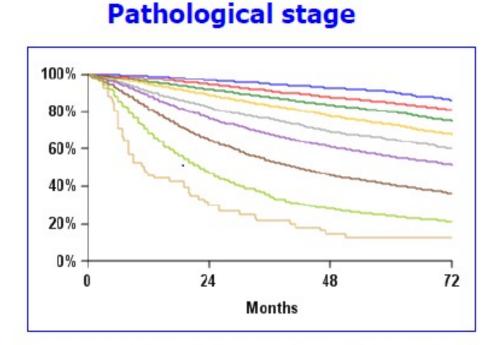
MEMORIAL HEALTHCARE SYSTEM

Neo-Adjuvant and Adjuvant Immunotherapy for Non-Small Cell Lung Cancer Luis E. Raez MD FACP FCCP

Chief Scientific Officer& Medical Director

Memorial Cancer Institute/Memorial Health Care System

Clinical Professor of Medicine/Herbert Wertheim College of Medicine Florida International University


Past-President Florida Society of Clinical Oncology (FLASCO)

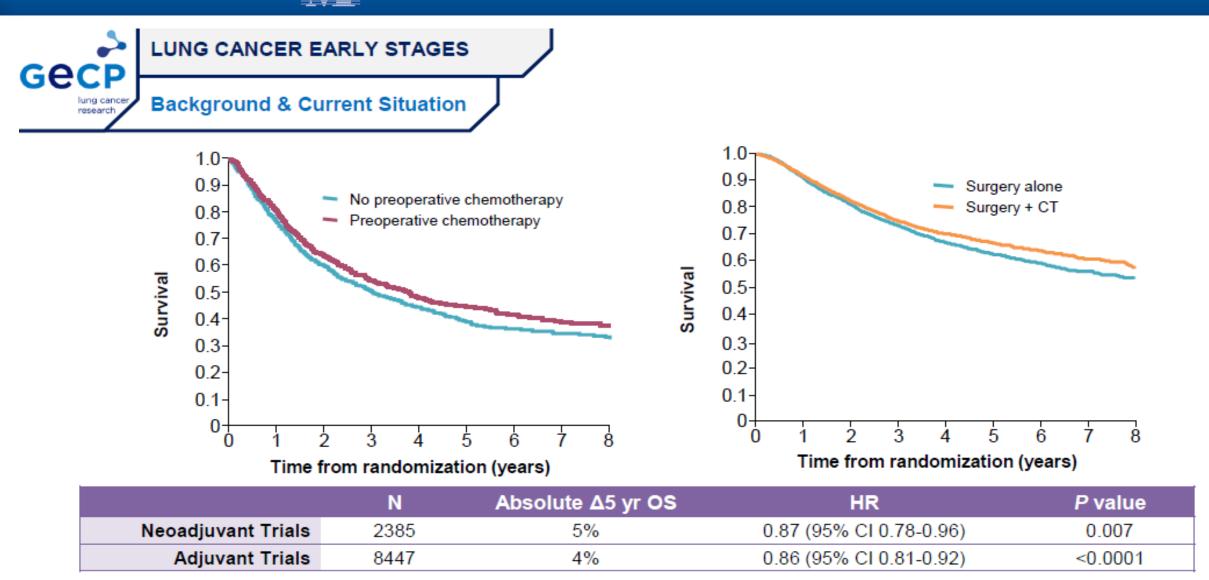
FEBRUARY 22-26, 2022 | WORLDWIDE VIRTUAL EVENT

Surgery is still the intervention most likely to cure lung cancer

	Events/N	MST	2 years	5 years
IA1	139/1389	NR	97%	90%
IA2	823/5633	NR	94%	85%
IA3	875/4401	NR	92%	80%
IB	1618/6095	NR	89%	73%
IIA	556/1638	NR	82%	65%
IIB	2175/5226	NR	76%	56%
IIIA	3219/5756	41.9	65%	41%
IIIB	1215/1729	22.0	47%	24%
IIIC	55/69	11.0	30%	12%

But there is a lot of room for improvement!

Goldstraw P et al. J Thorac Oncol 2016; 11: 39-51.


David Carbone, Ohio State University

Neoadjuvant Immunotherapy in NSCLC

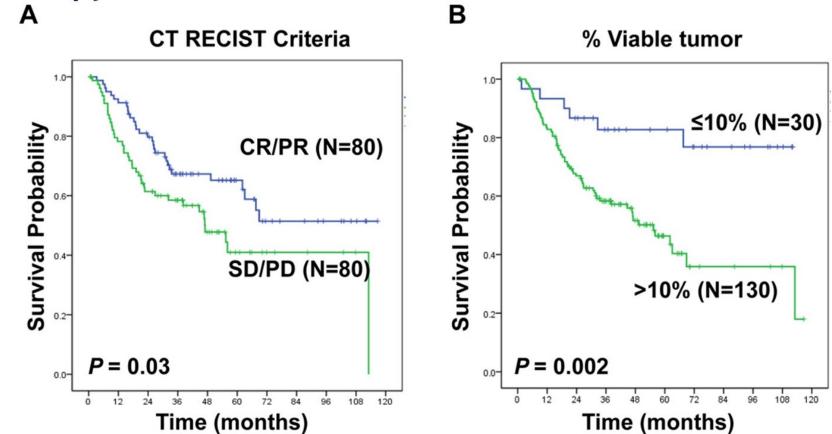
MEMORIAL HEALTHCARE SYSTEM

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

CT RECIST vs. MPR and prediction of OS after neoadjuvant chemotherapy in resectable NSCLC

Methods

- The University of Texas M.D. Anderson Lung Cancer Collaborative Research Group
- Primary tumor size on CT before and after neoadjuvant chemotherapy in NSCLC. •
- N = 160 patients who underwent surgical resection. ٠
- CT-measured response (RECIST) and histopathologic response and OS.
- Major pathologic response (MPR) was defined as $\leq 10\%$ viable tumor. •


Evaluate

PRESENTED AT: 2019 ASCO

CT RECIST vs. MPR in predicting OS following neoadjuvant chemotherapy

#ASCO19

CT RECIST vs. MPR and prediction of OS after neoadjuvant chemotherapy in resectable NSCLC

41% discordance rate between CT RECIST response and histopathologic response.

2019 ASCO ANNUAL MEETING Bildes are the property of th permission required for reus

PRESENTED AT:

PRESENTED BY: Jay M. Lee, M.D.

17

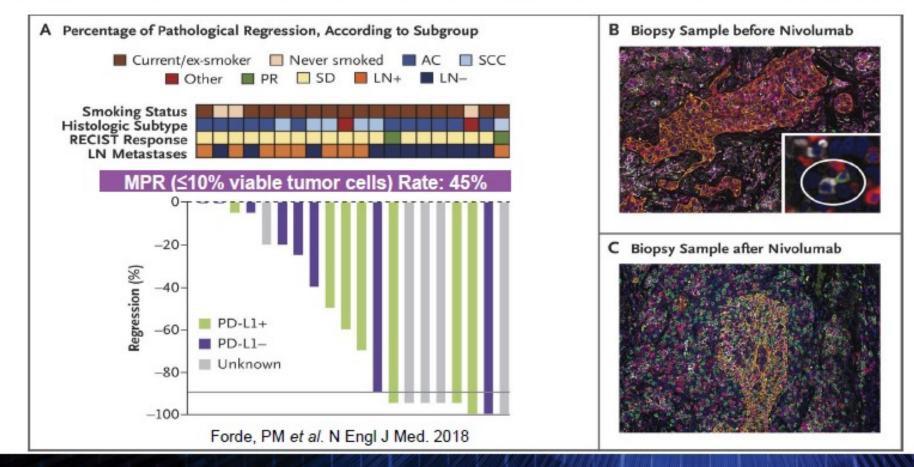
FEBRUARY 22-26, 2022 | WORLDWIDE VIRTUAL EVENT

MPR and pCR may represent surrogate markers of survival benefit in operable NSCLC

After neoadjuvant platinum-based chemo:

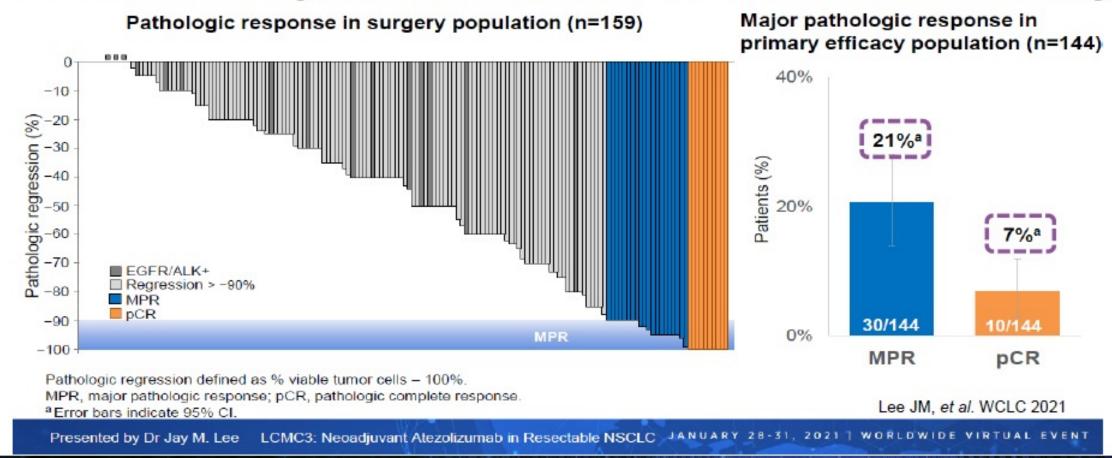
- Historical major pathologic response rates in primary tumors: ~20% (MPR, ≤10% residual viable tumor)¹⁻³
- Historical pathological complete response rates: ~4% (pCR, 0% residual viable tumor)⁴

Meta-Analysis: Associations Between pCR/MPR & OS/EFS after neoadjuvant chemo-based therapy⁵

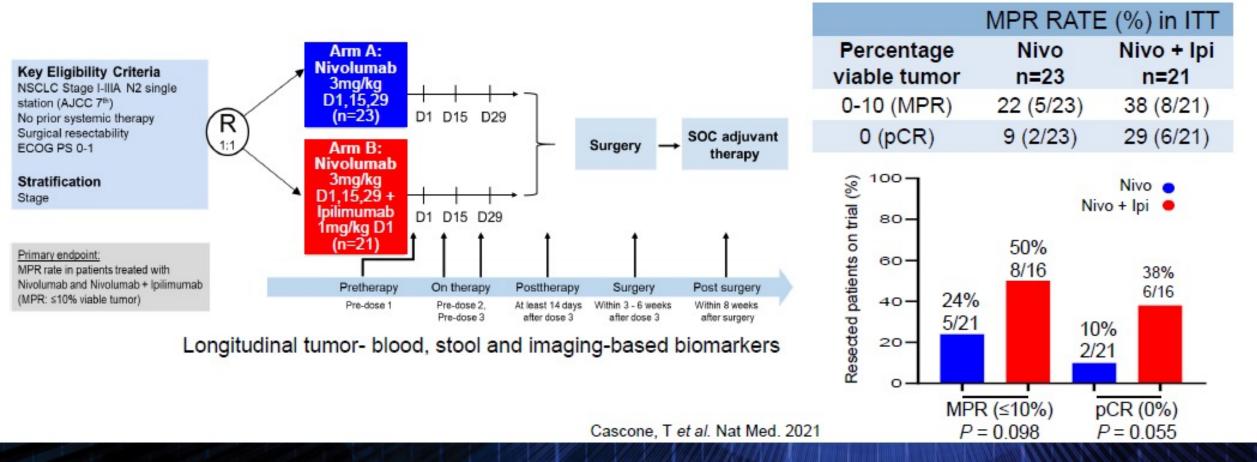

	Association	HR (95% CI)	Range of HRs	Patients (n)	Studies (n)
	OS, pCR vs no pCR	0.49 (0.42-0.57)	0.13-0.78	6474	20
0	OS, MPR vs no MPR	0.36 (0.29-0.44)	0.13-0.58	1193	12
	EFS, pCR vs no pCR	0.49 (0.41–0.60)	0.26-0.71	2157	11
	EFS, pCR vs no pCR	0.52 (0.42-0.66)	0.43-0.60	770	6

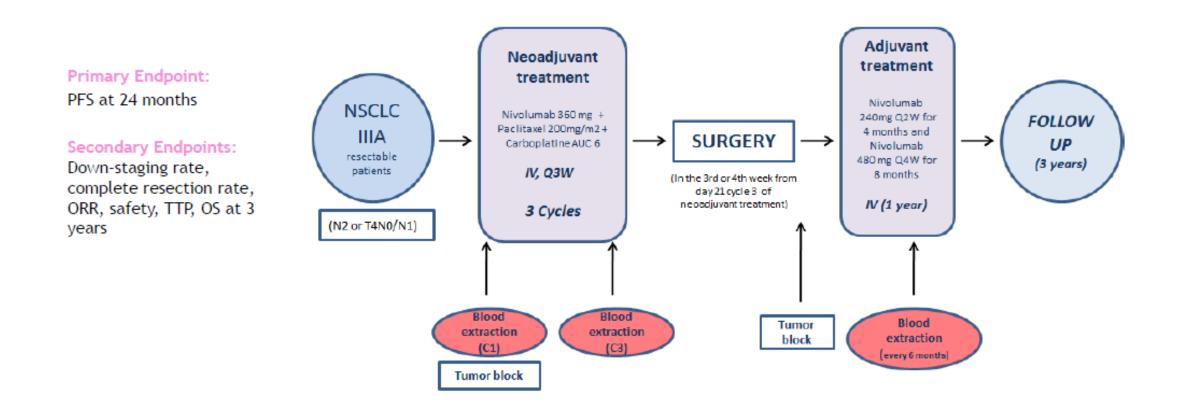
1. Pataer A et al. J Thorac Oncol 2012; 2. Chaft JE et al; J Thorac Oncol, 2013; 3. Cascone T et al, Ann Thorac Surg 2018; 4. Hellmann M et al Lancet Oncol 2014; 5. Waser N et al. Oral presentation ESMO 2020.

FEBRUARY 22-26, 2022 WORLDWIDE VIRTUAL EVENT

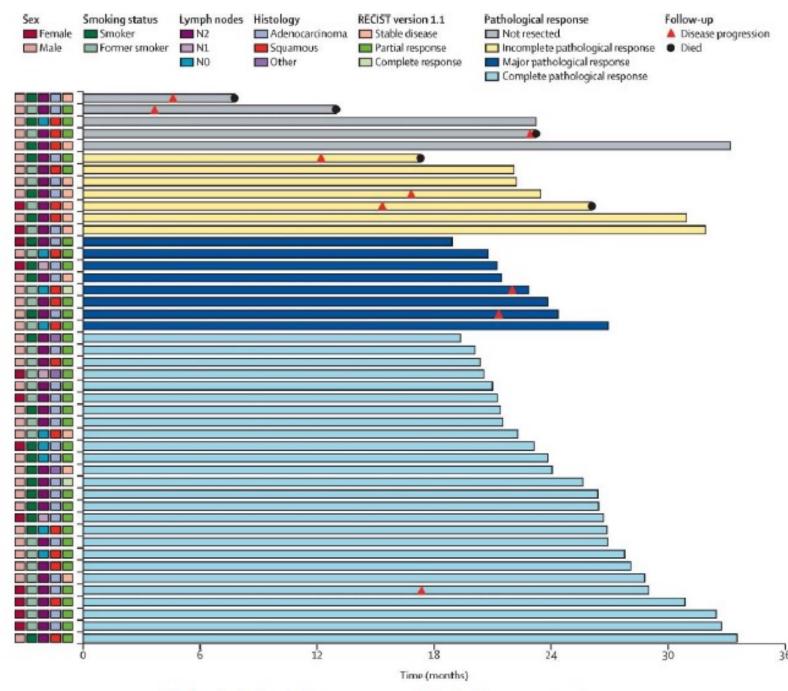

Neoadjuvant nivolumab is feasible, safe and active in operable NSCLC

FEBRUARY 22-26, 2022 | WORLDWIDE VIRTUAL EVENT

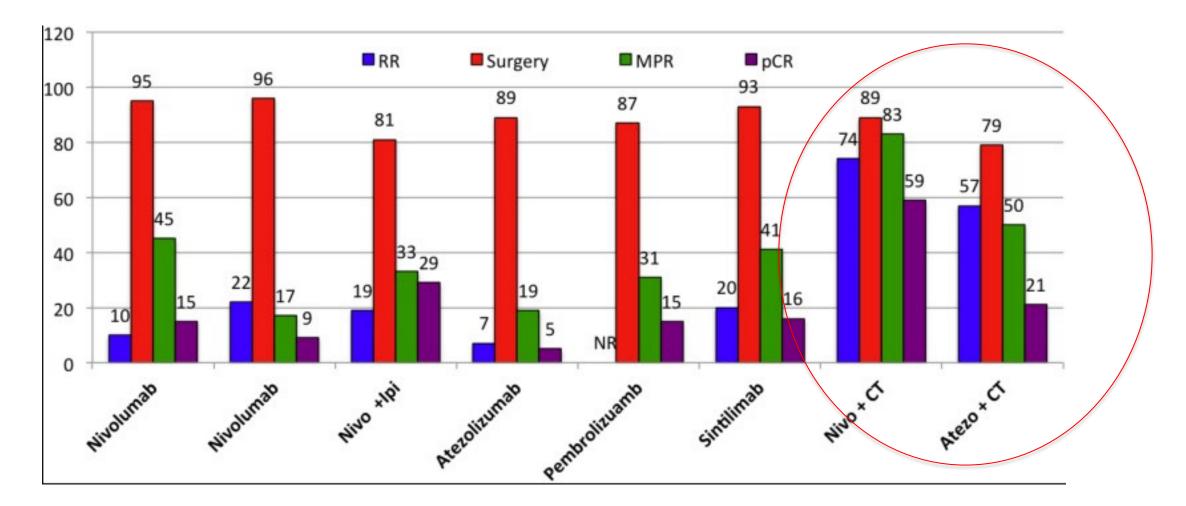

MPR to neoadjuvant atezolizumab in the LCMC3 study


FEBRUARY 22-26, 2022 WORLDWIDE VIRTUAL EVENT

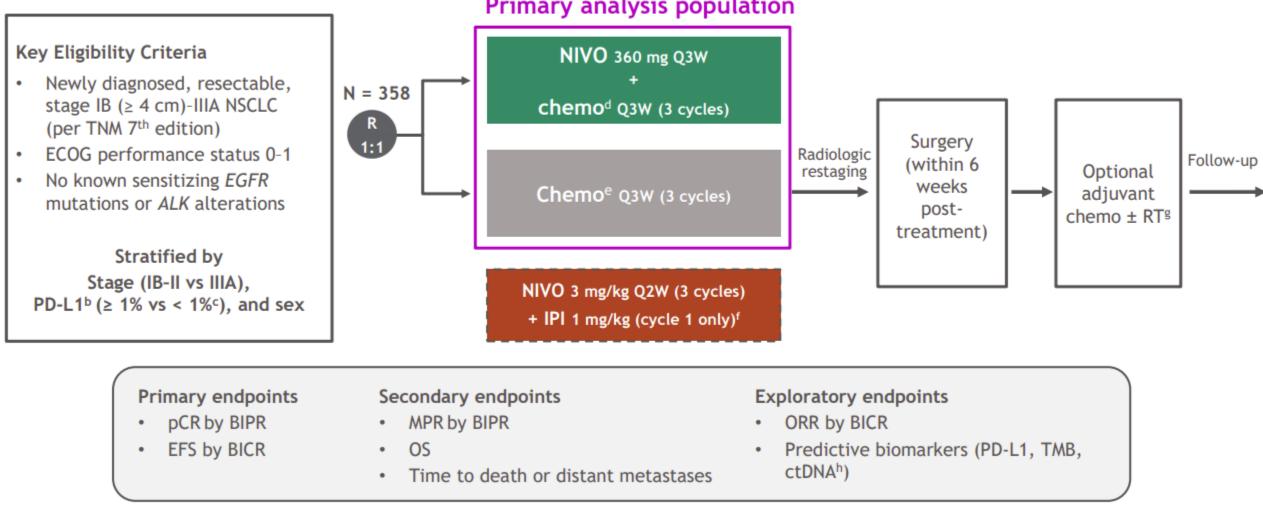
NEOSTAR: phase 2 study of induction ICB for resectable stage I-IIIA NSCLC


Neoadjuvant Chemo-Immunotherapy NADIM: Study Design & Endpoints

Key Results - NADIM


- 46 patients with clinical stage IIIA enrolled, 74% N2 including 54% multi-station N2
- 30% of pts had ≥G3 toxicity, no delays to surgery due to toxicity
- ORR 76% 41 of 46 patients underwent R0 resection*. 37/46 (80%) downstaged at resection.
- 24 month PFS 77% (59.9-87.7)

74% (34/46) had MPR and 57% (26/46) pts had pCR


*2 pts elected not to have surgery, 3 pts had progressive disease

Efficacy of neoadjuvant immune checkpoint inhibitors (ICIs) with or without chemotherapy (CT)

CheckMate 816 study design^a

FDA approved 3/2022

Primary analysis population

CheckMate 816—Baseline Characteristics

	NIVO + Chemo (n = 179)	Chemo (n = 179)		NIVO + Chemo (n = 179)	Chemo (n = 179)
Age, median (range), years	64 (41–82)	65 (34–84)	Tumor PD-L1 expression, % [¶]		
Female, %	28	29	Not evaluable	7	7
Region, %*			<1%	44	43
North America	23	28	≥1%	50	50
Europe	23	14	1%-49%	28	26
Asia	48	51	≥50%	21	24
Stage, % ⁺					
IB-II [‡]	36	35	TMB, %1		
IIIA	63	64	Not evaluable / not reported//	51	50
Histology, %			<12.3 mut/Mb	27	30
Squamous	49	53	≥12.3 mut/Mb	22	21
Nonsquamous	51	47			
Smoking status, % [§]			Baseline characteristics in the	he NIVO + II	PL (exploratory)
Current / former	89	88			
Never	11	11	were generally similar to the	e NIVO + cn	emo and chemo

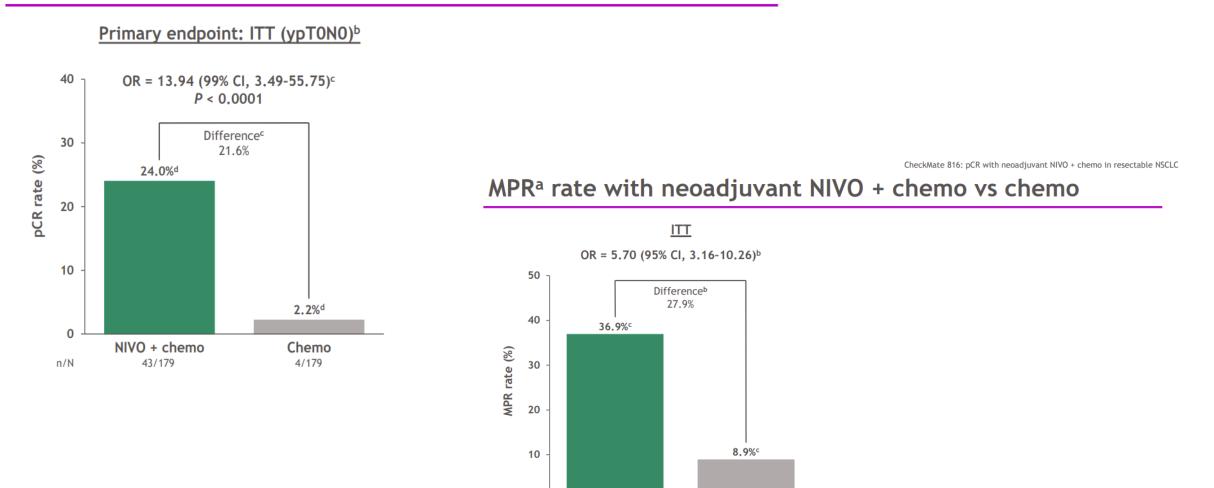
*Rest of the world: 7% of patients in each of the NIVO + chemo and chemo arms. *Disease stage by CRF, with TNM 7th edition used for classification; 1 patient in each of the NIVO + chemo and chemo arms. had stage IV disease. *Stage IB, IIA, IIB disease: 6%, 17%, and 14% of patients in the NIVO + chemo arm, and 4%, 18%, and 13% in the chemo arm, respectively. Smoking status unknown: 1 patient in chemo arm. Percentages are based on ITT. //TMB was not analyzed for patients in China, and these patients are included in the "not reported" category. Abbreviations: ITT, intention to treat; NICO, nivolumab; PD-L1, programmed death ligand 1; TMB, tumor mutational burden. Forde PM, et al. Abstract CT003. Presented at: 2021 AACR; April 10-15, 2021. Graphic courtesy of Patrick Forde, MBBCh.

CheckMate 816: pCR with neoadjuvant NIVO + chemo in resectable NSCLC

Objective response rate and radiographic down-staging

Objective response rate

Patients with radiographic down-staging^c


Patients, n (%)	NIVO + chemo (n = 179)	Chemo (n = 179)
ORRª	96 (54) ^b	67 (37) ^b
Best overall response		
Complete response	1 (1)	3 (2)
Partial response	95 (53)	64 (36)
Stable disease	70 (39)	88 (49)
Progressive disease	8 (4)	11 (6)
Not evaluable	1 (1)	1 (1)
Not reported	4 (2)	12 (7)

encennace oro, percinter neoadjatane into - enemo in resectable rise

Primary endpoint: pCR^a rate with neoadjuvant NIVO + chemo vs chemo

NIVO + chemo

66/179

0

n/N

Per BIPR; MPR: ≤ 10% residual viable tumor cells in <u>both</u> the primary tumor (lung) and sampled lymph nodes; ℃Calculated by stratified Cochran-Mantel-Haenszel method; ↔MPR rates 95% CI: NIVO + chemo, 29.8-44.4; chemo, 5.2-14.1.

Chemo

16/179

CheckMate 816 Summary—Neoadjuvant Nivolumab Plus Chemotherapy vs Chemotherapy for Resectable NSCLC

- CheckMate 816 showed a statistically significant improvement in the primary endpoint of pCR (OR = 13.94 [99% CI, 3.49–55.75]; P <.0001), and benefit was consistent across disease stages, histologies, TMB, and PD-L1 expression levels
 - MPR and ORR were also improved
 - The study reportedly also now positive for EFS
- The addition of neoadjuvant nivolumab to chemotherapy maintained a tolerable safety profile and did not impede the feasibility of surgery
- In an exploratory subset analysis, ctDNA clearance was more frequent with nivolumab plus chemotherapy vs chemotherapy alone and appeared to be associated with pCR
- CheckMate 816 is the first phase III study to show the benefit of neoadjuvant immunotherapy plus chemotherapy combination for resectable NSCLC

Abbreviations: ctDNA, circulating tumor DNA; EFS, event-free survival; MPR, major pathologic response; NSCLC, non-small cell lung cancer; ORR, objective response rate; pCR, pathologic complete response; TMB, tumor mutational burden.

Forde PM, et al. Abstract CT003. Presented at: 2021 AACR; April 10-15, 2021.

Ongoing Phase III Trials of Neoadjuvant Chemotherapy Plus PD-1/PD-L1 Antibody in NSCLC

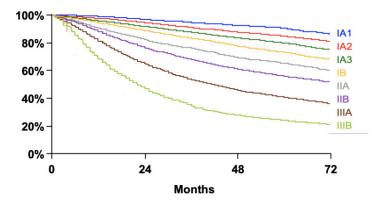
PD-1/PD-L1	Trial (Estimated	Stage	Backbone	Neoadjuvant IO	Adjuvant IO	Primary
Antibody	Enrollment)	(AJCC ed)		Intervention	Intervention	Endpoints
Nivolumab	CheckMate 816 ¹ (N = 350)	IB–IIIA (7 th)	Platinum-doublet chemotherapy	+/- Nivolumab IPI + NIVO (closed)	No	pCR EFS
	CheckMate 7TT ² (N = 452)	II–IIIB (8 th)	Platinum-doublet chemotherapy	Nivolumab or placebo	Nivolumab or placebo	EFS
Pembrolizumab	KEYNOTE-671 ³	IIA–IIIB	Platinum-doublet	Pembrolizumab or	Pembrolizumab or	EFS
	(N = 786)	(8 th)	chemotherapy	placebo	placebo	OS
Atezolizumab	IMpower030 ⁴ (N = 450)	II–IIIB (8 th)	Platinum-doublet chemotherapy	Atezolizumab or placebo	Atezolizumab or BSC	EFS
Durvalumab	$AEGEAN^6$	IIA-IIIB	Platinum-doublet	Durvalumab or	Durvalumab or	pCR
	(N = 800)	(8 th)	chemotherapy	placebo	placebo	EFS

1. CheckMate 816 positive for both pCR and EFS endpoints at 1st interim analysis – BMS press release Nov 2021

Abbreviations: AJCC, American Joint Commission on Cancer; BSC, best supportive care; ed, edition; EFS, event-free survival; IO, immunotherapy; IPI, ipilimumab; NIVO, nivolumab; NSCLC, non-small cell lung cancer. OS, overall survival; pCR, pathologic complete response; PD-1, PD-L1, programmed death ligand 1. PD-L1, programmed death ligand 1. 1. ClinicalTrials.gov. Accessed 8/12/21 at: https://clinicaltrials.gov/ct2/show/NCT03998528 2. ClinicalTrials.gov. Accessed 8/12/21 at: https://clinicaltrials.gov/ct2/show/NCT03425643 4. ClinicalTrials.gov. Accessed 8/12/21 at: https://clinicaltrials.gov/ct2/show/NCT03425643 5. ClinicalTrials.gov. Accessed 8/12/21 at: https://clinicaltrials.gov/ct2/show/NCT03456053 5. ClinicalTrials.gov. Accessed 8/12/21 at: https://clinicaltrials.gov/ct2/show/NCT03456053 5. ClinicalTrials.gov/ct2/show/NCT03456053 5. ClinicalTrials.gov/ct2/show/NCT0345643 4. ClinicalTrials.gov/ct2/show/NCT03456053 5. ClinicalTrials.gov/ct2/show/NCT03456053 5. ClinicalTrials.gov/ct2/show/NCT03456053 5. ClinicalTrials.gov/ct2/show/NCT0345643 4. ClinicalTrials.gov/ct2/show/NCT0345643 5. ClinicalTrials.gov/ct2/show/NCT0345643 5. ClinicalTrials.gov/ct2/show/NCT0345643 5. ClinicalTrials.gov/ct2/show/NCT0345643 5. ClinicalTrials.gov/ct2/show/NCT0345643 5. ClinicalTrials.gov/ct2/show/NCT0345643 5. C

ADJUVANT IMMUNOTHERAPY IN NSCLC

A retrospective review of complete surgical resection for early-stage (N=1294) and stage IIIA (N=346) NSCLC^a found^{1,2}:


Recurrence Rates by Stage^{1,2}

20% for patients with stage I or II NSCLC¹

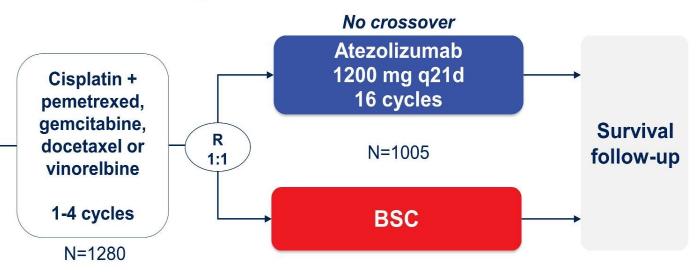
52% for patients with stage IIIA NSCLC²

A review of a global database of NSCLC (N=25,911 with pathological staging^b) found³:

Overall Survival by Pathological Stage^b

60-month survival decreased from **90%** for stage IA1 to **24%** for stage IIIB³

^aBased on 7th edition AJCC cancer staging. ^bBased on the proposed 8th edition AJCC cancer staging. AJCC=American Joint Committee on Cancer. 1. Lou F, et al. *J Thorac Cardiovasc Surg.* 2013;145:75-81; 2, Lou F, et al. *Ann Thorac Surg.* 2014;98:1755-1760; 3. Goldstraw P, et al. *J Thorac Oncol.* 2016;11:39-51.


IMpower010: study design

Completely resected stage IB-IIIA NSCLC per UICC/AJCC v7

- Stage IB tumors ≥4 cm
- ECOG 0-1
- Lobectomy/pneumonectomy
- Tumor tissue for PD-L1 analysis

Stratification factors

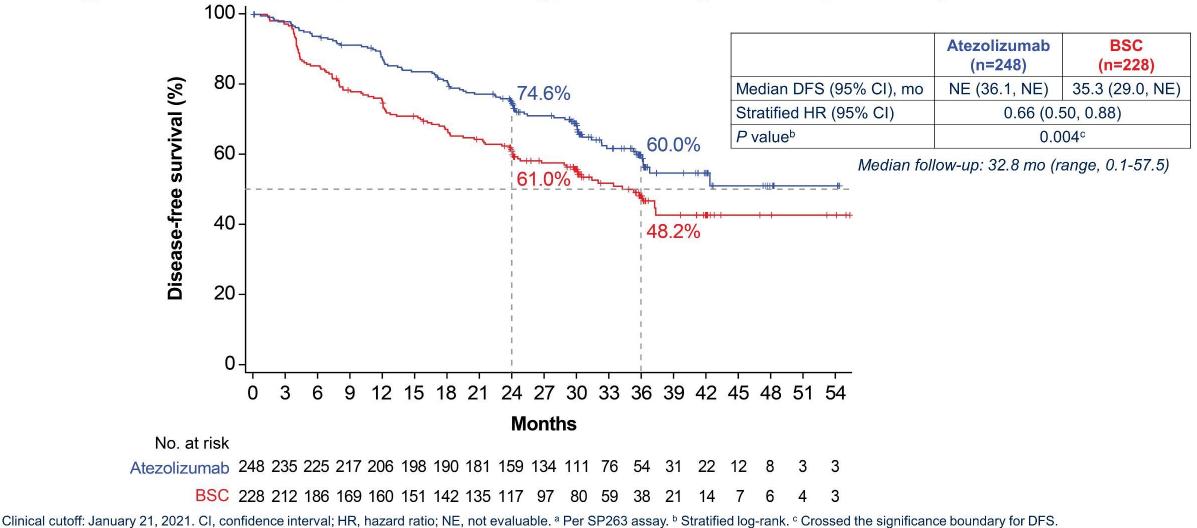
- Male/female
- Stage (IB vs II vs IIIA)
- Histology
- PD-L1 tumor expression status^a: TC2/3 and any IC vs TC0/1 and IC2/3 vs TC0/1 and IC0/1

Primary endpoints

- Investigator-assessed DFS tested hierarchically:
 - PD-L1 TC ≥1% (per SP263) stage II-IIIA population
 - All-randomized stage II-IIIA population
 - ITT population (stage IB-IIIA)

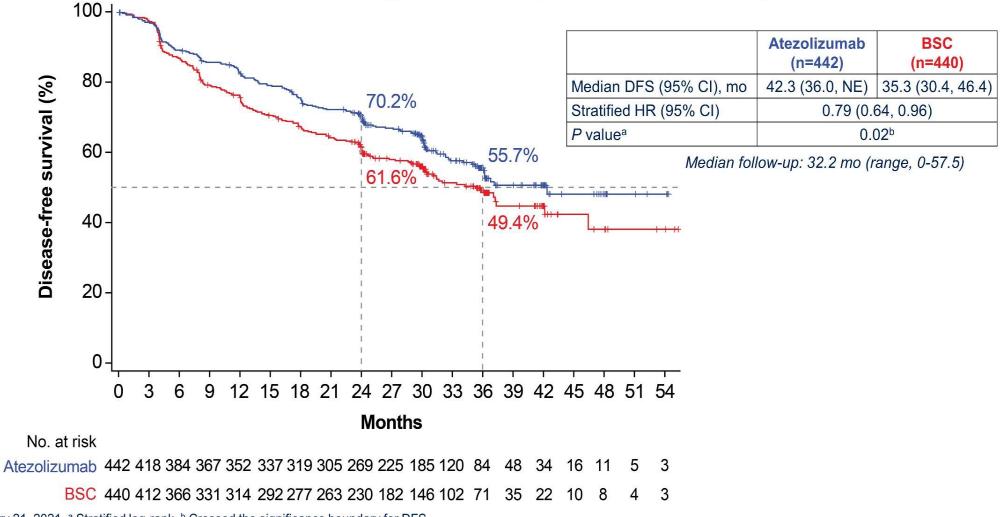
Key secondary endpoints

- OS in ITT population
- DFS in PD-L1 TC ≥50% (per SP263) stage II-IIIA population
- 3-y and 5-y DFS in all 3 populations


Both arms included observation and regular scans for disease recurrence on the same schedule. ECOG, Eastern Cooperative Oncology Group; IC, tumor-infiltrating immune cells; ITT, intent to treat; TC, tumor cells. ^a Per SP142 assay.

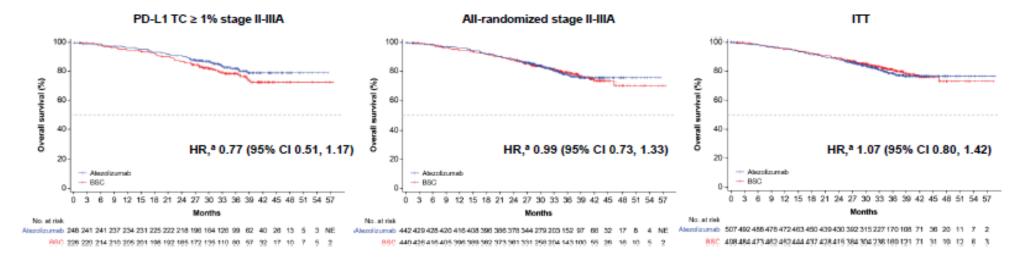
Dr. Heather A. Wakelee Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.


IMpower010: DFS in the PD-L1 TC ≥1%^a stage II-IIIA population (primary endpoint)

Dr. Heather A. Wakelee Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

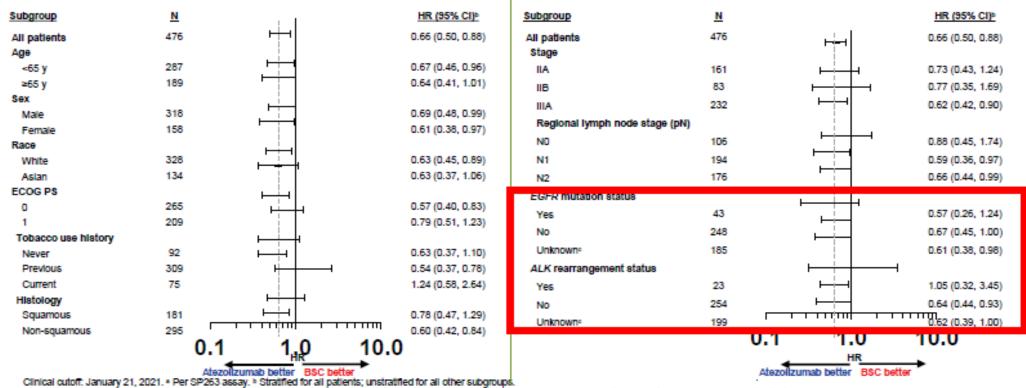
IMpower010: DFS in the all-randomized stage II-IIIA population (primary endpoint)


Clinical cutoff: January 21, 2021. ^a Stratified log-rank. ^b Crossed the significance boundary for DFS.

Dr. Heather A. Wakelee Presented By: IMpower010 Interim Analysis https://bit.ly/33t6JJP

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

IMpower010: early OS data at interim- Exploratory DFS analysis



- OS data were immature at this pre-planned DFS interim analysis
 - OS in the ITT population was not formally tested
 - A trend toward OS improvement with atezolizumab was seen in the PD-L1 TC ≥1% stage II-IIIA population

Clinical cutoff: January 21, 2021. * Stratified.

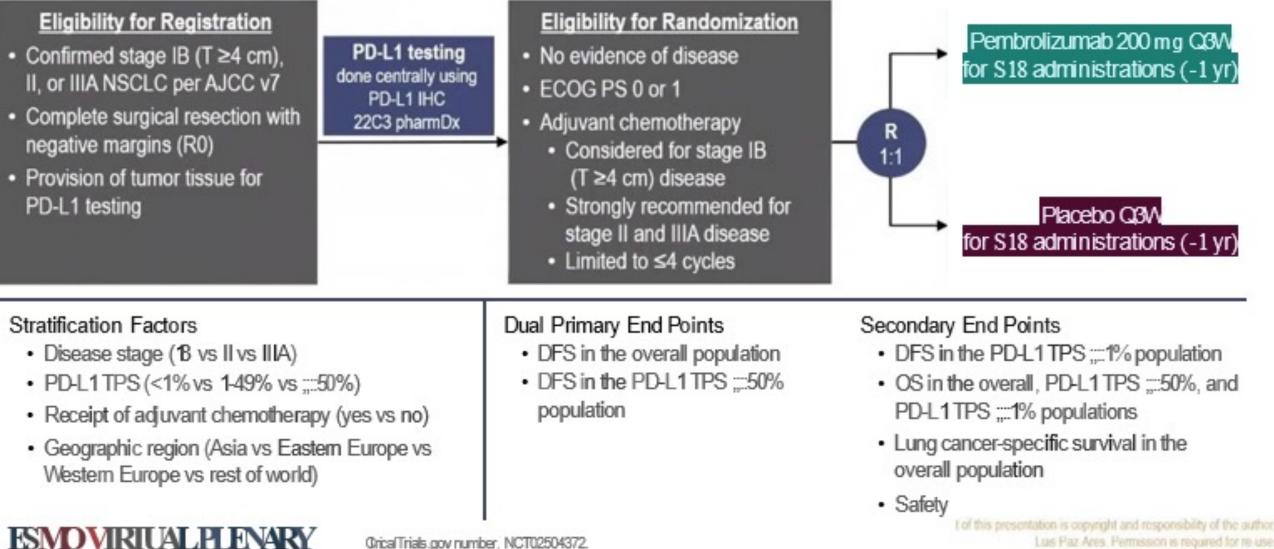
Dr. Heather A. Wakelee ASCO 2021, abstr 8500: IMpower010 Interim Analysis; https://bit.ly/33t6JJ; Felip Lancet 2021

IMpower010: DFS in key subgroups of the <u>PD-L1 TC ≥1%</u>^a stage II-IIIA population

• 89.2% and 80.7% of patients in the ITT population with unknown EGFR or ALK status, respectively, had squamous NSCLC and were not required to undergo local or central testing.

Dr. Heather A. Wakelee ASCO 2021, abstr 8500: IMpower010 Interim Analysis; <u>https://bit.ly/33t6JJ</u>; Felip Lancet 2021

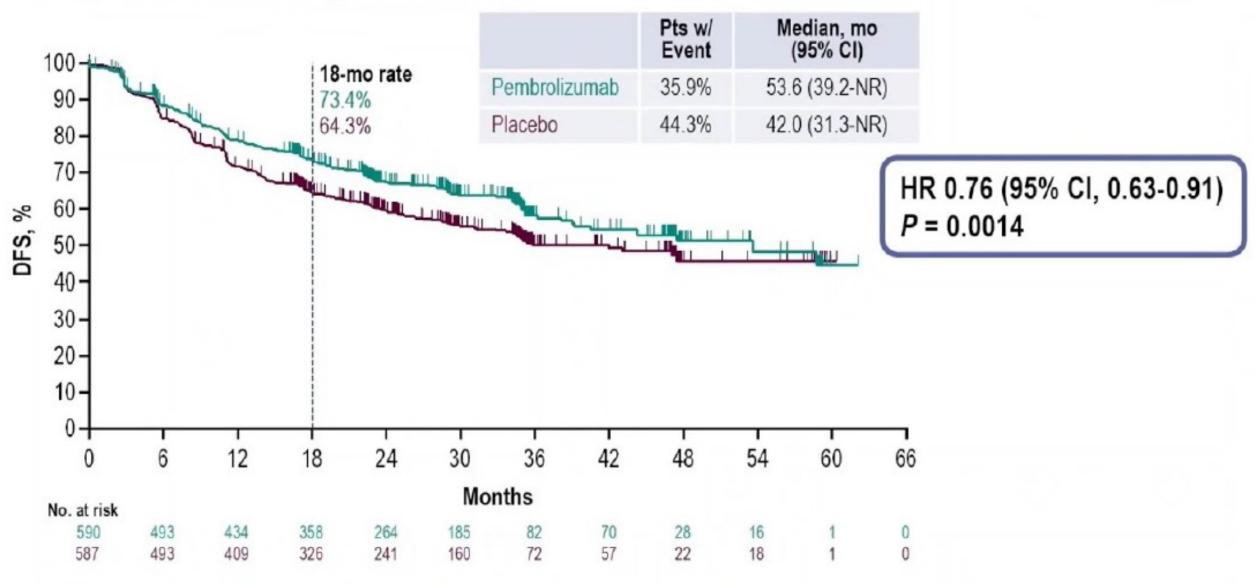
IMpower010: conclusions


- IMpower010 is the first Phase III study of cancer immunotherapy to demonstrate DFS improvement in the adjuvant NSCLC setting after platinum-based chemotherapy
 - Adjuvant atezolizumab following complete resection and adjuvant chemotherapy showed statistically significant DFS benefit in the PD-L1 TC ≥1% stage II-IIIA (HR, 0.66; 95% CI: 0.50, 0.88) and all-randomized stage II-IIIA (HR, 0.79; 95% CI: 0.64, 0.96) populations, with enriched clinical benefit in patients whose tumors express PD-L1
- IMpower010 will continue for DFS and OS analyses in the ITT population
 - DFS in the ITT population, including patients with stage IB disease, did not cross the significance boundary at this interim DFS analysis
 - At this pre-planned interim DFS analysis, OS data were immature and not formally tested
- The safety profile of atezolizumab was consistent with prior experience of atezolizumab monotherapy across indications and lines of therapy
- Atezolizumab may be considered a practice-changing adjuvant treatment option for patients with PD-L1 TC ≥1% stage II-IIIA NSCLC

15

PEARLS/KEYNOTE-091 Study Design

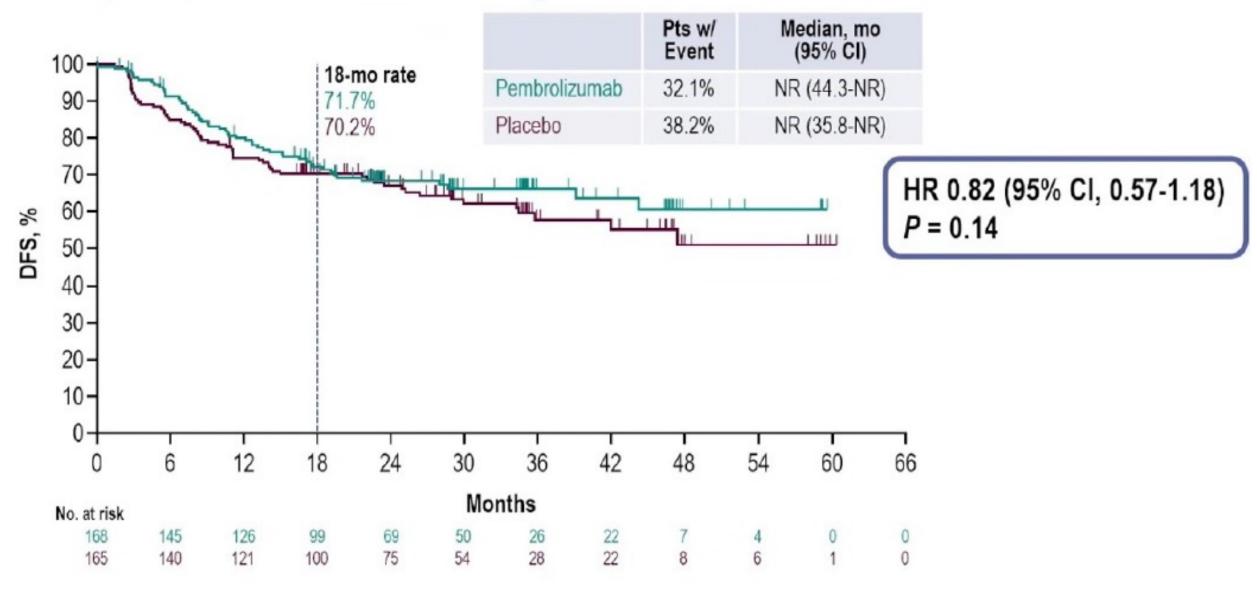
Randomized, Triple-Blind, Phase 3 Trial


Baseline Characteristics, Overall Population

	Pembrolizumab (N = 590)	Placebo (N = 587)
Age, median (range)	65 y (31-87)	65 y (37-85)
Male	401 (68.0%)	403 (68.7%)
Geographic region		
Asia	106 (18.0%)	105 (17.9%)
Eastern Europe	116 (19.7%)	113 (19.3%)
Western Europe	303 (51.4%)	301 (51.3%)
Rest of world	65 (11.0%)	68 (11.6%)
ECOG PS 1	210 (35.6%)	244 (41.6%)
Current/former smoker	503 (85.3%)	521 (88.8%)
EGFR mutation ^a	39 (6.6%)	34 (5.8%)
ALK translocation ^b	7 (1.2%)	7 (1.2%)

^a EGFR status unknown for 333 (56.4%) in pembro arm and 337 (57.4%) in placebo arm.
^b ALK status unknown for 357 (60.5%) in pembro arm and 390 (66.4%) in placebo arm.
ESMO VIRTUAL PLENARY Data cutoff date: September 20, 2021

	Pembrolizumab (N = 590)	Placebo (N = 587)			
Nonsquamous histology	398 (67.5%)	363 (61.8%)			
Pathologic stage ^c					
IB	84 (14.2%)	85 (14.5%)			
	329 (55.8%)	338 (57.6%)			
IIIA	177 (30.0%)	162 (27.6%)			
Received adjuvant chemot	herapy				
Yes	506 (85.8%)	504 (85.9%)			
No	84 (14.2%)	83 (14.1%)			
PD-L1 TPS					
<1%	233 (39.5%)	232 (39.5%)			
1-49%	189 (32.0%)	190 (32.4%)			
≥50%	168 (28.5%)	165 (28.1%)			
°2 (0.3%) participants in the placebo group had stage IV disease.					


DFS, Overall Population

ESMO VIRTUAL PLENARY

Response assessed per RECIST v1.1 by investigator review. Data cutoff date: September 20, 2021 Content of this presentation is copyright and responsibility of the author, Luis Paz-Ares, Permission is required for re-use.

DFS, PD-L1 TPS ≥50% Population

ESMO VIRTUAL PLENARY

Response assessed per RECIST v1.1 by investigator review. Data cutoff date: September 20, 2021 Content of this presentation is copyright and responsibility of the author, Luis Paz-Ares. Permission is required for re-use.

DFS in Key Subgroups, Overall Population

Subgroup	No. Events/ No. Participants	Hazard	l Ratio (95% CI)
Overall	472/1177	-	0.76 (0.63-0.91)
Age			
<65 years	213/558		0.73 (0.56-0.96)
≥65 years	259/619	-	0.84 (0.66-1.07)
Sex			
Female	158/373		0.73 (0.54-1.00)
Male	314/804	-	0.81 (0.65-1.01)
Geographic region			
Asia	96/211	-+-	0.74 (0.49-1.10)
Eastern Europe	90/229		0.84 (0.56-1.27)
Western Europe	245/604	•	0.77 (0.60-1.00)
Rest of world	41/133		0.74 (0.40-1.39)
ECOG performance sta	tus		
0	288/723	•	0.78 (0.62-0.99)
1	184/454	•	0.79 (0.59-1.06)
Smoking status			
Current	53/165 —		0.42 (0.23-0.77)
Former	340/859	-	0.84 (0.68-1.04)
Never	79/153	-+	0.72 (0.47-1.13)
	0.2	0.5 1	2 5
	Pe		acebo

Subgroup	No. Events/ No. Participants	Hazard	Ratio (95% CI)
Overall	472/1177	-	0.76 (0.63-0.91)
Pathologic stage			
IB	46/169		0.76 (0.43-1.37)
11	246/667		0.70 (0.55-0.91)
IIIA	178/339		0.92 (0.69-1.24)
Received adjuvant che	emotherapy		
No	64/167		1.25 (0.76-2.05)
Yes	408/1010	-	0.73 (0.60-0.89)
Histology			
Nonsquamous	330/761		0.67 (0.54-0.83)
Squamous	142/416		1.04 (0.75-1.45)
PD-L1 TPS			
<1%	195/465	•	0.78 (0.58-1.03)
1-49%	160/379	-•	0.67 (0.48-0.92)
≥50%	117/333	•	0.82 (0.57-1.18)
EGFR mutation			
No	186/434	-	0.78 (0.59-1.05)
Yes	40/73	•	0.44 (0.23-0.84)
Unknown	246/670	+	0.82 (0.63-1.05)
	0.2	05 1 2	5
	Pe		acebo etter

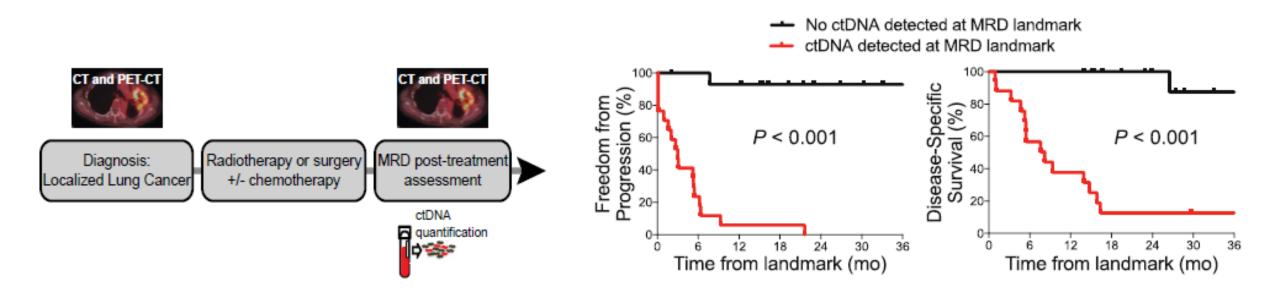
ESMO VIRTUAL PLENARY

Response assessed per RECIST v1.1 by investigator review. Data cutoff date: September 20, 2021 Content of this presentation is copyright and responsibility of the author, Luis Paz-Ares. Permission is required for re-use.

Summary of Adverse Events

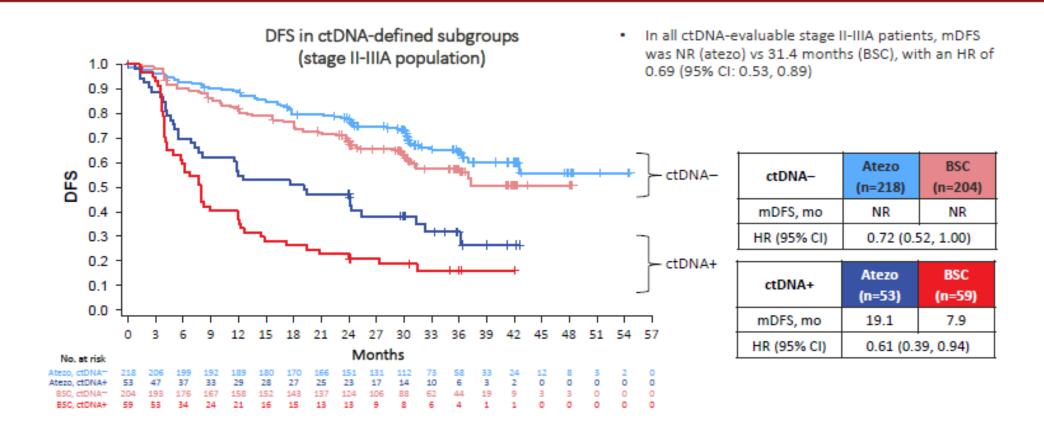
	Pembrolizumab (N = 580)	Placebo (N = 581)
Any	556 (95.9%)	529 (91.0%)
Grade 3-5	198 (34.1%)	150 (25.8%)
Led to death	11 (1.9%)	6 (1.0%)
Treatment-related	4 (0.7%) ^a	0 (0.0%)
Serious	142 (24.5%)	90 (15.5%)
Led to treatment discontinuation	115 (19.8%)	34 (5.9%)
Led to treatment interruption	221 (38.1%)	145 (25.0%)

^a1 participant each with myocarditis + cardiogenic shock, myocarditis + septic shock, pneumonia, and sudden death.


ESMO VIRTUAL PLENARY

Summary and Conclusions

- Pembrolizumab provided statistically significant, clinically meaningful DFS improvement versus placebo in the overall population
 - Median DFS of 53.6 months with pembrolizumab vs 42.0 months with placebo (HR, 0.76)
 - Generally consistent DFS benefit in participants with PD-L1 TPS <1%, 1-49%, and ≥50%
 - OS data are immature
 - DFS in the PD-L1-defined populations and OS will be tested at future analyses according to the analysis plan
- · Pembrolizumab safety profile as expected
- Data suggest pembrolizumab has the potential to be a new adjuvant treatment option for patients with stage IB (T ≥4 cm) to IIIA NSCLC following complete resection and adjuvant chemotherapy when recommended, regardless of PD-L1 expression


ESMO VIRTUAL PLENARY

ctDNA Minimal Residual Disease in Localized Lung Cancer

Residual ctDNA after completion of therapy is associated with an extremely high risk of recurrence

IMpower010 ctDNA MRD Analysis

Benefit of consolidation immunotherapy is strongest in ctDNA-positive patients

Zhou et al. ESMO Immuno-Oncology 2021

ALLIANCE FOR CLINICAL TRIALS IN ONCOLOGY ALLIANCE A081801 INTEGRATION OF IMMUNOTHERAPY INTO ADJUVANT THERAPY FOR RESECTED NSCLC: ALCHEMIST CHEMO-IO

<u>Study Chair</u> Jacob Sands, MD 450 Brookline Ave Boston, MA 02215 Tel: 617-632-6049 Fax: 617-582-7199 jacob sands@dfci.harvard.edu

<u>Community One Co-chair</u> Luis Raez, MD Memorial Cancer Institute <u>lraez@mhs.net</u>

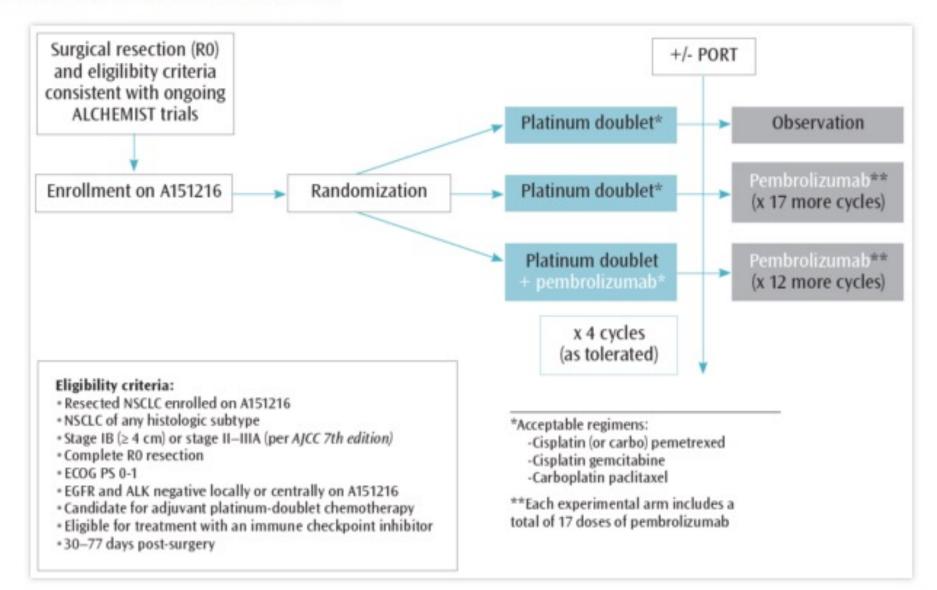
Dennis Wigle, MD Mayo Clinic wigle.dennis@mayo.edu

Thoracic Surgery Co-chair

<u>Correlative Co-chair</u> Geoffrey Oxnard, MD Dana Farber Cancer Institute Geoffrey_oxnard@dfci.harvard.edu

Medical Oncology Co-Chair Govindan Ramaswamy, MD Tel: 314-362-5737 rgovindan@wustl.edu Radiation Oncology Co-Chair Joseph K. Salama, MD Tel: 888-275-3853 joseph.salama@duke.edu Quality of Life Co-Chair Apar Ganti, MD Tel: 402-559-8500 aganti@unmc.edu

<u>Primary Statistician</u> Sumithra Mandrekar, PhD mandrekar.sumithra@mayo.edu <u>QOL Statistician</u> Gina Mazza, PhD mazza.gina@mayo.edu


Secondary Statistician Nathan Foster, MS foster.nathan@mayo.edu

Protocol Coordinator Colleen Watt Tel: 773-702-4670 Fax: 312-345-0117 cboyle@uchicago.edu Data Manager Adam Eggert Tel: 507-538-1760 eggert.adam@mayo.edu

IS ON YOUR SIDE

Figure 1. Schema: ALCHEMIST CHEMO-IO

MEMORIAL CANCER INSTITUTE IS ON YOUR SIDE

Adjuvant PD-1/PD-L1 IO trials

Drug/Trial	Description	Stages entered	Description	Primary endpoint
Nivolumab	US, NCI (ECOG), Observational control	IB (4cm)-IIIA After Adj Chemo +/- radiation	Phase 3 Allows PD-L1 +/-	OS/DFS
Atezolizumab	Global, Placebo controlled	IB (4cm)-IIIA After Adj Chemo	Phase 3 Allows PD-L1 +/-	DFS
Durvalumab	Global, Placebo controlled	IB (4cm)-IIIA After Adj Chemo	Phase 3 Allows PD-L1 +/-	DFS
Pembrolizumab PEARLS KN-091	ETOP/EORTC, Placebo Controlled	IB (4cm)-IIIA After Adj Chemo	Phase 3 Allows PD-L1 +/-	DFS

FEBRUARY 22-26, 2022 | WORLDWIDE VIRTUAL EVENT

- 1) Adjuvant IO therapy with proven DFS benefit in PD-L1+ stage II-IIIA NSCLC pts
- 2) Adjuvant IO + chemotherapy trials needed
- Patient and tumor specific biomarkers necessary to predict benefit
 - -Improve upon PD-L1
 - -Fully understand tumor mutation relevance
 - -Many other factors
- ctDNA and other biomarkers to select patients who need therapy

FEBRUARY 22-26, 2022 | WORLDWIDE VIRTUAL EVENT

Pre-operative vs. Postoperative IO: General considerations

- Both have the disadvantage that you are treating a lot of people who may be cured by surgery alone with expensive drugs for a long time
 - No robust biomarkers for relapse or benefit from IO
- Postoperative:
 - No delay or potential interference with the most effective regimen (surgery)
 - Longest experience, more accurate staging
 - Patients/surgeons don't like to delay surgery
- Preoperative:
 - Ability to assess antitumor efficacy of the intervention, may not need postoperative IO if pCR
 - Early systemic therapy
 - Intact nodal drainage and tumor might be a benefit for immunity/IO therapy
 - Access to pre- and post biospecimens for research

