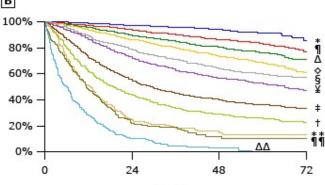

How to Choose Front-Line Therapy for Metastatic NSCLC without Driver Mutations.

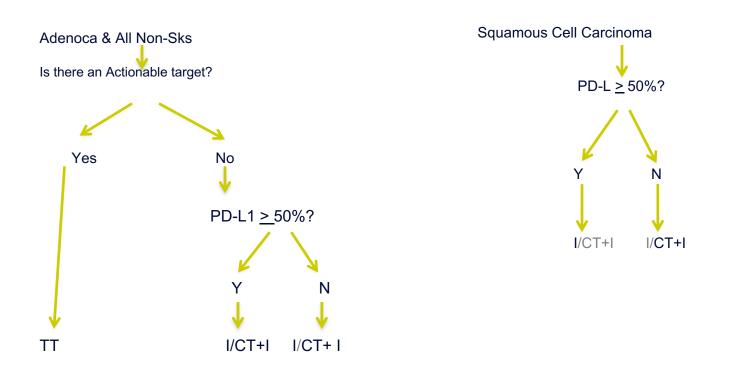

George R. Simon, MD, FACP, FCCP Executive Medical Director and Dept. Chair Joint Moffitt-AdventHealth Clinical Research Unit Professor of Medicine and Oncology H Lee Moffitt Cancer Center

Overall survival by clinical stage according to the seventh edition (A) and the eighth edition (B) groupings using the entire database available for the eighth edition

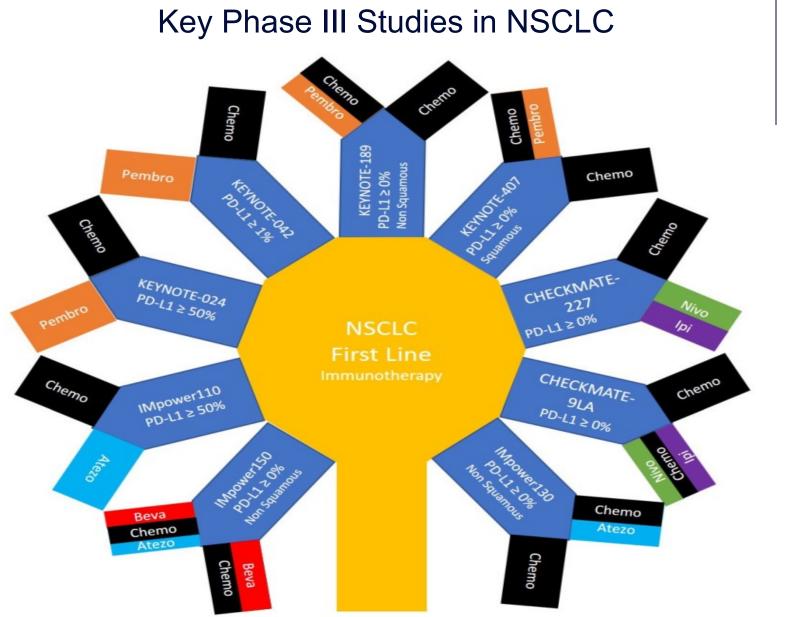
Months

7 th edition	Events / N	MST	24 month	60 month
* IA	1119 / 6303	NR	93%	82%
¶ IB	768 / 2492	NR	85%	66%
ΔIIA	424 / 1008	66.0	74%	52%
♦ IIB	382 / 824	49.0	64%	47%
§ IIIA	2139 / 3344	29.0	55%	36%
¥ IIIB	2101 / 2624	14.1	34%	19%
‡ IV	664 / 882	8.8	17%	6%

8th e	edition	Events / N	MST	24 month	60 month
* I	A1	68 / 781	NR	97%	92%
¶ I.	A2	505 / 3105	NR	94%	83%
ΔΙ	A3	546 / 2417	NR	90%	77%
♦ I	В	560 / 1928	NR	87%	68%
§ 1	IA	215 / 585	NR	79%	60%
¥Ι	IB	605 / 1453	66.0	72%	53%
‡ I	IIA	2052 / 3200	29.3	55%	36%
† I	IIB	1551 / 2140	19.0	44%	26%
** I	IIC	831 / 986	12.6	24%	13%
¶ ¶ I	VA	336 / 484	11.5	23%	10%
ΔΔΙ	VB	328 / 398	6.0	10%	0%

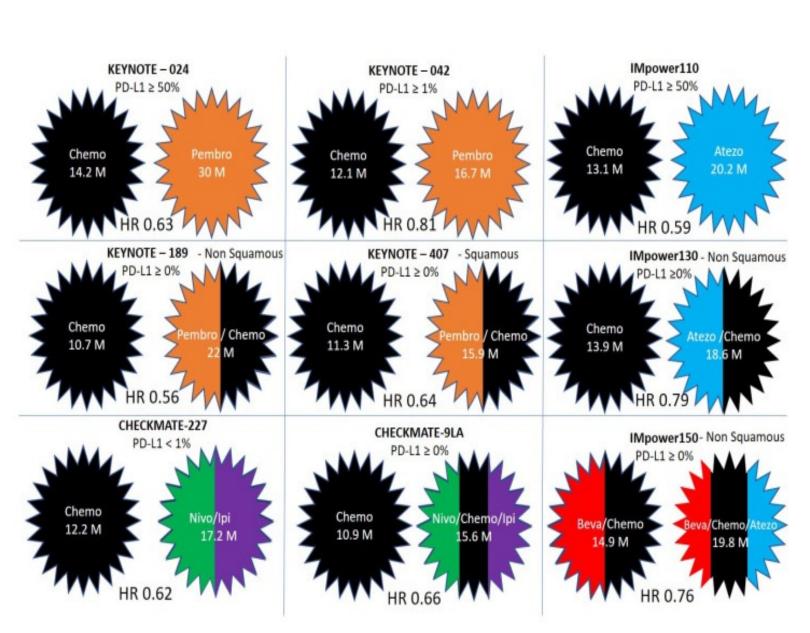

Overall survival by clinical stage according to the seventh edition (A) and the eighth edition (B) groupings using the entire database available for the eighth edition. Survival is weighted by type of database submission: registry versus other.

N: number of patients; MST: median survival time; NR: not reached.


Reproduced from: Goldstraw P, Chansky K, Crowley J, et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J Thorac Oncol 2016; 11:39. Illustration used with the permission of Elsevier Inc. All rights reserved.

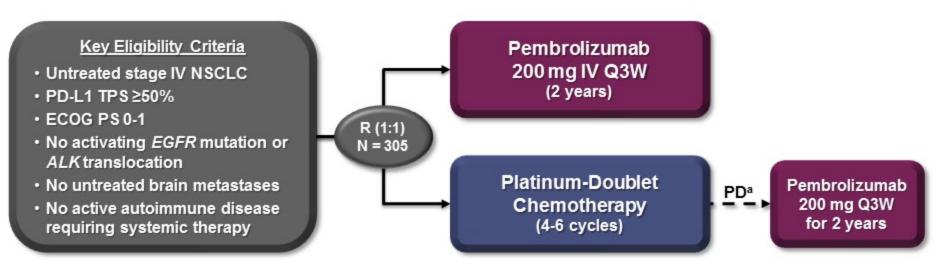
Treatment Algorithm (as of 04/2022)

PDL1-≥ 50% – (<u>Non-Sq):</u> KN189/IMPower130/KN42/KN24/IMPower110/Empower1. (<u>Sq):</u> KN42/24/IMPower110/Empower1/KN407/CK9LA PDL1>1-49% – (Non-Sq): KN189/IMPower130/KN42 (Sq): KN407/KN42/CK9LA PDL1<1% – (<u>Non-Sq):</u> KN189/IMPower130/CK9LA. (Sq): KN407/CK9LA. TMB (High) - CK 227 (Non-Sks = non-smokers; TT = Targeted Therapy; I = Immunotherapy; CT = Chemotherapy)



Phase III IO trials in Advanced-NSCLC

Nasser et al. doi: <u>10.3390/ph13110373</u>

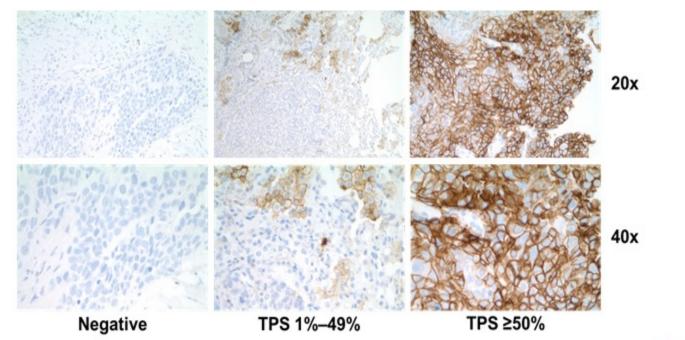

	Pathology	PDL-1	Arm I (OS)	Arm II (OS)	HR
KEYNOTE-024	squamous (18%) and	≥50%	Pembro	Chemotherapy	
	nonsquamous (82%)		30 months	14.2 months	0.63
KEYNOTE-042	squamous (38%) and nonsquamous (62%)		Pembro	Chemo	
	nonsquamous (02%)		16.7 months	12.1 months	0.81
KEYNOTE-189	nonsquamous	Any level	Pembro/Pem/Plat	Plat/Pem	
			22 months	10.7 month	0.56
KEYNOTE-407	squamous	Any level	Pembro/Carbo/Tax	Carbo/Taxane	
			15.9 months	11.3 months	0.64
CHECKMATE-227	squamous (28%) and nonsquamous (72%)	Any level ≥1% <1%	lpi/Nivo	Chemotherapy	
			17.1 months	14.9 months	0.79
			17.2 months	12.2 months	0.62
CHECKMATE 9LA	squamous and nonsquamous	Any level	lpi/Nivo/Chemo	Plat/Pem or Taxane	
			15.6 months	10.9 months	0.66
IMpower110	squamous (25%) and nonsquamous (75%)	≥50%	Atezo	Plat/Pem or Gem	
			20.2 months	13.1 months	0.59
IMpower130	non-squamous	nous Any level	Atezo/Carbo/NbT	Carbo/NbT	
			18.6 months	13.9 months	0.79
IMpower150	non-squamous	Any level	Atezo/Bev/Carbo/Pac	Bev/Carbo/Pac	
			19.8 months	14.9 months	0.76

M Reck. ESMO 2016.

KEYNOTE-024 Study Design (NCT02142738)

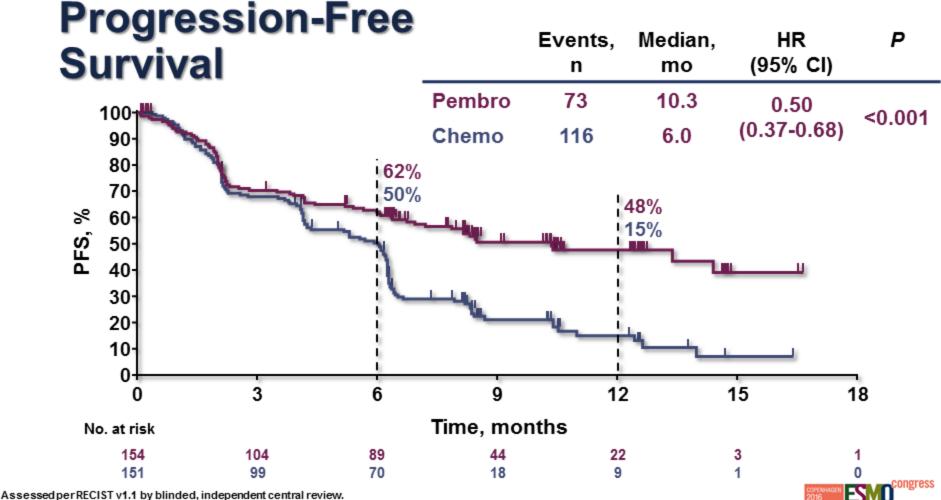
Key End Points

Primary: PFS (RECIST v1.1 per blinded, independent central review) Secondary: OS, ORR, safety

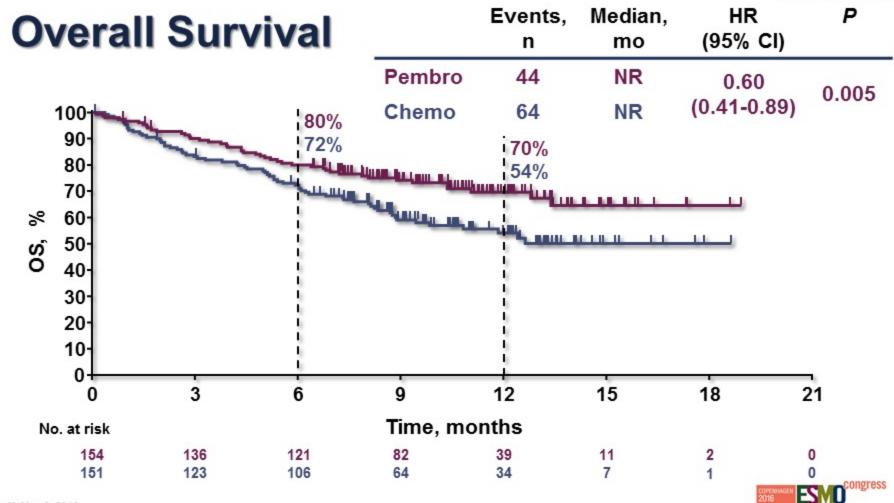

Exploratory: DOR

^aTo be eligible for crossover, progressive disease (PD) had to be confirmed by blinded, independent central radiology review and all safety criteria had to be met.

PD-L1 Expression and Pembrolizumab


- PD-L1 TPS cutpoint of 50% was identified in KEYNOTE-001 using independent training and validation sets¹
- FDA-approved and CE-marked companion diagnostic: PD-L1 IHC 22C3 pharmDx (Dako)

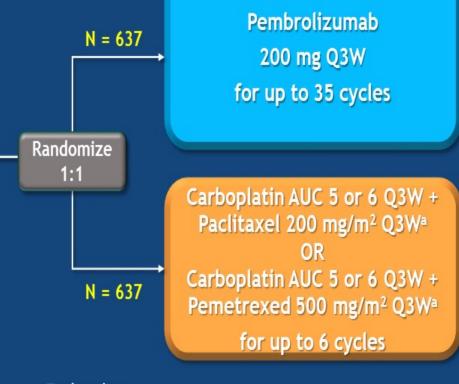
1. Garon EB et al. *N Engl J Med.* 2015;372:2018-2028. PD-L1 staining images from HerbstRS et al. *J Clin Oncol*, 2016;34(15_suppl): abstr 3030. 2016 Congress



Making Cancer History*

Data cut-off: May 9, 2016.

M Reck. ESMO 2016.


Data cut-off: May 9, 2016.

KEYNOTE-042 Study Design

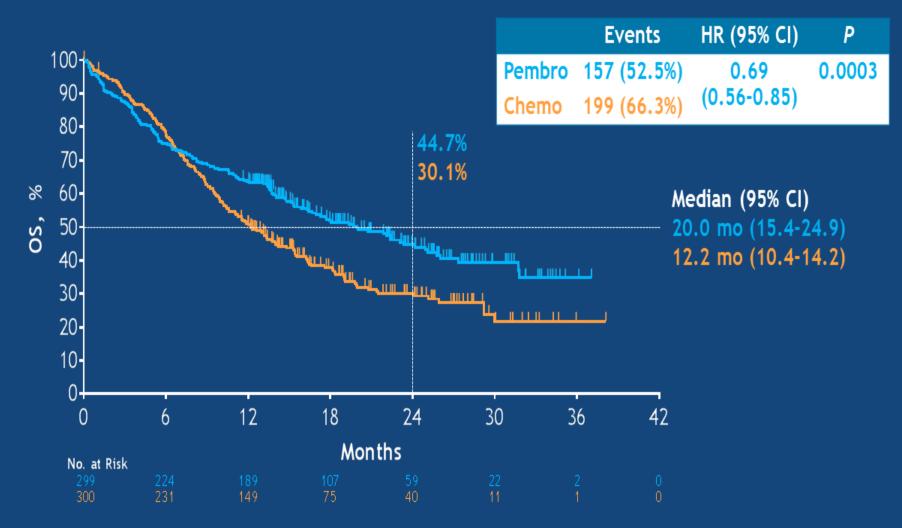
Key Eligibility Criteria

- Untreated locally advanced or metastatic NSCLC of any histology
- PD-L1 TPS ≥1%
- No sensitizing EGFR or ALK alterations
- ECOG PS 0 or 1
- No untreated or unstable CNS metastases
- No history of pneumonitis that required systemic corticosteroids

Stratification Factors • Region (east Asia vs rest of the world) • ECOG PS (0 vs 1) • Histology (squamous vs nonsquamous) • PD-L1 TPS (≥50% vs 1-49%)

End points

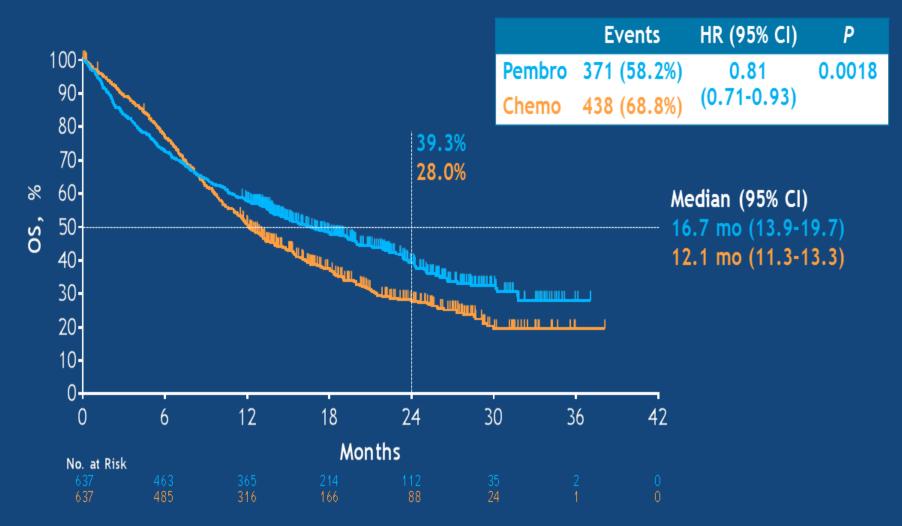
• Primary: OS in PD-L1 TPS \geq 50%, \geq 20%, and \geq 1%


 Secondary: PFS and ORR in TPS ≥50%, ≥20%, and ≥1%; safety in TPS ≥1%

^aPemetrexed maintenance therapy was optional but strongly encouraged for patients with nonsquamous histology.

#ASCO18 Slides are the property of the author permission required for reuse.

Overall Survival: TPS ≥50%



#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Gilberto Lopes

Overall Survival: TPS ≥1%

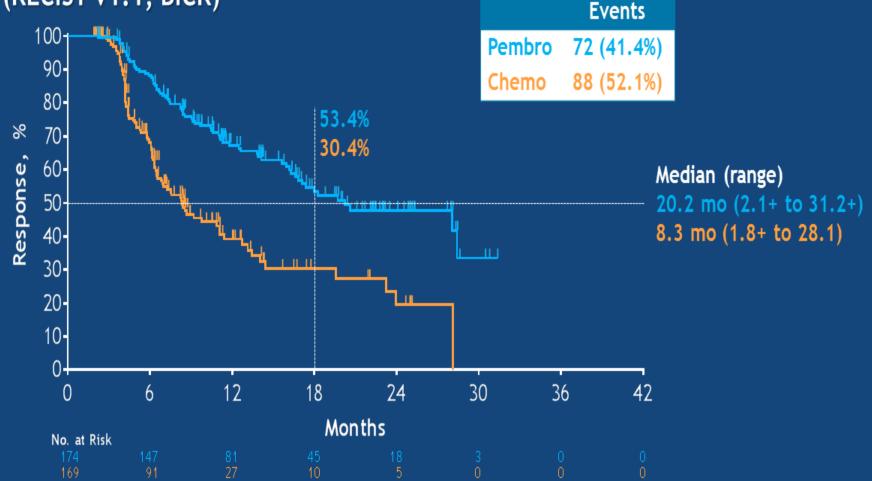


#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Gilberto Lopes

Overall Survival: TPS ≥1-49% (Exploratory Analysis^a)

^aNo alpha allocated to this comparison.



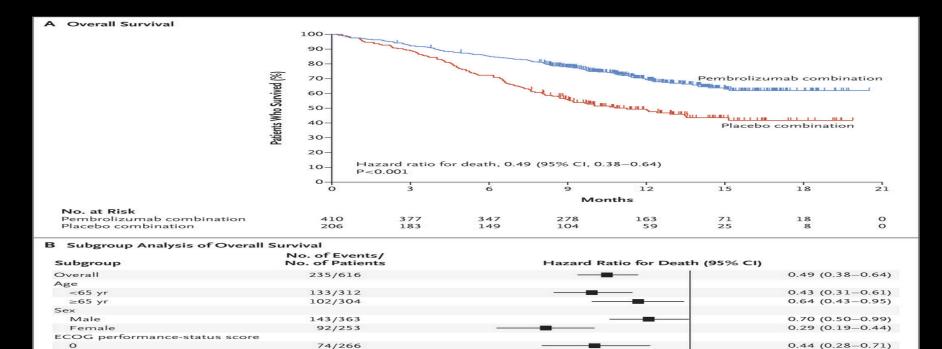
#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Gilberto Lopes

12

Duration of Response: TPS ≥1% (RECIST v1.1, BICR)

Median DOR for pembro vs chemo: 20.2 mo vs 10.8 mo for TPS ≥50%, 20.2 mo vs 8.3 mo for TPS ≥20%, and 17.4 mo vs 8.2 mo for TPS 1-49%.


#ASCO18 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Gilberto Lopes

Data cutoff date: Feb 26, 2018.

Study of Platinum+Pemetrexed Chemotherapy With or Without Pembrolizumab (MK-3475) in Participants With First Line Metastatic Non-squamous Non-small Cell Lung Cancer (MK-3475-189/KEYNOTE-189) NCT02578680

Overall Survival in the Intention-to-Treat Population.

159/346

211/543

Pembrolizumab Combination	Placebo Combination
0.1	1.0
	0.41 (0.24-0.69)
	0.52 (0.39-0.71)
	0.42 (0.20-0.08)
	0.42 (0.26-0.68)
	0.55 (0.34-0.90)
	0.47 (0.34-0.66)
	0.59 (0.38–0.92)
	0.33 (0.39-0.71)
	0.53 (0.39-0.71)
	0.36 (0.20-0.62)
	0.23 (0.10-0.54)
	0.34 (0.41-0.71)

Better

lacebo Combinatio Better

0.53 (0.39-0.73)

0.54 (0.41-0.71)

L Gandhi et al. N Engl J Med 2018;378:2078-2092.

1

Smoking status Current or former

> 1-49% ≥50%

Carboplatin

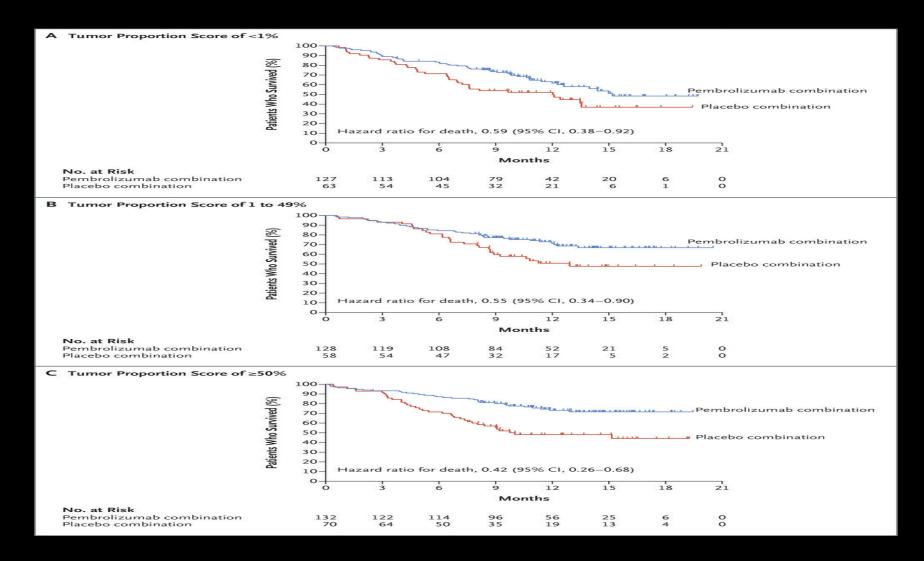
Cisplatin

Platinum-based drug

Brain metastases at baseline

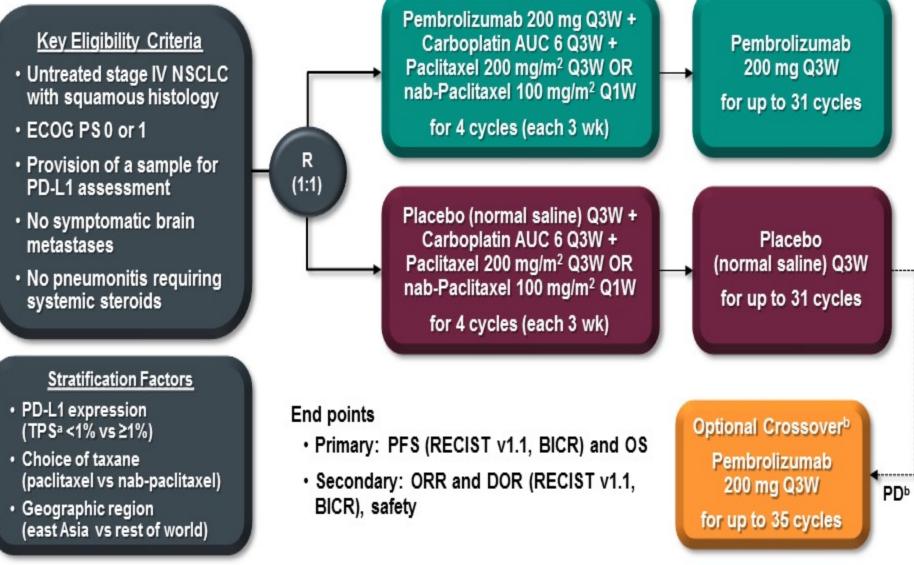
PD-L1 tumor proportion score

Never

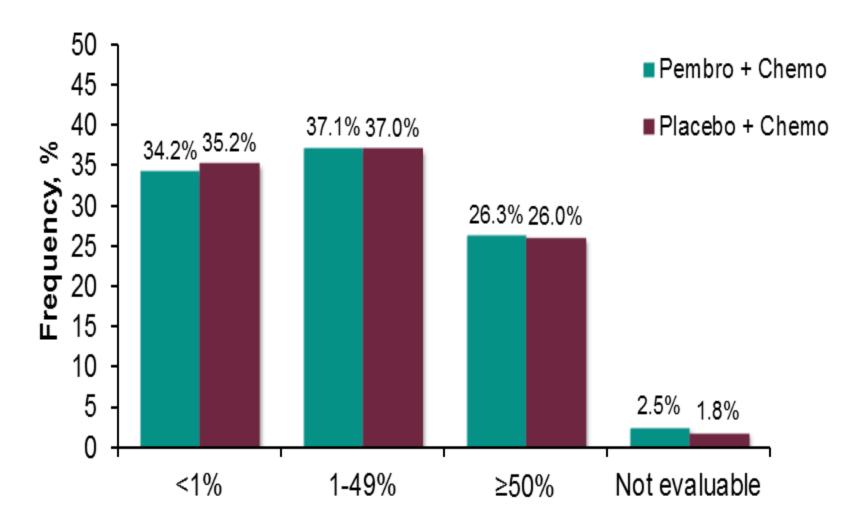

Yes

No

<1% ≥1%


Overall Survival, According to PD-L1 Tumor Proportion Score.

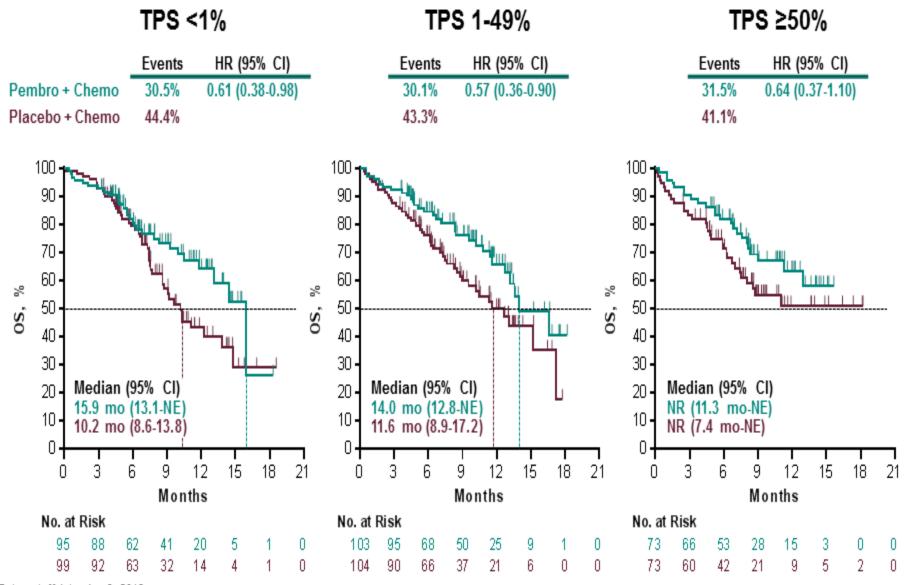
L Gandhi et al. N Engl J Med 2018;378:2078-2092.



KEYNOTE-407 Study Design (NCT02775435)

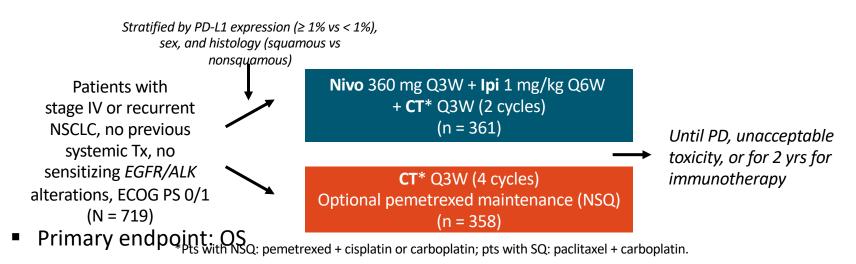
BICR, blinded independent central radiologic review. Percentage of tumor cells with membranous PD-L1 staining assessed using the PD-L1 IHC 22C3 pharmDx assay. Patients could crossover during combination therapy or monotherapy. To be eligible for crossover, PD must have been verified by BICR and all safety criteria had to be met.

Frequency of PD-L1 TPS Categories


Not evaluable refers to specimens with an inadequate number of tumor cells or no tumor cells seen; these patients were included in the PD-L1 TPS <1% group for randomization stratification but excluded from analyses of efficacy by TPS. Data cutoff date: Apr 3, 2018.

Overall Survival at IA2, ITT

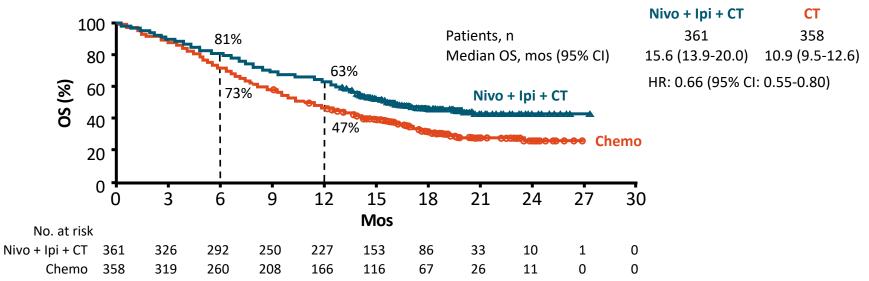
Data cutoff date: Apr 3, 2018.


Overall Survival at IA2 by PD-L1 TPS

Data cutoff date: Apr 3, 2018.

CheckMate 9LA: Study Design

Randomized, open-label, phase III study


Secondary endpoints: PFS, ORR, efficacy by tumor PD-L1 expression

Reck. ASCO 2020. Abstr 9501.

Slide credit: <u>clinicaloptions.com</u>

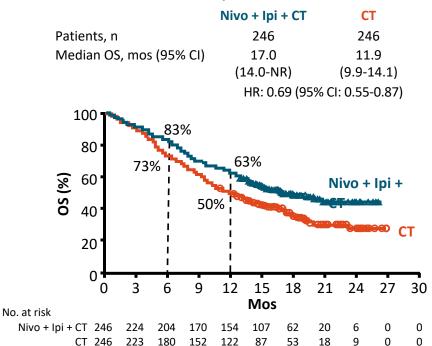
CheckMate 9LA: Interim and Updated OS Results

Interim analysis (minimum FU 8.1 mos) median OS, Nivo + Ipi + CT vs CT: 14.1 vs 10.7 mos; HR: 0.69 (95% CI: 0.55-0.87); P = .0006; met primary endpoint

Updated results (minimum FU 12.7 mos)

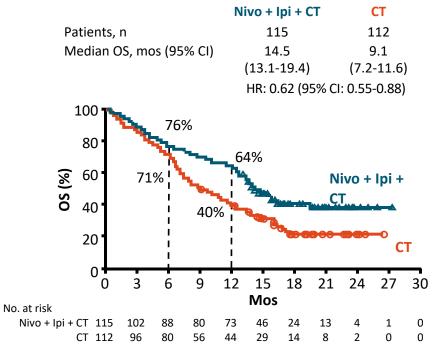
Reck. ASCO 2020. Abstr 9501. Reproduced with permission.

Slide credit: <u>clinicaloptions.com</u>


CheckMate 9LA: OS Subgroup Analysis

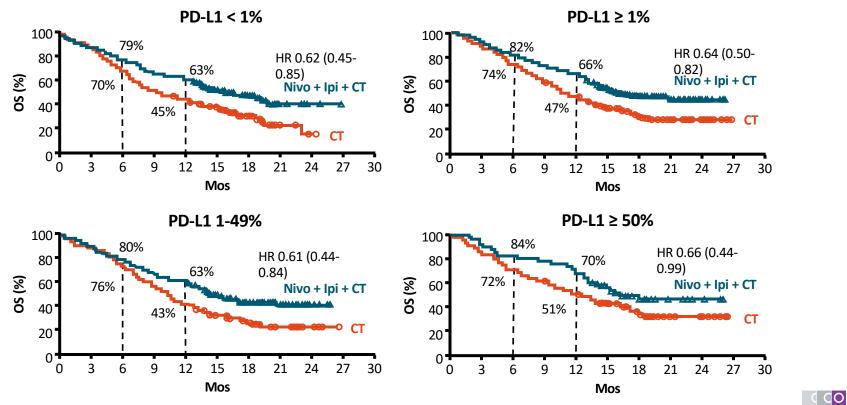
Median OS, mos				
Subgroup	Nivo + lpi + CT n = 361	CT n = 358	Unstratified HR	Unstratified HR (95%)
All randomized (N = 719)	15.6	10.9	0.66*	→ I
< 65 yrs (n = 354)	15.6	10.7	0.61	
65 to < 75 yrs (n = 295)	19.4	11.9	0.62	
<u>></u> 75 yrs (n = 70)	8.5	11.5	1.21	
Male (n = 504)	14.1	9.8	0.66	
Female (n = 215)	19.4	15.8	0.68	
ECOG PS 0 (n = 225)	NR	15.4	0.48	
ECOG PS 1 (n = 492)	13.6	9.7	0.75	
Never smoker (n = 98)	14.1	17.8	1.14	
Smoker (n = 621)	15.6	10.4	0.62	
Squamous (n = 227)	14.5	9.1	0.62	!
Non-squamous (n = 492)	17.0	11.9	0.69	
Liver metastases (n = 154)	10.2	8.1	0.83	
No liver metastases (n = 565)	19.4	12.4	0.64	
Bone metastases (n = 207)	11.9	8.3	0.74	
No bone metastases (n = 512)	20.5	12.4	0.65	
CNS metastases (n = 122)	NR	7.9	0.38	
No CNS metastases (n = 597)	15.4	11.8	0.75	→_ ¦
PD-L1 < 1% (n = 264)	16.8	9.8	0.62	
PDL-L1 ≥ 1% (n = 407)	15.8	10.9	0.64	
PD-L1 1-49% (n = 233)	15.4	10.4	0.61	
PD-L1 ≥ 50% (n = 174)	18.0	12.6	0.66	
Minimum follow-up: 12.7 *Stratified HR; unstratified H).81)	0.12 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Reck. ASCO 2020. Abstr 9501. Reproduced with permission.


Slide credit: clinicaloptions.com

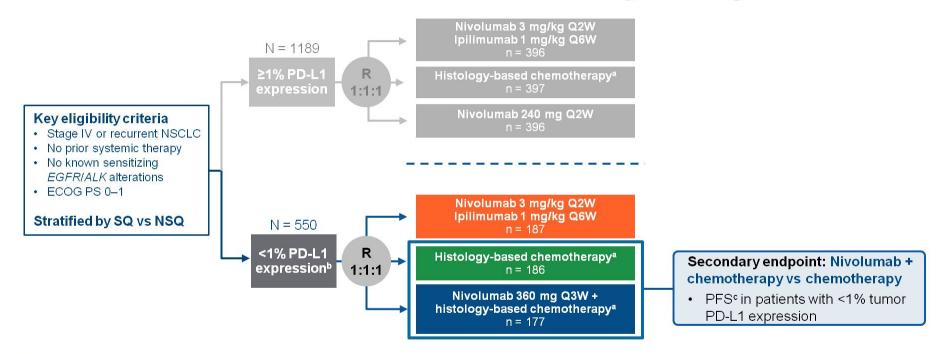
CheckMate 9LA: OS By Histology

NSQ NSCLC


SQ NSCLC

Reck. ASCO 2020. Abstr 9501. Reproduced with permission.

Slide credit: <u>clinicaloptions.com</u>


CheckMate 9LA: OS By PD-L1 Expression

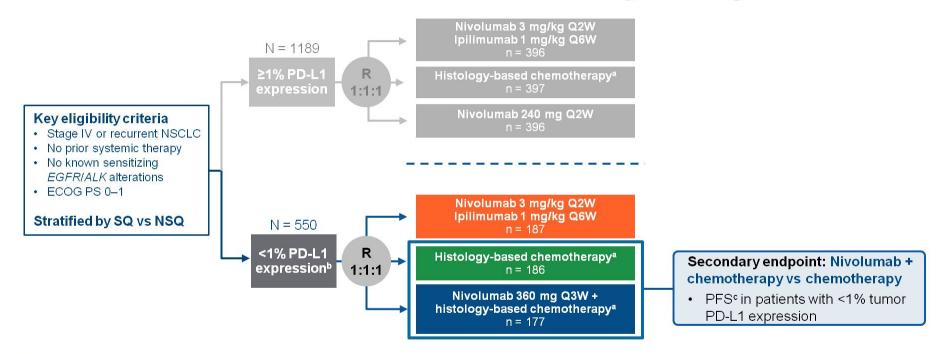
Reck. ASCO 2020. Abstr 9501. Reproduced with permission.

Slide credit: clinicaloptions.com

CheckMate 227 Part 1 Study Design

Co-primary endpoints: OS in PD-L1-selected populations and PFS^c in TMB-selected populations treated with nivolumab + ipilimumab vs chemotherapy

Database lock: January 24, 2018; minimum follow-up: 11.2 months


^aNSQ: pemetrexed + cisplatin or carboplatin, Q3W for ≤4 cycles, with optional pemetrexed maintenance following chemotherapy or nivolumab + pemetrexed maintenance following nivolumab + chemotherapy; SQ: gemcitabine + cisplatin, or gemcitabine + carboplatin, Q3W for ≤4 cycles; ^bOne patient was randomized with <1% tumor PD-L1 expression in IVRS, but was subsequently found to have ≥1% tumor PD-L1 expression; ^cPer BICR

MDAndersor Cancer Cente

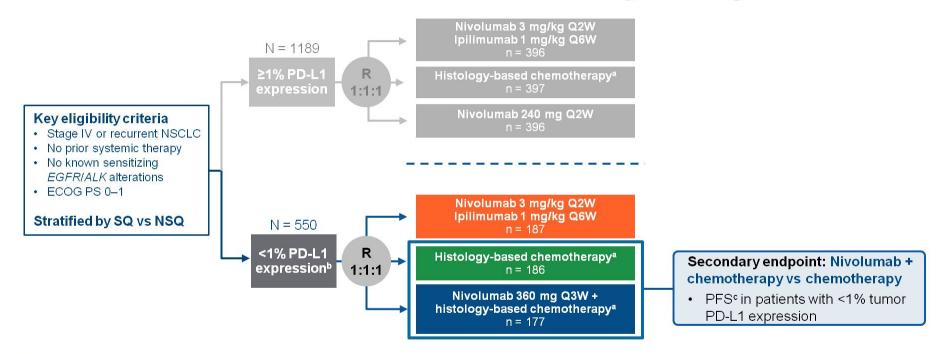
Making Cancer History*

Presented By Hossein Borghaei at 2018 ASCO Annual Meeting

CheckMate 227 Part 1 Study Design

Co-primary endpoints: OS in PD-L1-selected populations and PFS^c in TMB-selected populations treated with nivolumab + ipilimumab vs chemotherapy

Database lock: January 24, 2018; minimum follow-up: 11.2 months


^aNSQ: pemetrexed + cisplatin or carboplatin, Q3W for ≤4 cycles, with optional pemetrexed maintenance following chemotherapy or nivolumab + pemetrexed maintenance following nivolumab + chemotherapy; SQ: gemcitabine + cisplatin, or gemcitabine + carboplatin, Q3W for ≤4 cycles; ^bOne patient was randomized with <1% tumor PD-L1 expression in IVRS, but was subsequently found to have ≥1% tumor PD-L1 expression; ^cPer BICR

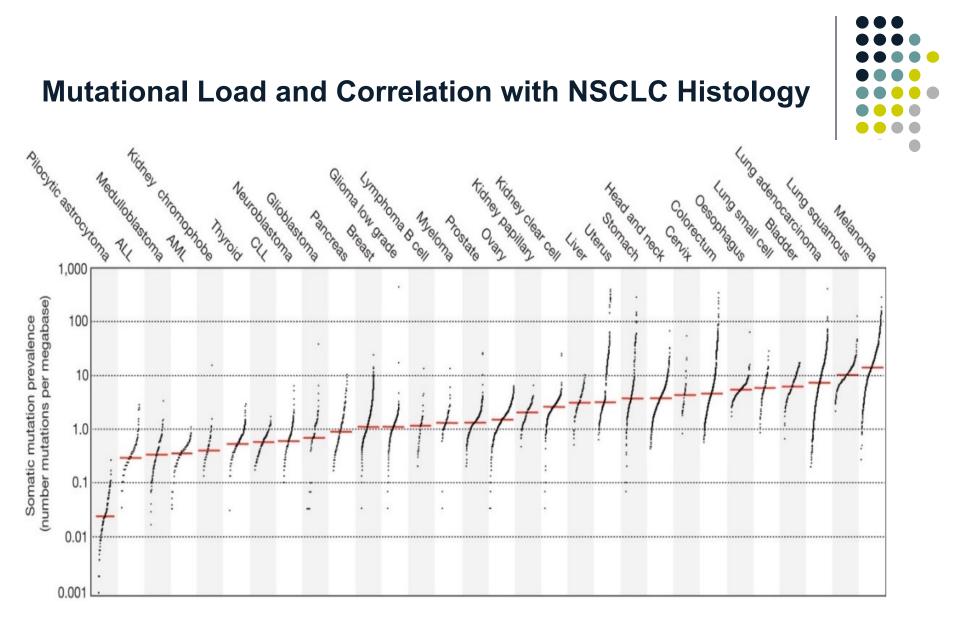
MDAndersor Cancer Cente

Making Cancer History*

Presented By Hossein Borghaei at 2018 ASCO Annual Meeting

CheckMate 227 Part 1 Study Design

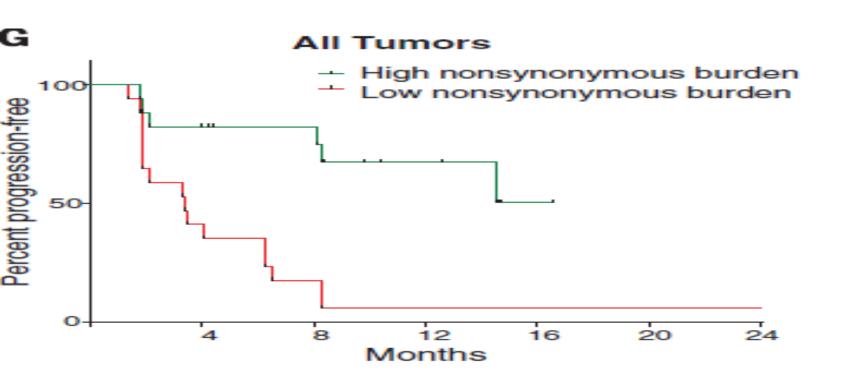
Co-primary endpoints: OS in PD-L1-selected populations and PFS^c in TMB-selected populations treated with nivolumab + ipilimumab vs chemotherapy


Database lock: January 24, 2018; minimum follow-up: 11.2 months

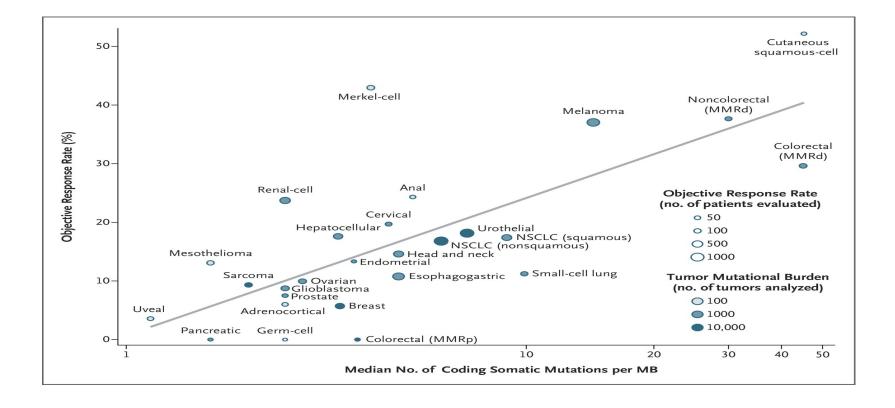
^aNSQ: pemetrexed + cisplatin or carboplatin, Q3W for ≤4 cycles, with optional pemetrexed maintenance following chemotherapy or nivolumab + pemetrexed maintenance following nivolumab + chemotherapy; SQ: gemcitabine + cisplatin, or gemcitabine + carboplatin, Q3W for ≤4 cycles; ^bOne patient was randomized with <1% tumor PD-L1 expression in IVRS, but was subsequently found to have ≥1% tumor PD-L1 expression; ^cPer BICR

MDAndersor Cancer Cente

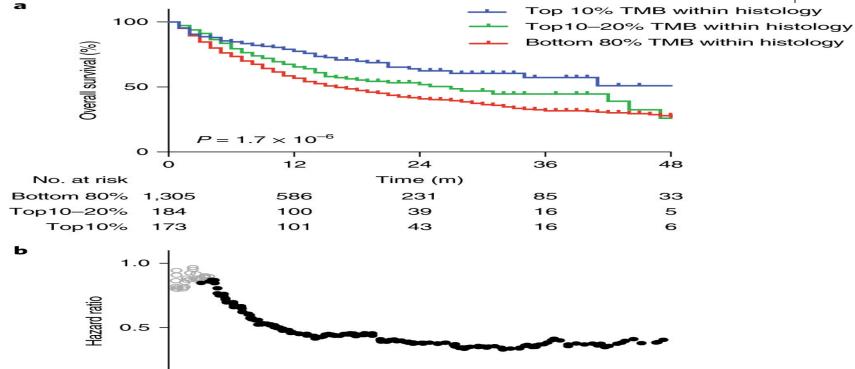
Making Cancer History*


Presented By Hossein Borghaei at 2018 ASCO Annual Meeting

Alexandrov, Nature 2013


Heavy Mutational Load Associated with Better Outcomes to Immuno-Oncology Agents

Outcomes with pembrolizumab

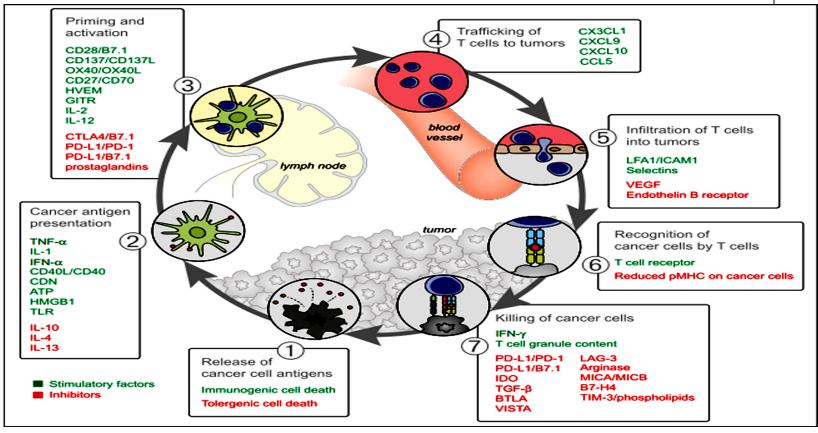


Effect of mutational load on overall survival after ICI treatment.

0.0 0 20 40 60 TMB cutoff

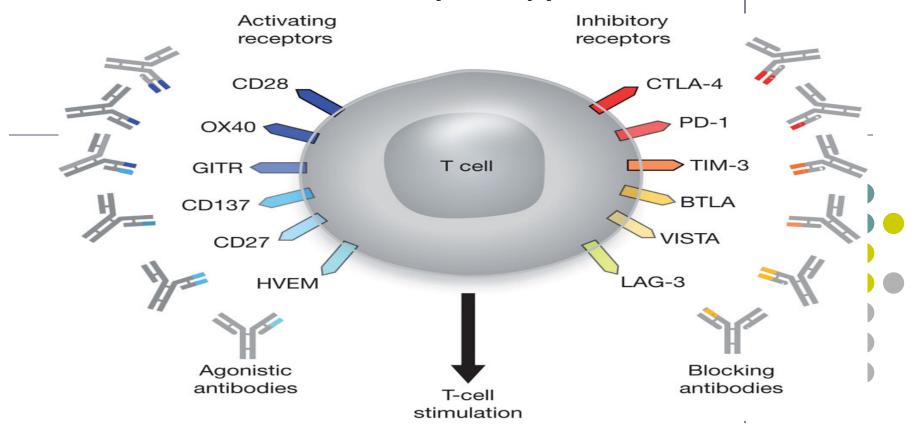
https://doi.org/10.1038/s41588-018-0312-8

FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden–High Solid Tumors


The FDA approved pembrolizumab on June 16, 2020, for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high [TMB-H; ≥10 mutations/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options. FDA granted the approval based on a clinically important overall response rate (29%; 95% confidence interval, 21-39) and duration of response (57% of responses lasting \geq 12 months) in the subset of patients with TMB-H solid tumors (n = 102) spanning nine different tumor types enrolled in a multicenter single-arm trial (KEYNOTE-158). The efficacy of pembrolizumab was supported by the results of whole-exome sequencing (WES) analyses of TMB in additional patients enrolled across multiple pembrolizumab clinical trials, and a scientific understanding of the effects of PD-1 inhibition. Overall, the adverse event profile of pembrolizumab was similar to the adverse event profile observed in prior trials that supported the approval of pembrolizumab in other indications. This approval of pembrolizumab is the first time that the FDA has approved a cancer treatment for an indication based on TMB, and the fourth based on the presence of a biomarker rather than the primary site of origin

Incidence of MSI High in various tumors.

Cancer	Match	Foundation	Caris
Gastroesophageal	7/142 (4.9%)	6/400 (1.5%)	
Esophageal SCC	1/19 (5.3%)		
Gastric/GEJ Adenoca	4/79 (5.1%)		6/91 (6.2%)*
Esophageal Adenoca	2/44 (4.5%)		9/91 (0%)**
CRC	20/723 (2.8%)	42/1185 (3.5%)	38/888 (4.1%)
Rectal Adenoca	1/205 (0.5%)		
Colon Adenoca	19/518 (3.7%)		
Small bowel Adenoca	1/27 (3.7%)	6/70 (8.6%)	1/35 (2.8%)***
Panceatic Adenoca	1/267 (0.4%)	1/459 (0.2%)	7/316 (2.2%)
Uterine	34/237 (14.3%)	39/277 (14.1%)	62/365 (14.5%)
Prostate	7/122 (5.7%)	11/178 (6.2%)	3/128 (2.3%)
Breast	8/566 (1.4%)	2/1459 (0.1%)	2/705 (0.3%)
NSCLC	2/244 (0.8%)	5/2112 (0.2%)	9/1042 (0.9%)
SCLC	2/65 (3.1%)		1/52 (0.9%)
Hepatobiliary	4/166 (2.4%)	9/389 (2.3%)	
Gallbladder	1/37 (2.7%)		
Cholangiocarcinoma	3/129 (2.3%)		3/89 (3.3%)
нсс			0/30 (0%)
GBM	1/47 (2.1%)		2/431 (0.5%)
Neuroendocrine NOS	1/99 (1%)	1/431 (0.2%)	3/124 (2.4%)
Panc Neuroendocrine	2/28 (7.1%)		
CUP		22/815 (2.7%)	6/421 (1.4%)



The the anti-tumor immune response

Chen and Mellman, 2013. Immunity. 25;39(1):1-10

T cell targets for immunoregulatory antibody therapy

Mellman Nature: 480-489, 2011

Artificial Intelligence–Powered Spatial Analysis of Tumor-Infiltrating Lymphocytes as Complementary Biomarker for Immune Checkpoint Inhibition in Non–Small-Cell Lung Cancer

Sehhoon Park, MD, PhD et al

ascopubs.org/journal/JCO on March 10, 2022 DOI https://doi.org/10.1200/JCO.21.02010

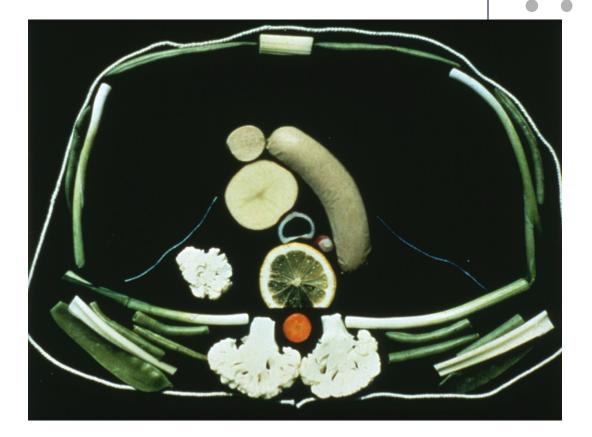
Novel imaging biomarkers predict outcomes in stage III unresectable non-small cell lung cancer treated with chemoradiation and durvalumab

Jazieh K, et al.

J Immunother Cancer 2022;10:e003778. doi:10.1136/jitc-2021-003778

Treatment Algorithm (as of 04/2022)

NSCLC	PDL1 <u>></u> 50%	PDL1 - 1-49%	PDL1 <1%	Studies
Non-Squamous	*Pembrolizumab	*Plat/Pem/Pembro	*Plat/Pem/Pembro	KN-24
	*Atezolizumab	Plat/NbT/Atezo	Plat/NbT/Atezo	KN-42
	*Cemiplimab	Plat/Pac/Bev/Atezo	Plat/Pac/Bev/Atezo	IMPower-110
	*Plat/Pem/Pembro	Carbo/Pac/Ipi/Nivo	Carbo/Pac/Ipi/Nivo	EMPower-1
	Plat/NbT/Atezo or		*lpi/Nivo	KN-189
	Carbo/Pac/Ipi/Nivo		(if TMB >10 Muts/Mb)	IMPower-130
				CK9LA
				CK227
Squamous	*Pembrolizumab	*Plat/Pac/Pembro	*Plat/Pac/Pembro	KN-24
	*Atezolizumab	*Plat/NbT/Atezo	*Plat/NbT/Atezo	KN-42
	*Cemiplimab	*Carbo/Pac/Ipi/Nivo	Carbo/Pac/Ipi/Nivo	IMPower-110
		Pembro	*lpi/Nivo	EMPower-1
			(if TMB >10 Muts/Mb	KN-407
				IMPower130
				CK9LA
				CK227



Conclusions

- 1. Lung cancer mortality has dropped by approximately 30% since the 1990s
- 2. Improvement in therapeutic modalities are one of the reasons for this decrease in mortality
- 3.
- 4. The advent of Immunotherapy had had a dramatic impact in the lung cancer therapeutic landscape
- 5. The search for an optimal biomarker to better predict benefit and/or toxicity from immunotherapy continues
- 6. Development of novel checkpoint inhibitors and novel combinations are an area of active investigation

Thank YOU!

Gracias!

