugano et al [51]	130	Nivolumab Pembrolizumab Atezolizumab	30%	_	-	15.9	3.3	63%	22%	

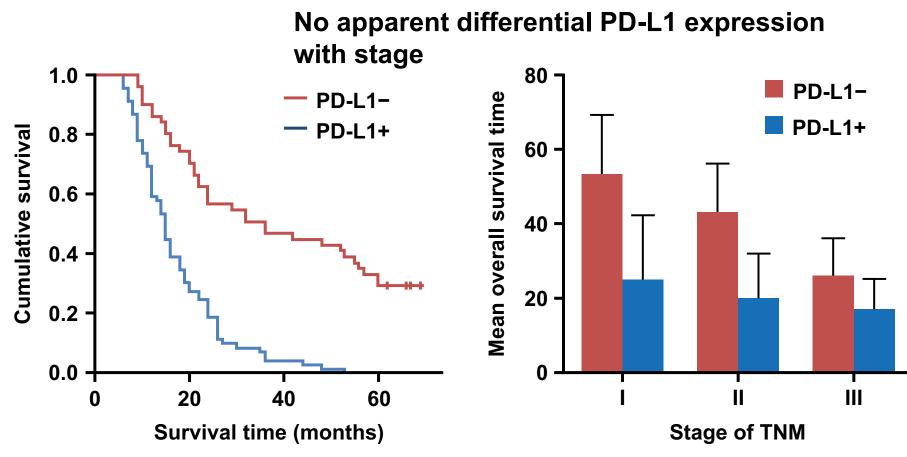
Cancer Treatment Reviews 92 (2021) 102134

Immune Related Adverse Events

JAMA Oncol. 2018 Mar 1;4(3):374-378


PD-1/PD-L1 Pathway

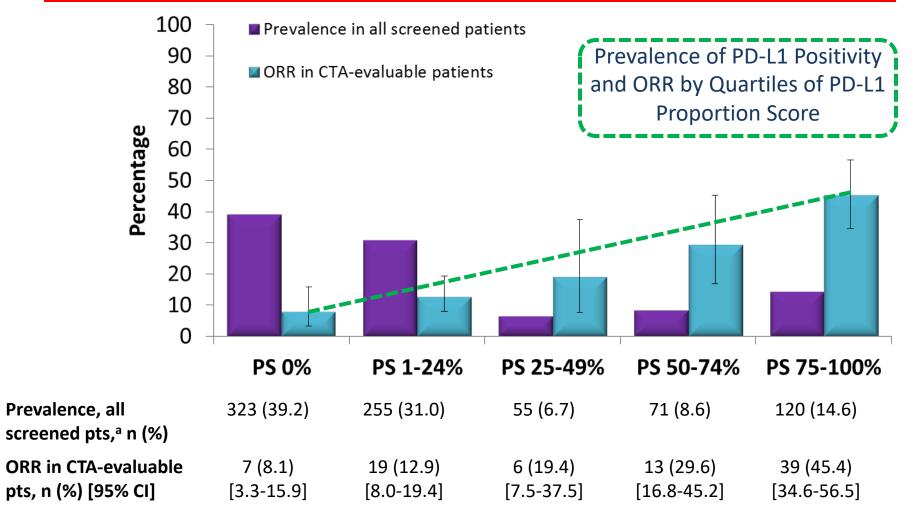
Effector Phase


Placenta and Tumors Express PD-L1 to Evade Immune Recognition

Placenta

Tumor

PD-L1 expression in NSCLC - Prognostic



PD-L1 expression is a negative prognostic for patient survival

Chen, et al. Tumori 2012

PD-L1 expression - Predictive

Pembrolizumab

^aPrevalence and ORR (RECIST v1.1 by central review) assessed in patients whose samples were evaluable by the CTA, regardless of the interval between cutting and staining. Analysis cut-off date: August 29, 2014.

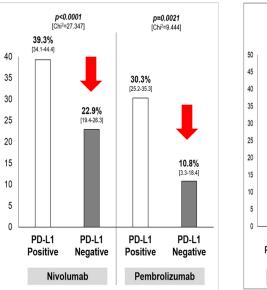
Garon EB et al, AACR 2015/NEJM 2015

PD-L1 expression - Predictive

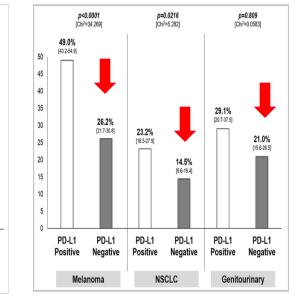
Author	Phase	Disease Type	Drug	Treatment Line	PD-L1Cut-Off (%)	PD-L1 Subgroup	Sample size	ORF (%)
Neber et al, JCO 2013 [39]	1	Melanoma	Nivolumab	≥2°	5	Positive	12	67.0
						Negative	32	19.0
lamid et al, ASCO 2013	1	Melanoma	MPDL3280A	Mixed	5	Positive	15	27.0
33]						Negative	15	20.0
lodi et al, ASCO 2014 [35]	1	Melanoma	Nivolumab	≥2°	5	Positive	18	44.0
						Negative	23	13.0
Sznol et al, ASCO 2014 [38]	1	Melanoma	Nivolumab	≥2°	5	Positive	22	35.0
						Negative	57	59.0
Robert et al, NEJM 2015		Melanoma	Nivolumab	1°	5	Positive	74	52.7
24]						Negative	136	33.1
Veber et al, LO 2015 [10]	ш	Melanoma	Nivolumab	≥2°	5	Positive	55	43.6
						Negative	64	20.3
Kefford et al, ASCO 2014	1	Melanoma	Pembrolizumab	Mixed	1	Positive	83	49.0
361						Negative		12.0
Rizvi et al, CMSTO 2014	1	NSCLC	Nivolumab	1°	5	Positive	26	31.0
43]						Negative	21	10.0
Antonia et al, CMSTO 2014	1	NSCLC	Nivolumab	1°	5	Positive	16	19.0
44]						Negative	22	14.0
Herbst et al, Nature 2014	1	NSCLC	MPDL3280A	≥2°	5	Positive	9	27.0
[34]						Negative	37	24.0
Gettinger et al, JCO 2015	1	NSCLC	Nivolumab	≥2°	5	Positive	33	15.0
45]						Negative	35	14.0
Rizvi et al, LO 2015 [11]		NSCLC	Nivolumab	≥2°	5	Positive	25	24.0
						Negative	51	14.0
Garon et al, NEJM 2015	1	NSCLC	Pembrolizumab	≥2°	1	Positive	159	23.0
46]						Negative	35	9.0
Rizvi et al, ASCO 2014 [37]	1	NSCLC	Pembrolizumab	1°	1	Positive	42	26.0
Cho et al, ASCO 2013 [42]		GU	MPDE3280A	MIXED	5	Positive	10	20.0
						Negative	21	10.0
Powles et al, Nature 2014	1	GU	MPDL3280A	≥2°	5	Positive	7	29.0
15]						Negative	58	26.0
Notzer et al, JCO 2014 [14]	н	GU	Nivolumab	≥2°	5	Positive	29	31.0
						Negative	78	18.0
Choueiri et al, ESMO 2014	1	GU	Nivolumab	Mixed	5	Positive	18	22.0
32]						Negative	38	8.0
Hammers et al, ESMO	1	GU	Nivolumab	Mixed	1	Positive	16	50.0
2014 [40]						Negative	20	55.0
Plimack et al, ESMO 2014 41]	1	GU	Pembrolizumab	Mixed	1	Positive	33	24.1

Table 1. Trials'Characteristics (selected
arms for the analysis).

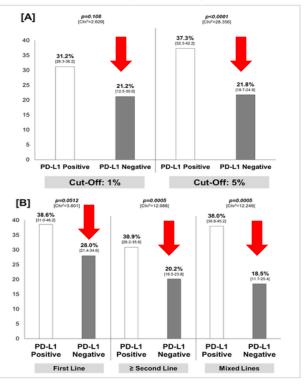
Carbognin L, et al. PLOS ONE 10(6): e0130142. https://doi.org/10.1371/journal.p one.0130142


doi:10.1371/journal.pone.0130142.t001

PD-L1: programmed death-ligand-1; ORR: overall response rate; NSCLC: non-small cell lung cancer.

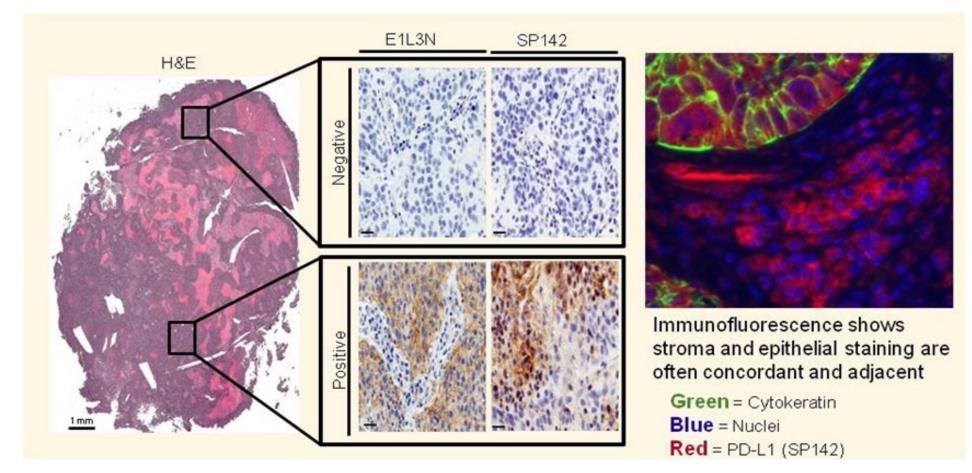

PD-L1 Biomarker

Negative Expression


Overall response rate, according to adopted drug.

Overall response rate, according to tumor type.

Sensitivity Analysis



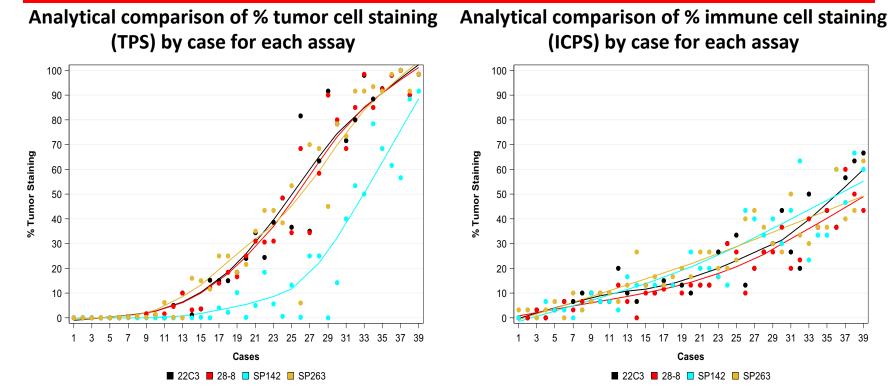
Carbognin L, et al. PLOS ONE 10(6): e0130142. https://doi.org/10.1371/journal.pone.0130142

PD-L1 expression in NSCLC

Expression of PD-L1 is heterogeneous and varies with antibody

Presented By Roy Herbst at 2015 ASCO Annual Meeting

PD – L1 Biomarker

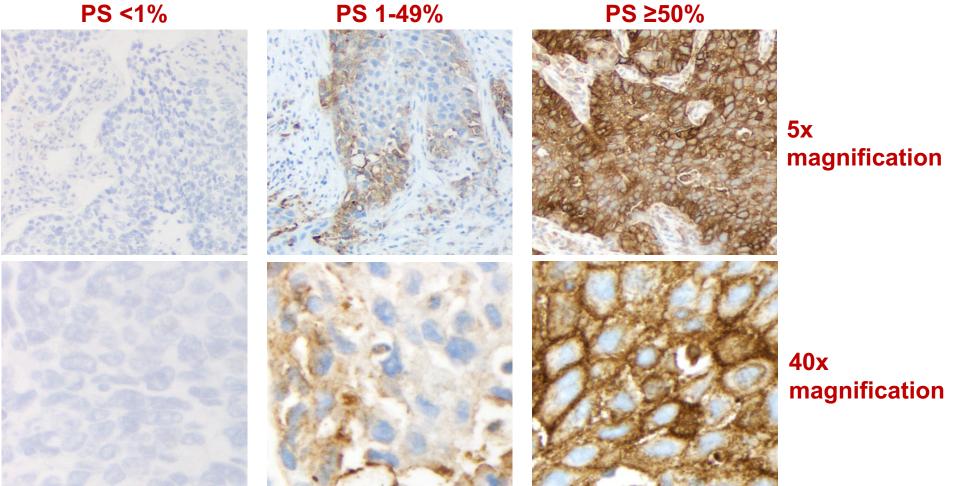

IASLC Blueprint Project

	Nivolumab	Pembrolizumab	Atezolizumab	Durvalumab	
Primary antibody clone used in the assay system	28-8 (Dako)	22C3 (Dako)	SP142 (Ventana)	SP263 (Ventana)	
Interpretative Scoring	Tumor cell membrane	Tumor cell membrane	Tumor cell membrane - Infiltrating immune cells	Tumor cell membrane	
Instrument and Detection Systems Required	EnVision Flex on Autostainer Link 48	EnVision Flex on Autostainer Link 48	OptiView Detection and Amplification on Benchmark ULTRA	OptiView Detection on Benchmark ULTRA	
Therapeutic Developer					
<u>J Thorac</u> <u>Oncol.</u> 2017 Feb;12(2):208-222					

the second of the second

PD-L1 Biomarker

Agreement Rates: IHC PD-L1 Assays



Three assays (22C3, 28-8, SP263) demonstrate similar analytical performance with respect to percentages of tumor cells positive and dynamic range All assays label immune cells but there is less precision in analytical performance than with tumor cells

J Thorac Oncol. 2017 Feb;12(2):208-222

PD-L1 expression in NSCLC



Brown chromogen: PD-L1 staining. Blue color: hematoxylin counterstain.

Garon EB et al, AACR 2015/NEJM 2015

Biomarker PD-L1 selection - Trials

Pembrolizumab – First Line Responses by (very) High PD-L1 Expression Level

Annals of Oncology 30: 1653-1659, 2019

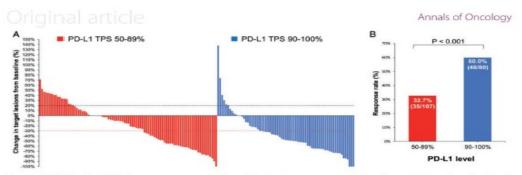
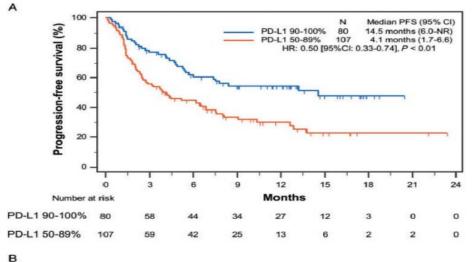
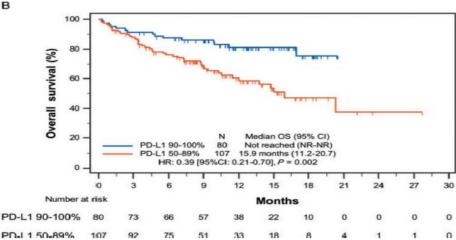
doi:10.1093/annonc/mdz288

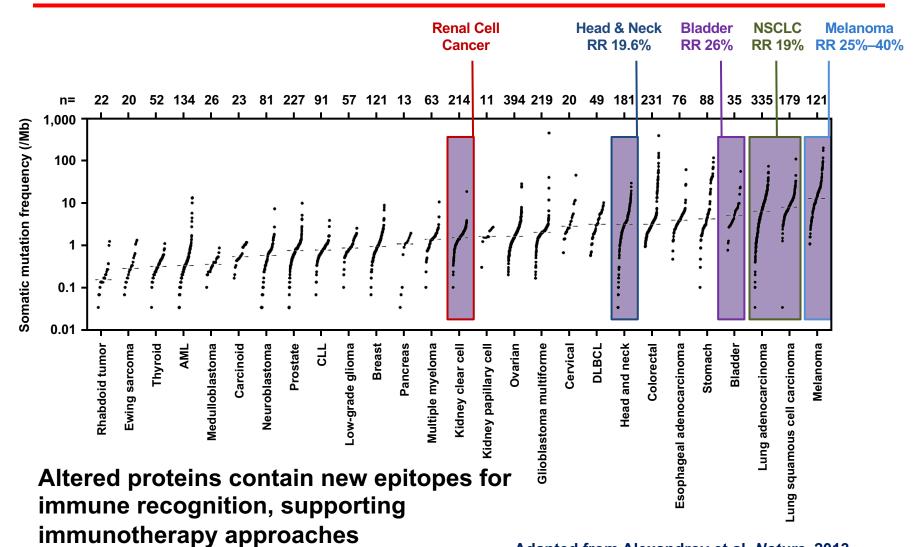
Published online 21 August 2019

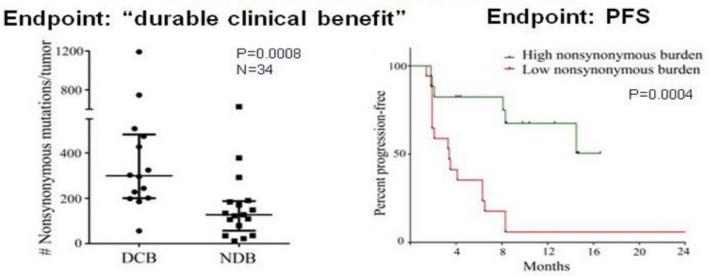
ORIGINAL ARTICLE

Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression

E. J. Aguilar¹⁺, B. Ricciuti¹⁺, J. F. Gainor², K. L. Kehl¹, S. Kravets³, S. Dahlberg³, M. Nishino⁴, L. M. Sholl⁵, A. Adeni¹, S. Subegdjo¹, S. Khosrowjerdi², R. M. Peterson², S. Digumarthy², C. Liu⁶, J. Sauter⁷, H. Rizvi⁸, K. C. Arbour⁸, B. W. Carter⁹, J. V. Heymach¹⁰, M. Altan¹⁰, M. D. Hellmann^{8,11} & M. M. Awad^{1*}

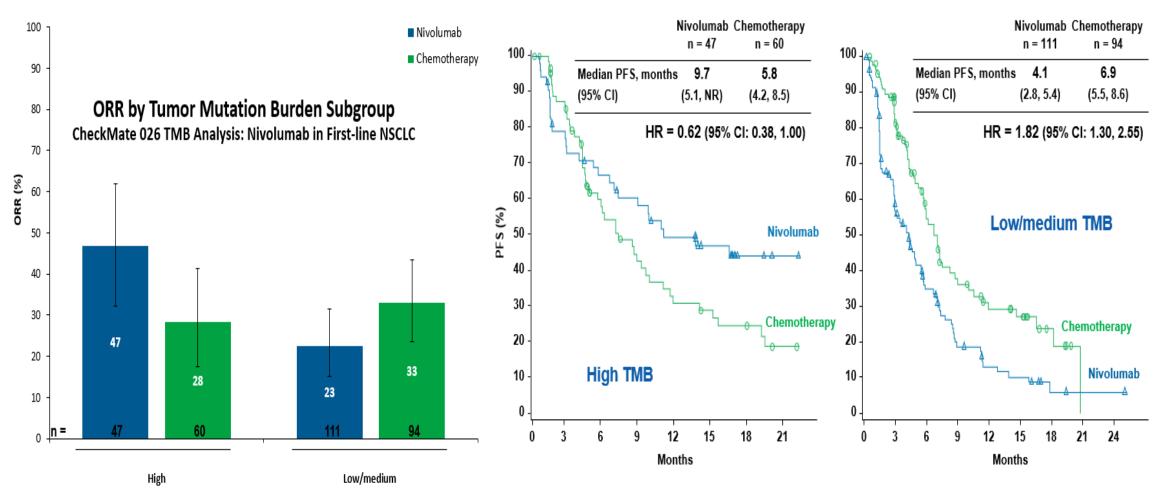

Figure 2. (A) The best objective response to pembrolizumab is shown as a percent change of target lesions from baseline in evaluable patients in patients with a non-small-cell lung cancer programmed death-ligand 1 (PD-L1) expression level of 50%–89% versus 90%–100% (B) Histograms showing the response rate to first-line pembrolizumab in the PD-L1 expression 50%–89% versus 90%–100% groups.


Tumor Mutation Burden

Mutation Heterogeneity

TMB - Predictive

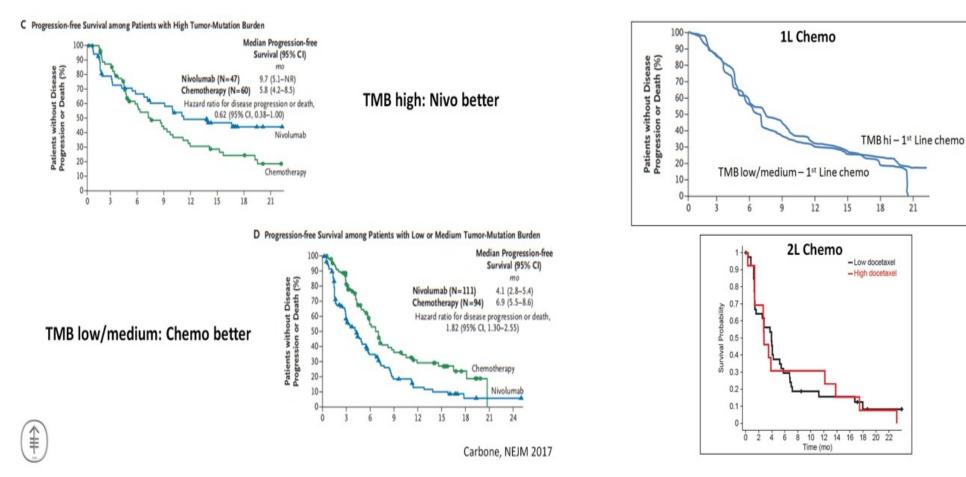
Preliminary findings: Mutational load in NSCLC correlates with response to anti-PD-1 (pembrolizumab) therapy



Somatic exomic mutations create new proteins potentially recognized by the immune system
Rizvi, Chan et al., Science 2015

TMB Analysis: CheckMate 026

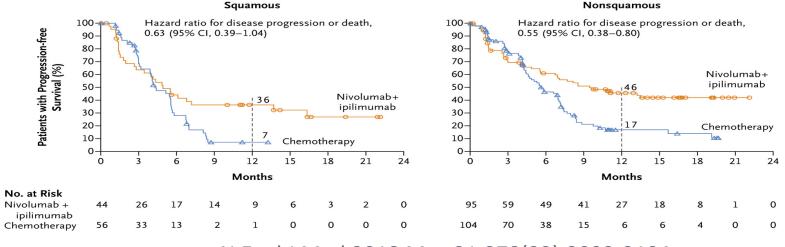
ORR


PFS

Biomarker TMB – CM 026

Predictive

Kowantez ESMO 2016 Carbone, NEJM 2017


TMB

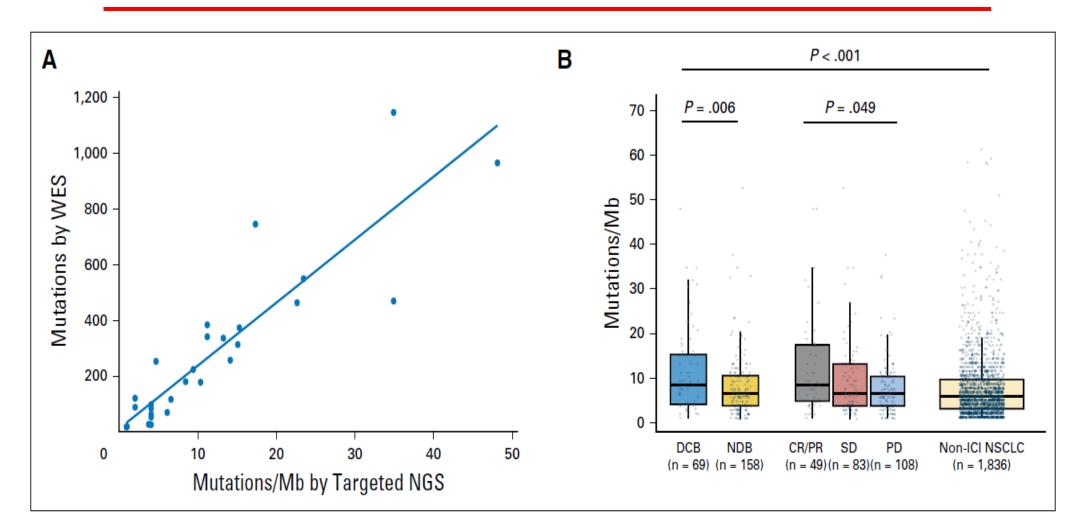
Predictive of benefit to IO – CM 227

A Tumor PD-L1 Expression

PFS among patients with High TMB а according to Tumor PD-L1 Expression Histologic and high TMB Type. A defined as at was 10 mutations least per megabase. The circles (nivolumab plus ipilimumab) and triangles (chemotherapy) indicate censored data.

N Engl J Med 2018 May 31;378(22):2093-2104

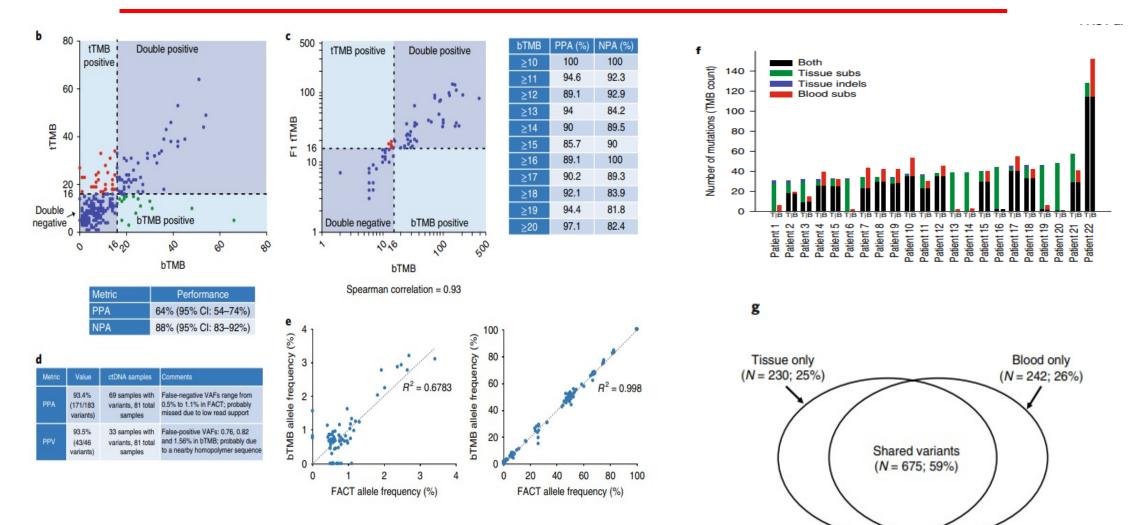
TMB


Testing Methodology

- Only a minority of mutations produce neoantigens
- TMB cut-off values require validation?

Reference	Sequencing Type	Threshold
Rizvi, Science 2015	WES	5 mut/Mb Nonsynonymous missense
Kowanetz, ESMO 2017	Foundation ONE	10 mut/Mb
^{Ca} Standar	dization neede	d! ymous missense
Rizvi, JCO 2018	IMPACT-MSKCC	7 mut/Mb Nonsynonymous
Hellmann, NEJM 2018	Targeted Foundation ONE	10 mut/Mb
Velcheti, ASCO 2018	Genentech	16 mut/Mb

Factors to standardize: - sequencing depth, mutations included, filtering process


TMB WES vs CGS (Target NGS)

Hira Rizvi, et al. Journal of Clinical Oncology 2018 36:633-641.

TMB

Blood DNA (bTMB) vs Tissue DNA (tTMB)

Nat Med. 2018 Sep;24(9):1441-1448

Microsatellite Instability

Mismatch Repair Deficiency

Incidence across 12,019 tumors

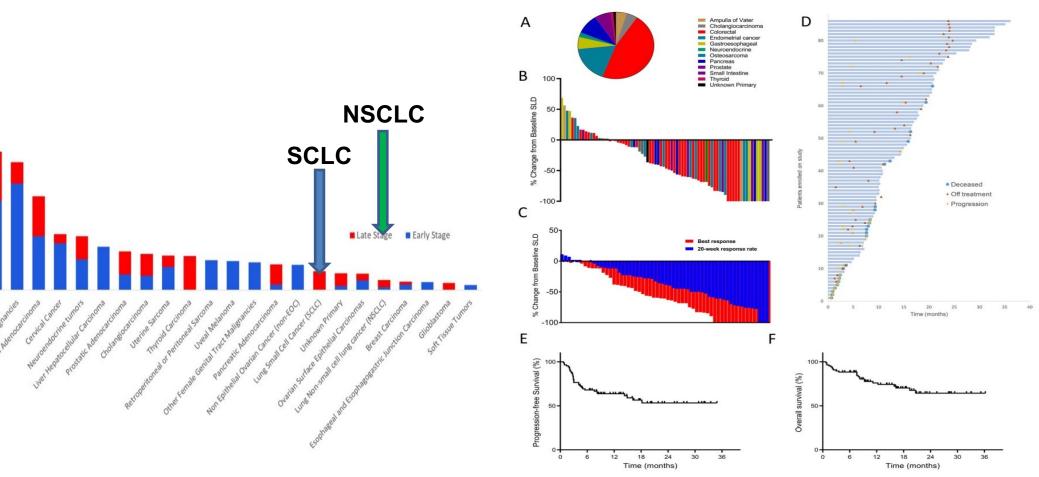
18%

16%

14%

12%

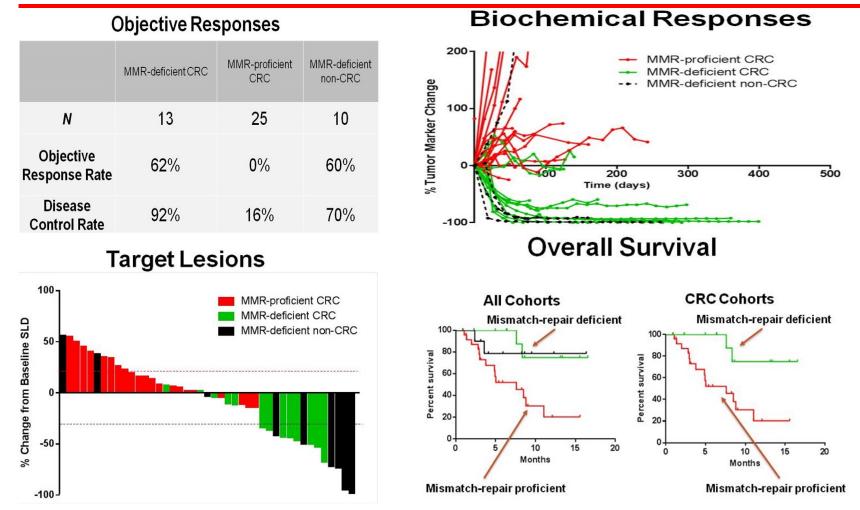
10%


8%

6%

4%

2%


Patient survival and clinical response to Pembrolizumab across 12 different tumor types with mismatch repair deficiency.

Dung T. Le et al. Science 2017; science.aan6733

Microsatellite Instability (MSI)

Dung T. Le 2015 J Clin Oncol 33, 2015 (suppl; abstr LBA100)

Biomarkers Microsatellite Instability (MSI)

DA U.S. FOOD & DRUG							A to Z Index Follow FDA En Español					
	ADMINISTRATION						Search FDA					
	=	Home	Food	Druga	Medical Devices	Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetica	Tobacco Producta	,	
D	ru	18										

Diuya

Home > Drugs > Drug Approvals and Databases > Approved Drugs

×

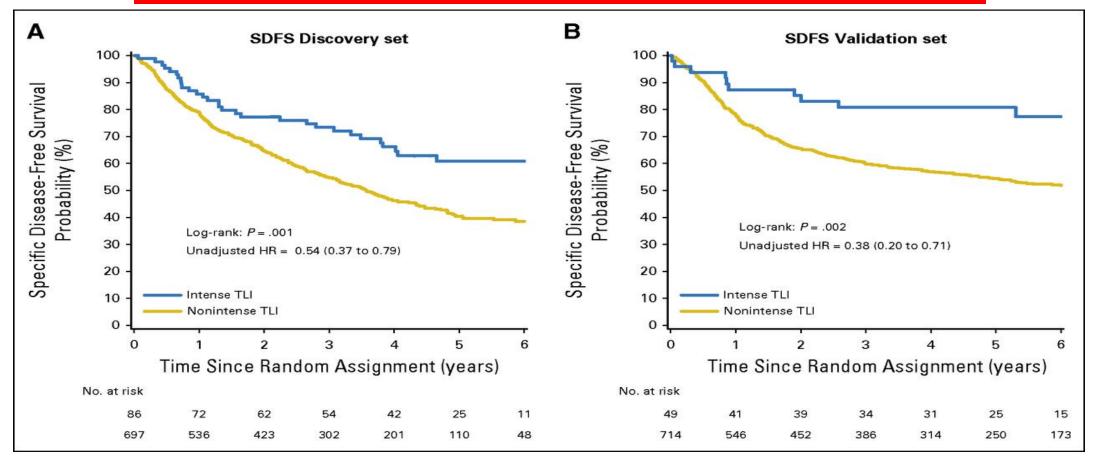
Hematology/Oncology (Cancer) Approvals & Safety Notifications

Drug Information Soundcast in Clinical Oncology (D.I.S.C.O.)

Approved Drug Products with Therapeutic Equivalence Evaluations (Orange Book)

FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication

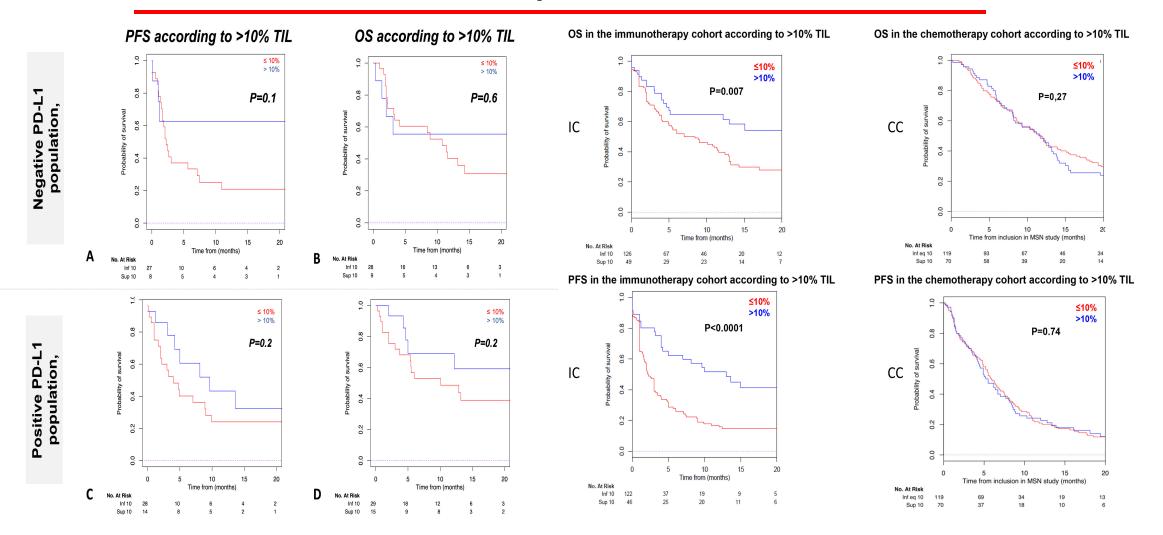
On May 23, 2017, the U.S. Food and Drug Administration granted accelerated approval to pembrolizumab) for adult and pediatric patients with unresectable or metastatic, microsatellite


instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options or with MSI-H or dMMR colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan.

This is the FDA's first tissue/site-agnostic approval.

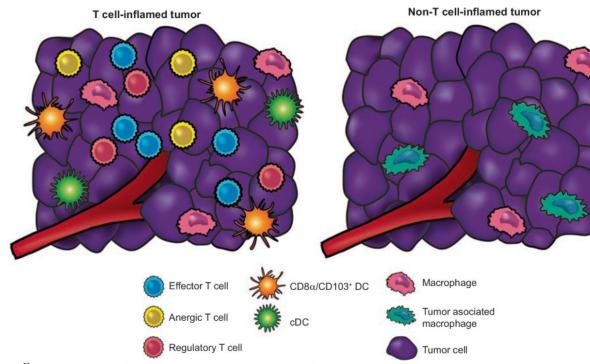
The approval was based on data from 149 patients with MSI-H or dMMR cancers enrolled across five uncontrolled, multi-cohort, multi-center, single-arm clinical trials. Ninety patients had colorectal cancer and 59 patients were diagnosed with one of 14 other cancer types. Patients received either pembrolizumab, 200 mg every 3 weeks, or pembrolizumab, 10 mg/kg every 2 weeks. Treatment continued until unacceptable toxicity, or disease progression that was either symptomatic, rapidly progressive, required urgent intervention, or associated with a decline in performance status. A maximum of 24 months of treatment was administered.

Presented By Kurt Schalper at 2017 ASCO Annual Meeting


TIL - Prognostic

Survival curves for tumor lymphocytic infiltration (TLI; intense and nonintense) for specific disease-free survival (SDFS) on discovery (A) and validation (B) sets.

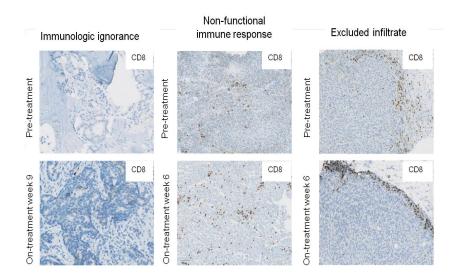
Elisabeth Brambilla et al. JCO 2016;34:1223-1230


TIL density– Predictive

I. Gataa et al. European Journal of Cancer 145 (2021) 221e229

TIL – Inflamed vs. Non-Inflamed Phenotype

Inflamed



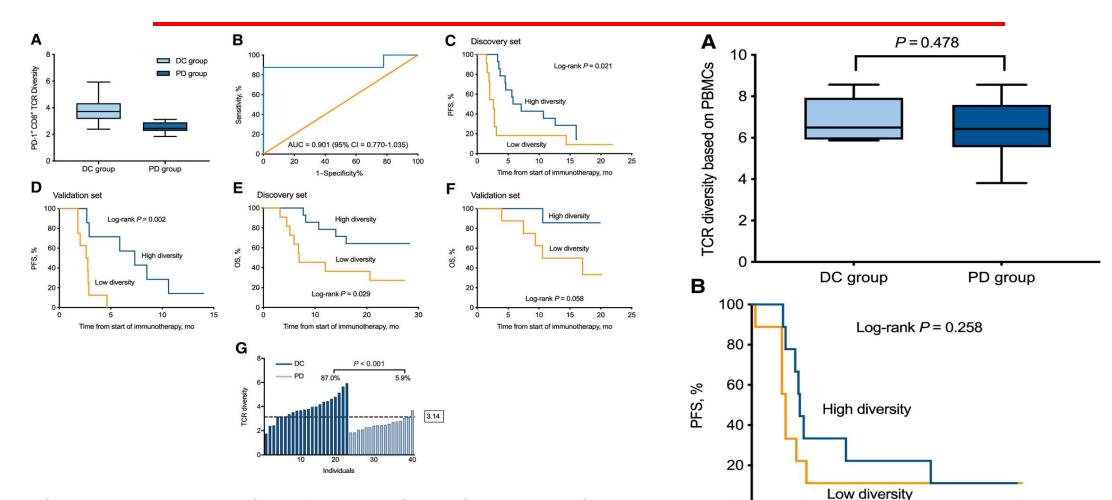
Immunologic composition of the T cell-inflamed versus non-T cell-inflamed tumor microenvironments. The T cell-inflamed tumors contain variable numbers of CD8⁺ T cells and CD8a/CD103-lineage DCs, but also possess the highest density of FoxP3⁺ Tregs. In addition, many of the conventional T cells have a dysfunctional anergic phenotype. In contrast, the non-T cell-inflamed tumors lack these elements but still contain blood vessels, fibroblasts, and macrophages that help support tumor growth. Recruitment of CD8⁺ effector cells is largely dependent on the chemokines CXCL9 and CXCL10, which engage the receptor CXCR3. Treg recruitment is primarily driven by CCL22, which is in part produced by activated CD8⁺ T cells

Adv Exp Med Biol. 2017 ; 1036: 19–31

Non-Inflamed

Biomarker Analyses Defining the Profile of Non-responders

- Three distinct patterns of nonresponse were observed
- Most patients who progressed failed to show up-regulation of PD-L1 or evidence of activated T cells
- These results provide evidence for the "inflamed tumor" hypothesis


Herbst RS et al. Nature 2014;515: 563-567;

TCR Clonality – TCR Repertoire

NGS to capture uniquely rearranged variable T-cell Receptor (TCR) beta-chain

TCR beta-chain more clonal (less diverse) in (anti-PD-1) responders Increased TCR clonality in (anti-PD-1) responders

TCR Clonality – TCR Repertoire

0

0

10

Time from start of immunotherapy, mo

5

15

20

TCR Repertoire Diversity of Peripheral PD-1⁺CD8⁺ T Cells Predicts Clinical Outcomes after Immunotherapy in Patients with NSCLC

Cancer Immunol Res. 2020;8(1):146-154. doi:10.1158/2326-6066.CIR-19-0398

Point Mutations and Co-mutations

EGFR, ALK, KRAS, STK11, POLE, Co-mutations

Gene Expression Profiles

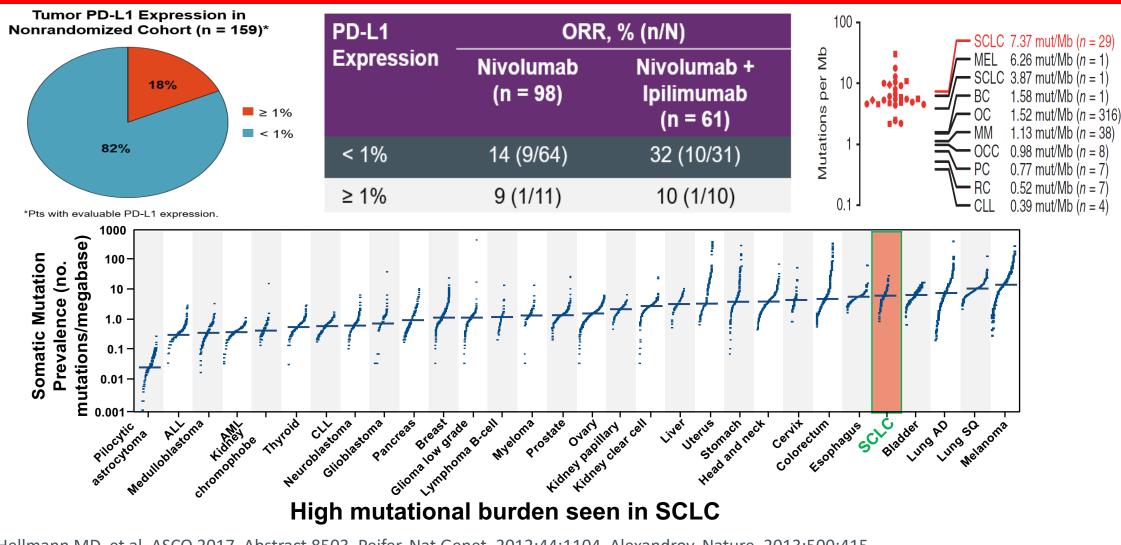
INF- gamma Signature Immunoscore Antibodies Profile

Microbiome

Clostridiales in Responders Bacteroidiales in Non-responders

Combinations of Biomarkers

TMB and PD-L1 (essentially) independent variables TMB and INF-gamma sig. are minimally associated TMB high and MSI, minimal overlap PD-L1 plus TILs


Complex (multifactorial) bio-markers necessary (?) More Predictive (?)

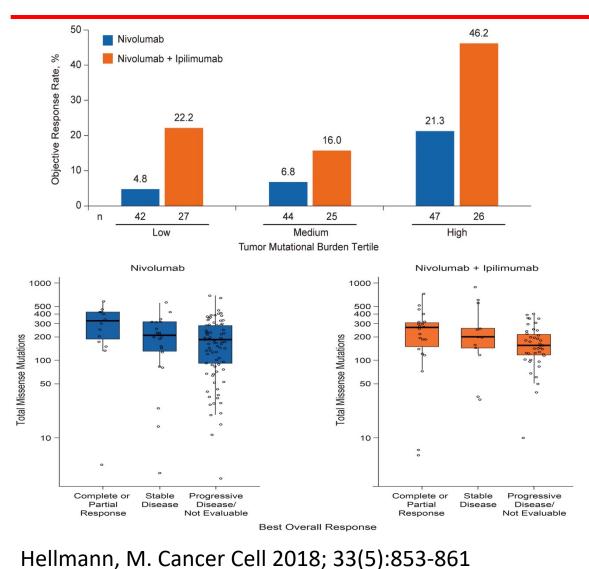
SCLC

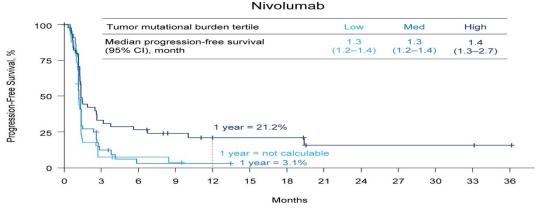
Potential Predictive Biomarkers

Immunotherapy

PD-L1 expression and TMB

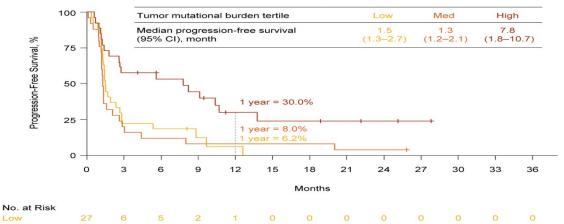
Hellmann MD, et al. ASCO 2017. Abstract 8503. Peifer. Nat Genet. 2012;44:1104. Alexandrov. Nature. 2013;500:415.


TMB


CheckMate 032: Results

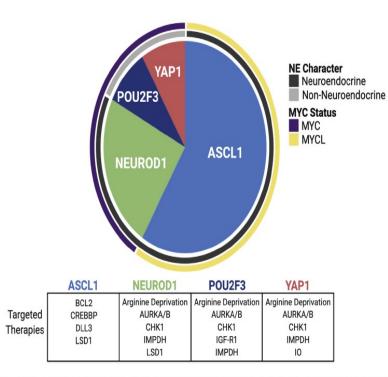
Low

High

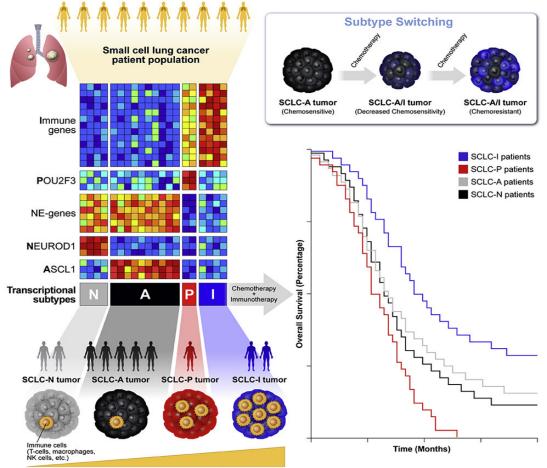

Medium

No. at Risk													
Low	42	З	2	1	0	0	0	0	0	0	0	0	0
Medium	44	5	1	1	1	0	0	0	0	0	0	0	0
High	47	15	12	8	5	5	5	2	2	2	2	2	1

Nivolumab + Ipilimumab


TMB

IMpower133 - OS by Subgroup


	Median OS	, Mos		OS HR	
Population	Atezolizumab + CP/ET	Placebo + CP/ET	· • •	(95% CI)	
Male (n = 261)	12.3	10.9	••	0.74 (0.54-1.02)	
Female (n = 142)	12.5	9.5	└──◆↓	0.65 (0.42-1.00)	
< 65 yrs (n = 217)	12.1	11.5	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►	0.92 (0.64-1.32)	
≥ 65 yrs (n = 186)	12.5	9.6		0.53 (0.36, 0.77)	
ECOG PS 0 (n = 140)	16.6	12.4	·•	0.79 (0.49-1.27)	
ECOG PS 1 (n = 263)	11.4	9.3	,f	0.68 (0.50, 0.93)	
Brain metastases (n = 35)	8.5	9.7	► ···	1.07 (0.47-2.43)	
No brain metastases (n = 368)	12.6	10.4	·	0.68 (0.52-0.89)	
Liver metastases (n = 149)	9.3	7.8	·•	0.81 (0.55-1.20)	
No liver metastases (n = 254)	16.8	11.2		0.64 (0.45-0.90)	
bTMB < 10 mut/mb (n = 139)	11.8	9.2	·•	0.70 (0.45-1.07)	
bTMB ≥ 10 mut/mb (n = 212)	14.6	11.2	·	0.68 (0.47, 0.97)	
bTMB < 16 mut/mb (n = 271)	12.5	9.9		0.71 (0.52-0.98)	
bTMB ≥ 16 mut/mb (n = 80)	17.8	11.9		0.63 (0.35-1.15)	
ITT (N = 403)	12.3	10.3		0.70 (0.54-0.91)	
		0.1	1.0 2.5		
			Atezolizumab better Placebo better		

Liu SV, et al. WCLC 2018. Abstract PL02.07. Horn L, et al. N Engl J Med. 2018;379:2220.

Molecular subtypes of SCLC Potential Biomarkers

Figure 3. Diagram of the relative abundance, MYC status, and NE character of the four molecular subtypes of SCLC, each identified by their key transcriptional regulator. These subtypes may exhibit distinct targetable vulnerabilities, which are represented in the table beneath the pie chart. Proportions of each subtype are as follows: ASCL1 (0.70, 95% CI: 0.60-0.79), NEUROD1 (0.11, 95% CI: 0.06-0.20), YAP1 (0.02, 95% CI: 0.01-0.09), POU2F3 (0.16, 95% CI: 0.10-0.26). ASCL1, achaete-scute homolog 1; AURKA/B, Aurora kinase A/B; BCL2, B-cell lymphoma 2; CREBBP, CREB-binding protein; CHK1, checkpoint kinase 1; DLL3, delta-like ligand 3; IMPDH, inosine-5' monophosphate dehydrogenase; IGF-R1, insulin-like growth factor 1 receptor; IO, immuno-oncology; LSD1, lysine-specific histone demethylase 1; NE, neuroendocrine; NEUROD1, neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; YAP1, yes-associated protein 1.

EMT, IFNy signaling, and immune cell infiltrate

JTO 2020; 15(4):520-540

Molecular subtypes of SCLC Potential Biomarkers – YAP1 and NOTCH

YAP1 Expression in SCLC Defines a Distinct Subtype With T-cell-Inflamed Phenotype

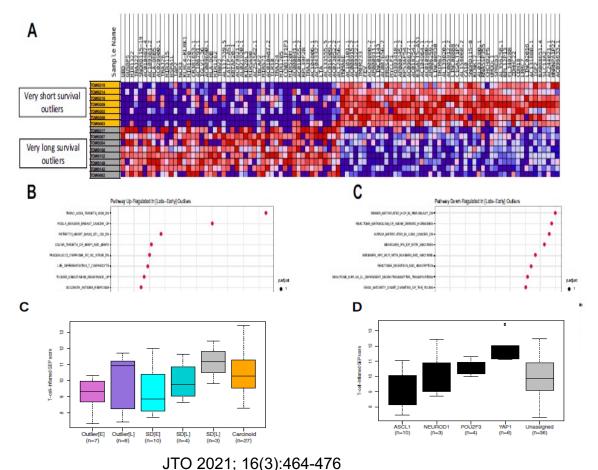


Table 2 Notch signaling gene set is the most significant predictor of clinical benefit to immune checkpoint blockade across relapsed SCLC cohorts.

Variable	Estimatea	t value ^a	p value ^a	FDR ^b
Hallmark Notch	0.25	4.31	9.8 × 10 ⁻⁴	5.9 × 10-4
signaling				
Immune signature	0.13	2.06	0.047	0.14
NE score	-0.07	-1.82	0.08	0.16
MYC expression	-0.04	-0.83	0.41	0.62
EZH2 expression	-0.03	-0.56	0.58	0.62

- Tumors deriving clinical benefit (CB) from ICI exhibited cytotoxic T-cell infiltration, high expression of antigen processing and presentation machinery genes, and low neuroendocrine (NE) differentiation.
- Notch signaling, (correlates positively with low NE differentiation), most significantly predicts CB to ICI.
- Mechanistic link between Notch activation, low NE differentiation and increased intrinsic tumor immunity.