

Dealing with EGFRex19del & L858R, ALK, and K-Ras^{G12C} Genetic Aberrations

MEDPRC

Edgardo S. Santos, M.D., FACP Florida Precision Oncology/A Division of Genesis Care USA Medical Director of Research Services Thoracic Oncology Clinical Affiliate Associate Professor Charles E. Schmidt School of Medicine/Florida Atlantic University Treasurer, FLASCO & President, FLASCO Foundation

EDUCATOR CONSORTIUM

Targeted Therapy in NSCLC: FDA approvals ERBB2 amp (0.9%) MET amp (2.2%) -RIT1 (2.2%) HRAS (0.4%) NF1 NRAS (0.4%) Lung Cancer is (8.3%) RET fusion (0.9%) MAP2K1 (0.9%) COMPLEX ! ALK fusion (1.3%) None (24.4%)ROS1 fusion (1.7%) ERBB2 (1.7%) MET ex14 (4.3%) -BRAF Tremendous progress has been made in (7.0%) KRAS EGFR (32.2%) personalized therapy (11.3%)

EGFR	ALK	ROS1	BRAF	MET	RET	TRK	KRAS G12C
Erlotinib	Crizotinib	Crizotinib	Dabrafenib	Crizotinib	Vandetanib	Larotrectinib	<u>Sotorasib</u>
Gefitinib	Ceritinib	Entrectinib	Vemurafenib	Tepotinib	Cabozantinib	Entrectinib	
Afatinib	Brigatinib		Trametinib	Capmatinib	Selpercatinib		
Osimertinib	Alectinib				Pralsetinib		
Dacomitinib	Lorlatinib						
Ramu + Erl							
Amivantamab							
Mobocertinib							

9 Druggable Pathways in NSCLC→

EGFR ¹Exon19/Exon 21

- ²EGFRex20ins
- ³ALK
 - 4ROS1
- ⁵BRAF
- ⁶RET
- ⁷MET
- ⁸NTRK
- ⁹KRAS^{G12C}
 - [?]HER2
 - [?]NRG1

EGFR Exon 19 Deletion or L858R

- First-line therapy
- ► Afatinib¹
- ► Erlotinib² Dacomitinib³
- Gefitinib^{4,5}
- Osimertinib⁶
- Erlotinib + ramucirumab⁷
- Erlotinib + bevacizumab^c (nonsquamous)⁸
- Subsequent therapy Osimertinib⁹

EGFR S768I, L861Q, and/or G719X

- First-line therapy
- Afatinib^{1,10}
- ► Erlotinib²
- Dacomitinib³
- Gefitinib^{4,5} Osimertinib^{6,11}
- Subsequent therapy
- Osimertinib⁹

EGFR Exon 20 Insertion Mutation Positive

- Subsequent therapy Amivantamab-vmjw¹² Mobocertinib¹³
- KRAS G12C Mutation Positive
- Subsequent therapy Sotorasib¹⁴

ALK Rearrangement Positive

- First-line therapy ► Alectinib^{15,16}
- Brigatinib¹⁷
- Ceritinib¹⁸
- Crizotinib^{15,19}
- ► Lorlatinib²⁰
- Subsequent therapy
 Alectinib^{21,22}
- Brigatinib²³
- Ceritinib²⁴
- ► Lorlatinib²⁵

ROS1 Rearrangement Positive

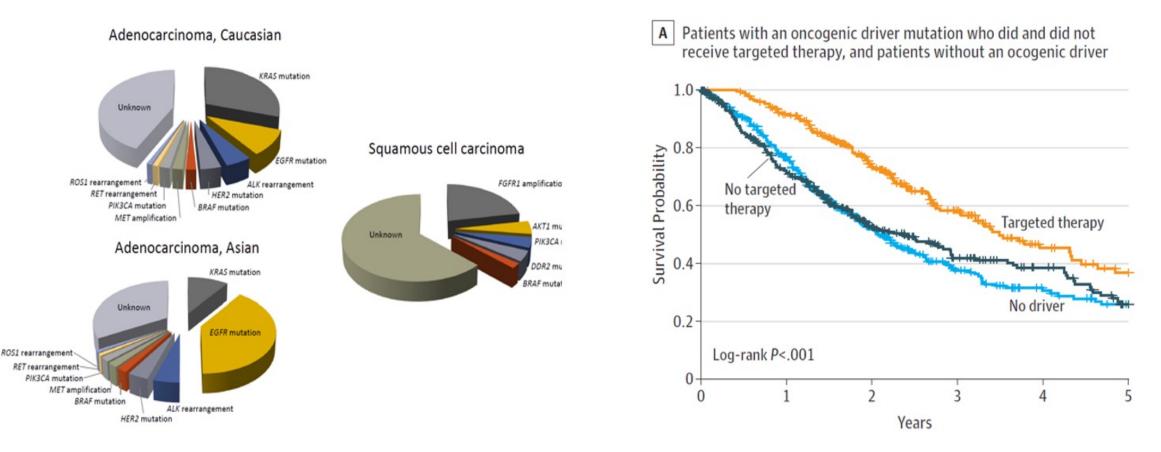
- First-line therapy
- ► Ceritinib²⁴
- Crizotinib²⁷
- ► Entrectinib²⁸
- Subsequent therapy
- Lorlatinib²⁹
- ► Entrectinib²⁸

BRAF V600E Mutation Positive

- First-line therapy
- Dabrafenib/trametinib³⁰
- Dabrafenib³⁰
- Vemurafenib
- Subsequent therapy
- Dabrafenib/trametinib^{31,32}

NTRK1/2/3 Gene Fusion Positive

- First-line/Subsequent therapy
- Larotrectinib³³
- Entrectinib³⁴



A Division of Genesis Care

CANCER W MARRIOTT MIAMI | MIAMI, FLOI

APRIL 1-3, 2022

Target Directed Therapy Improves OS

- Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs.
- Kris MG¹, Johnson BE², Berry LD³, Kwiatkowski DJ⁴, Iafrate AJ⁵, Wistuba II⁶, Varella-Garcia M⁷, Franklin WA⁷, Aronson SL⁸, Su PF³, Shyr Y³, Camidge DR⁷, Sequist LV⁵, Glisson BS⁶, Khuri FR⁹, Garon EB¹⁰, Pao W³, Rudin C¹¹, Schiller J¹², Haura EB¹³, Socinski M¹⁴, Shirai K¹⁵, Chen H³, Giaccone G¹⁶, Ladanvi M¹, Kugler K⁷, Minna JD¹², Bunn PA⁷.
- JAMA. 2014 May 21;311(19):1998-2006. doi: 10.1001/jama.2014.3741.

EGFR Pathway →Exon 19 del/Exon 21(L858R) Front Line

BEVERLY Study Study design

NSCLC

Untreated Non-squamous Activating EGFR mutation Stage IIIB o IV PS 0-2

Control arm

• Erlotinib 150 mg orally once daily

Experimental arm

- Erlotinib 150 mg orally once daily
- Bevacizumab 15 mg/kg iv every 21 days

Strata:

PS (0-1 vs 2)

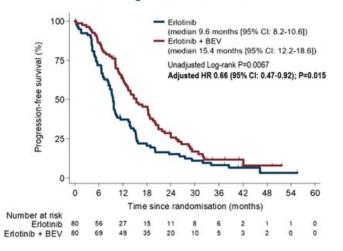
Type of mutation (exon19 del vs 21 L858R mut vs others) Centre Treatment in both arms will be given until disease progression or unacceptable toxicity or patient's or physician's motivated decision to stop

JW MARRIOTT MIAMI | MIAMI, FLORIDA

R

1:1

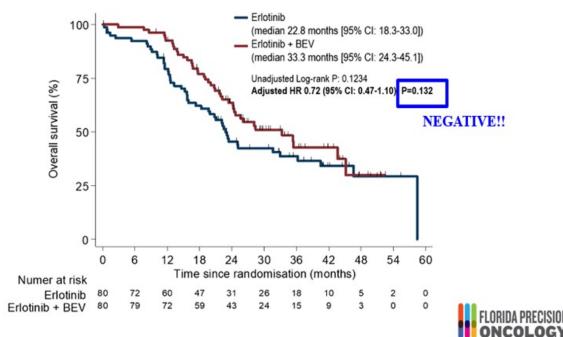
Background...


Trial	Phase	n	EGFR TKI	Anti-VEGF	PFS	OS
mat	Flidse		LOINTRI	Anti-VEO	FT 5	03
JO25567 ^{1,2}	Phase 2	154	Erlotinib	Bevacizumab	16 vs 9.7 (HR: 0.54; p =0.005)	47 .7.4 (HR: 0. 1, p=0.32)
NEJ026 ³	Phase 3	228	Erlotinib	Bevacizumab	16.9 vs 13.3 (HR: 0.605; p=0.015)	50.146.2 (H. 00)
ALLIANCE ⁴	Phase 2	88	Erlotinib	Bevacizumab	17.9 vs 13.5 (HR: 0.81, p= 0.39)	32 0.6 (HR : 1 = 0.33)
RELAY ⁵	Phase 3		Erlotinib	Ramucirumab	19.4 vs 12.4 (HR: 0.591; p<0.0001)	Immature
			EGFR TKI	+Chemotherapy		
Trial	Phase	n	EGFR TKI	Chemotherapy	PFS	OS
NEJ009 ⁶ G vs GCP	Phase 3	345	Gefitinib	Carboplatin + Pemetrexed	20 vs 11.2 (HR: 0.494; p =0.001)	52 vs 38.8 (HR: 0.65, p=0.013)
Noronha ⁷ G vs GCP	Phase 3	350	Gefitinib	Carboplatin + Pemetrexed	16 vs 8 (HR: 0.51; p=0.001)	NR vs 17 (HR 0.45; p=0.001)

BEVERLY Trial

Progression-free survival

Investigator-assessed



Multivariable Cox model adjusted by:

- Age
- Gender
- ECOG Performance status
- Smoking history
- Type of mutation
- Centre size

BEVERLY Trial

Overall survival

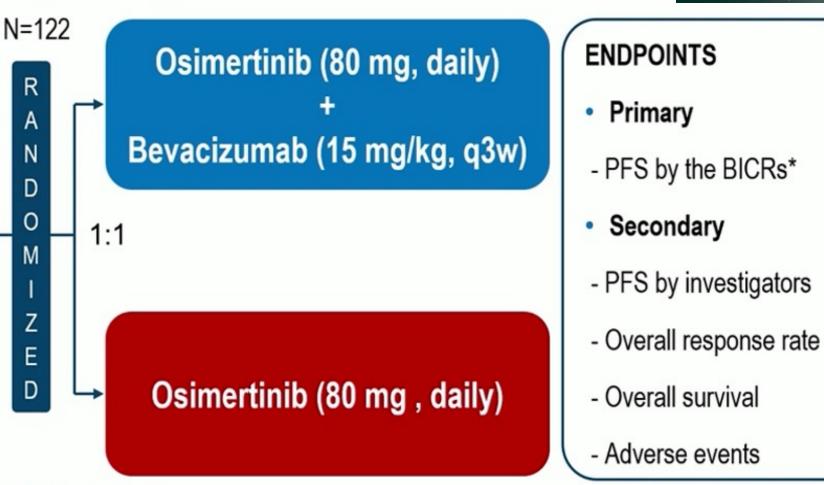
APRIL 1-3, 2022 -

WJOG9717L: Study Design

А

Ν

D


0

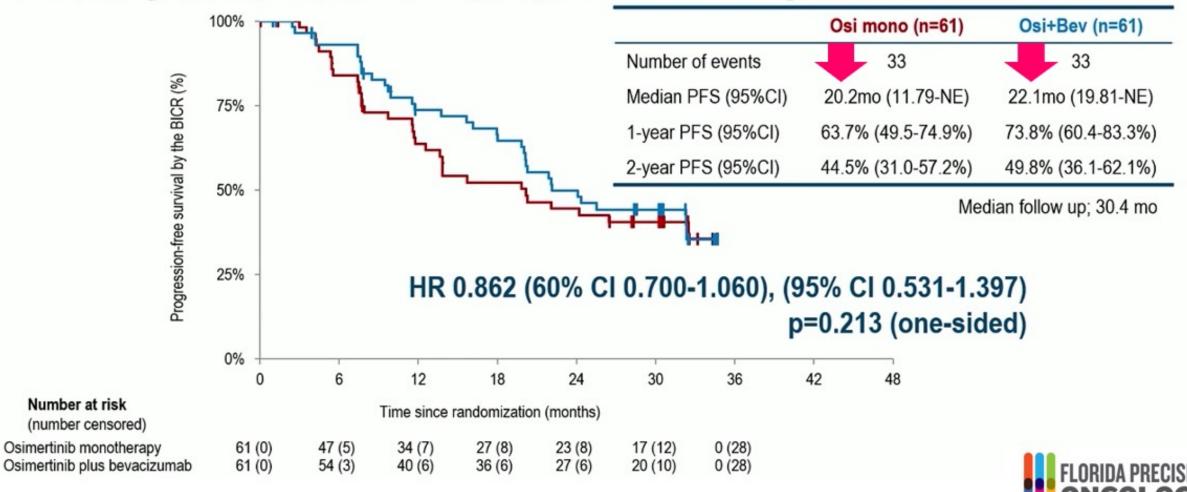
М

Е

KEY ELIGIBILITY CRITERIA

- Non-squamous NSCLC harboring EGFR activating mutations
- Clinical stage IIIB, IIIC, IV, or recurrence after surgical resection
- Previously untreated ٠
- ECOG PS 0-1 ٠
- Age 20- years
- Absence of symptomatic ٠ brain metastases

Stratification factors: Sex (female vs. male), Clinical stage (IIIB-IV vs. recurrence) EGFR mutation (Del19 deletion vs. L858R)



WJOG9717L Study

Primary Endpoint: PFS (ITT), assessed by BICRs

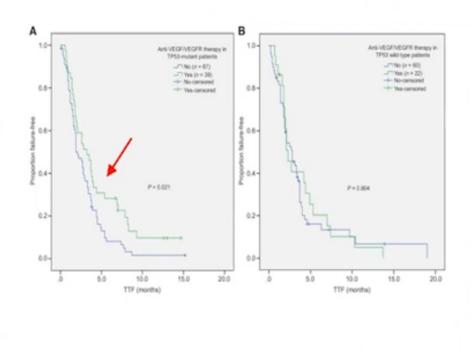
WJOG9717L Study Subgroup analysis of PFS (ITT), assessed by BICR

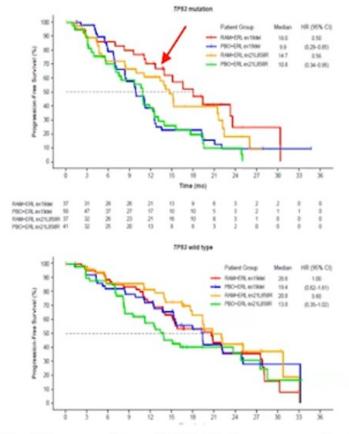
	Osimertinib monotherapy	Osimertinib plus Bev	Osimertinib plus bevacizumab better		Osim	mertinib monotherapy better		Hazard ratio			
		0.125	0.25	0.5	1	2	4	(95%CI)			
Overall Age, years				·				0.862 (0.531 to 1.397)			
<75 ≥75	48 13	46 15		, •	•		_	0.775 (0.447 to 1.344) 1.107 (0.387 to 3.161)			
Gender Male Female	23 38	24 37		•	•	-		0.734 (0.344 to 1.567) 0.959 (0.510 to 1.803)			
Disease stage IIIB-IV Recurrence after surgery	48 13	49 12			•	1	_	0.840 (0.497 to 1.419) 0.913 (0.264 to 3.159)	Median PFS (m)	Osi	Osi+ Bev
EGFR mutation type Del in exon19	36	35	-					0.622 (0.312 to 1.240)	Del 19	20.3	NE
Leu858Arg	36 25	35 26	,	ř	- ÷			1.246 (0.621 to 2.502)	L858R	15.7	20.0
Smoking history Ever Never	31 30	23 38		•	-	•	-	0.481 (0.227 to 1.019) 1.444 (0.736 to 2.833)	Ever smoker	13.6	32.4
ECOG performance status 0 1	34 27	32 29		, •	•	1		0.908 (0.458 to 1.800) 0.821 (0.414 to 1.627)	Never smoker	32.5	20.3
Brain metastases at baselin Yes No	23 38	18 43		, – •	•	_		0.833 (0.359 to 1.935) 0.918 (0.507 to 1.662)			
Liver metastases at baseline Yes No	11 50	6 55		. •	•	4	-	0.714 (0.176 to 2.904) 0.903 (0.537 to 1.521)		201	

8th Annual -

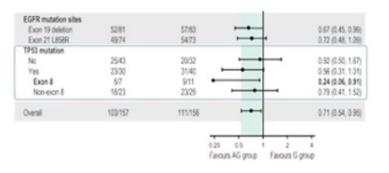
JW MARRIOTT MIAMI | MIAMI, FLORIDA

APRIL 1-3, 2022


aina More Into Pers

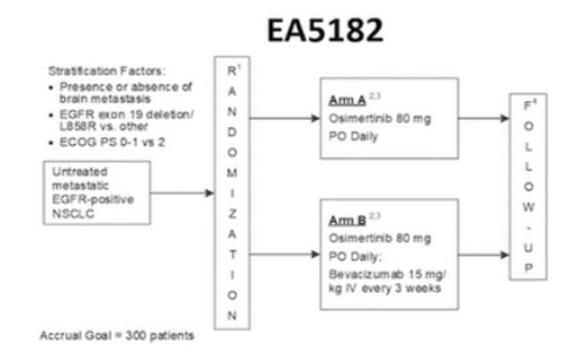

CANCER

Is it smoking? Or could it be TP53 mutation status?



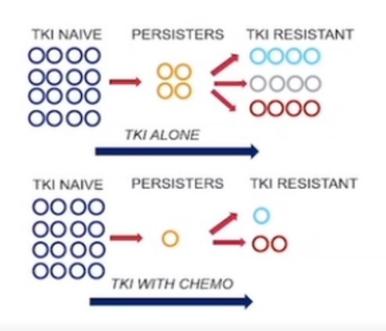
MDACC: Better outcomes with angiogenesis Inhibitors in patients with TP53 mutant tumours RELAY: Better outcomes with ramucirumab + erlotinib in patients with TP53 mutant tumours ACTIVE: Better outcomes with apatinib + gefitinib in patients with TP53 mutant tumours (exon 8)

Adapted from LV Sequist ESMO 2020; Wheler et al. Mol Cancer Ther 2016; Nakagawa et al. Clin Cancer Res 2021 Jul 22; Zhao et al. J Thorac Oncol. 2021; 16(9): 1533-46.



Open Questions Around First-Line Treatment for EGFR Mutant Lung Cancer Patients

Osimertinib and VEGF combination therapy


- Randomized first-line study of osimertinib vs osimertinib/bevacizumab is ongoing, EA5182
- Co-primary endpoints of progression-free survival and overall survival as well as CNS endpoints
- Similar study of osimertinib and ramucirumab being done in the Hoosier Oncology network (PI: Le)

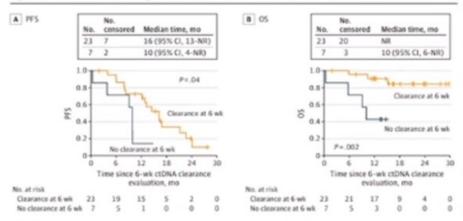
Open Questions Around First-Line Treatment for EGFR Mutant Lung Cancer Patients

EGFR TKI and chemotherapy

- To combine two active therapies, there needs to be improvement in PFS greater than the sum of sequencing AND/OR improvement in overall survival.
- EGFR TKI and chemotherapy combination therapy may further eradicate subclones that survive EGFR TKI monotherapy (PERSISTERS)
- Early studies demonstrate improvement in OS with the combination suggesting that further eradication of persister subclones changes natural history- longer time on treatment but also improved control throughout the disease course

Yu, H. 2022 Targeted Therapies in Lung Cancer Meeting, IASLC, February 22-26, 2022.

CANCER EXPERT



- Identification of a biomarker to select patients for escalation of therapy is important
- Clearance of ctDNA is a biomarker that can be obtained at 3 or 6 weeks after treatment initiation.
- EGFR ctDNA is detected in >75% of pts prior to treatment. ~25% have detectable EGFR ctDNA after starting osimertinib
- In patients with persistent EGFR ctDNA, time on treatment is shorter and overall survival shorter

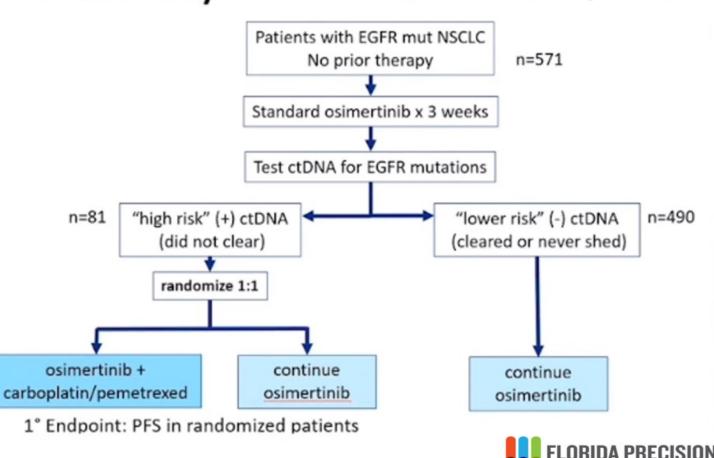
Figure 4. Association of Circulating Tumor (ct)DNA Persistence With Survival

MEC VLearning MEDPRO

MEC

GLOBAL MEETINGS

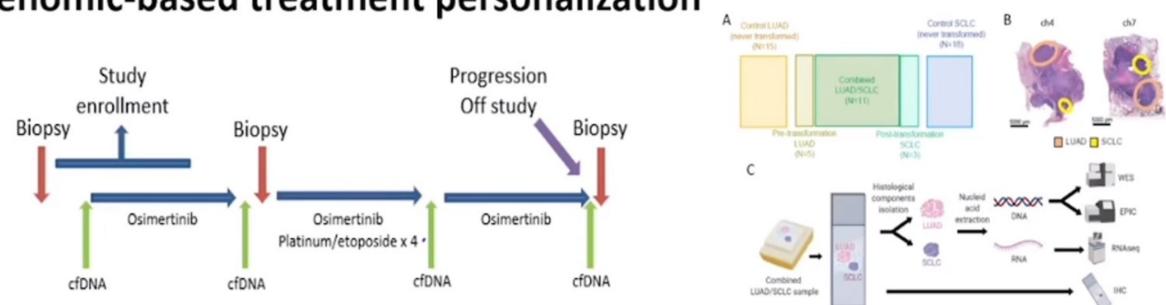
FLAURA	Detectable ctDNA @3w	Non-detectable ctDNA @ 3w
PFS	11.3mo	19.8mo
ORR	78%	86%



2022 Targeted Therapies of Lung Cancer Meeting

FEBRUARY 22-26, 2022 | WORLDWIDE VIRTUAL EVENT

Biomarker-driven (EGFR ctDNA clearance) treatment escalation


-Patients begin on standard osimertinib monotherapy - EGFR ctDNA clearance assessed at 3 weeks to risk-stratify -Persistent EGFR ctDNA identifies patients with limited response to EGFR TKI monotherapy -Randomize high-risk patients to osimertinib vs osimertinib/chemo -FLAURA2 for high-risk patients only

Helena Yu, MD. IASLC 2022 Targeted Therapies in Lung Cancer Meeting, Feb 22-26, 2022.

NCT04410796, PI: Yu

Open Questions Around First-Line Treatment for EGFR Mutant Lung Cancer Patients

Genomic-based treatment personalization

-Clinical trial that selects patients at risk (EGFR/RB1/TP53 genotype) for small cell transformation and adds in small-cell directed chemotherapy prior to transformation to try to eradicate small-cell subclone -Comprehensive molecular analyses at different timepoints to identify changes in subclones over treatment and time.

Helena Yu, MD. IASLC 2022 Targeted Therapies in Lung Cancer Meeting, Feb 22-26, 2022.

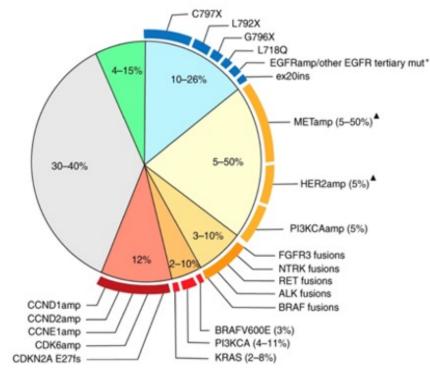
JW MARRIOTT MIAMI | MIAMI, FLORIDA

MAM CANCER MEETING

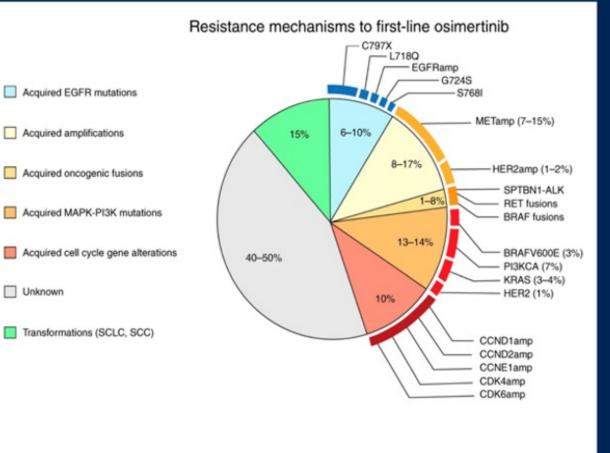
APRIL 1-3, 2022

Program Directors

Luis E. Raez, MD, FACP, FCCP Edgardo S. Santos Castillero, MD, FACP


MEC VLearning

MEDPRO

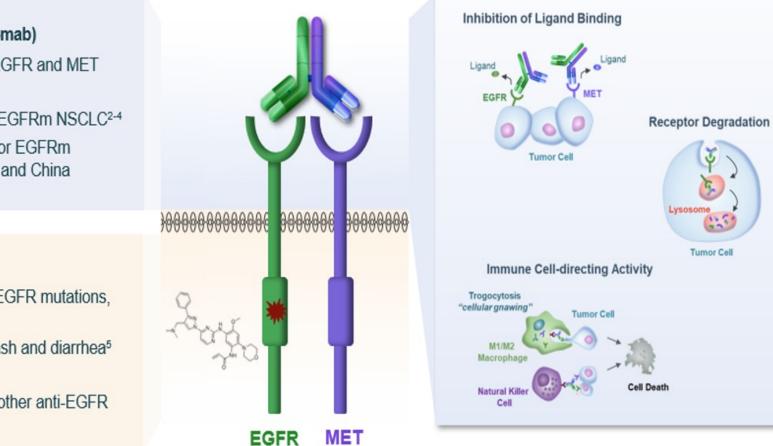

HETEROGENEOUS MECHANISMS OF RESISTANCE TO OSIMERTINIB

Unknown

Resistance mechanisms to second-line osimertinib

* Other EGFR tertiary mutations include G719X, G724S AND S768I Mutations have also been reported

Leonetti A Br J Cancer, 2019 Oct;121(9):725-737



MC Garassino. 2021 ASCO

Amivantamab and Lazertinib

Amivantamab MOA

BC Cho. 2021 ASCO

Tumor Cell

Amivantamab (am-e-van-tuh-mab)

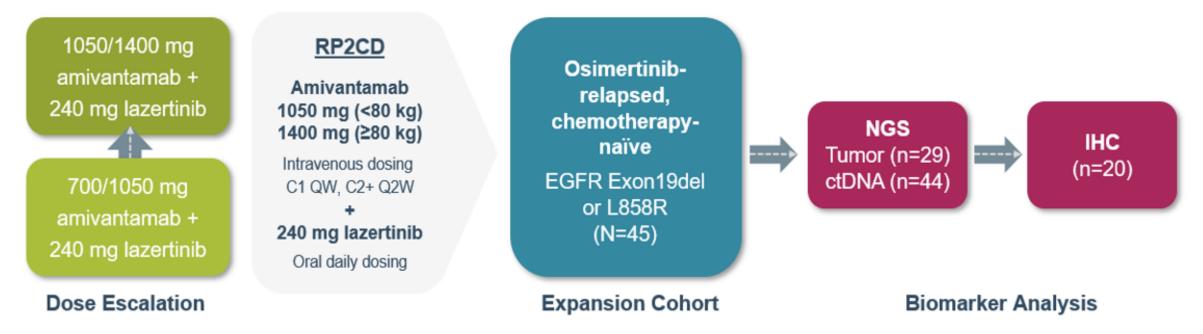
- Fully human bispecific antibody that targets EGFR and MET .
- Fc portion has immune cell-directing activity¹ .
- Demonstrated clinical activity across diverse EGFRm NSCLC²⁻⁴ .
- Granted Breakthrough Therapy Designation for EGFRm Exon20ins NSCLC post-chemotherapy in US and China

Lazertinib (la-zer-tin-ib)

- Potent 3rd-gen TKI with efficacy in activating EGFR mutations, T790M, and CNS disease5-6
- Low rates of EGFR-related toxicity such as rash and diarrhea⁵
- Low cardiovascular safety risk7 .
- Safety profile that supports combination with other anti-EGFR . molecules

CHRYSALIS Phase 1 Study Design: Combination Cohort (NCT02609776)

Key Objectives

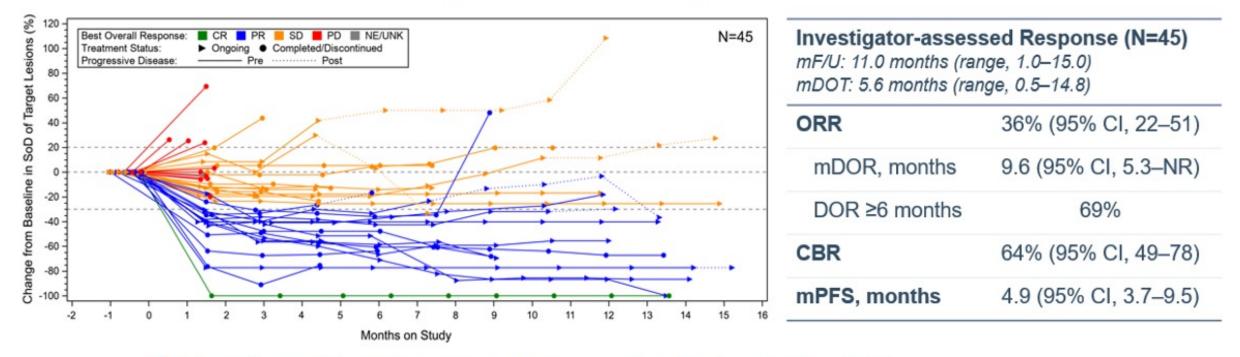

- Establish RP2CD
- Safety and efficacy at RP2CD

Key Eligibility Criteria

- Metastatic/unresectable NSCLC
- Measurable disease (expansion cohort)
- EGFR Exon19del or L858R mutation

Biomarker Analysis^a

- NGS of pretreatment tumor biopsy and ctDNA collected prospectively
- IHC for EGFR/MET expression

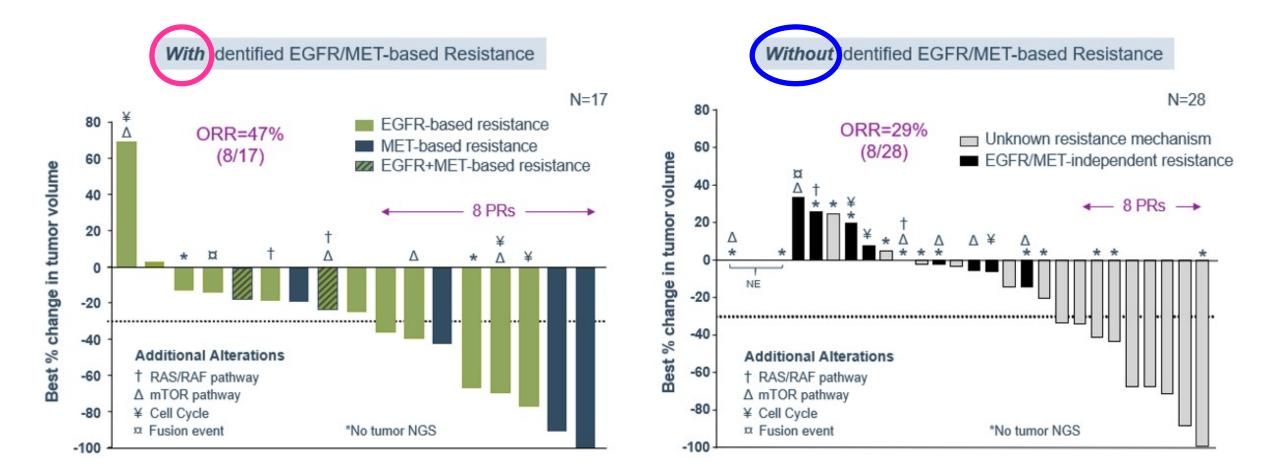


This presentation provides updated results with longer follow-up from the ESMO 2020 oral presentation (Cho Ann Oncol 31:S813 Oral #12580). *>1 alteration detected in 42/44 ctDNA and 29/45 tumor NGS analyses. C, cycle; EGFR, epidermal growth factor receptor; IHC, immunohistochemistry; QW, weekly; Q2W, every 2 weeks; RP2CD, recommended phase 2 combination dose

BC Cho. 2021 ASCO

Durable Responses Observed with Amivantamab + Lazertinib with Manageable Safety

- Safety profile consistent with previous experience with amivantamab + lazertinib¹
- Most common AEs were IRR (78%), rash (acneiform dermatitis, 51% + rash, 27%), and paronychia (49%)
 - Majority were grade 1–2
- Treatment-related: grade ≥3 AE (16%), discontinuations (4%), dose reductions (18%)

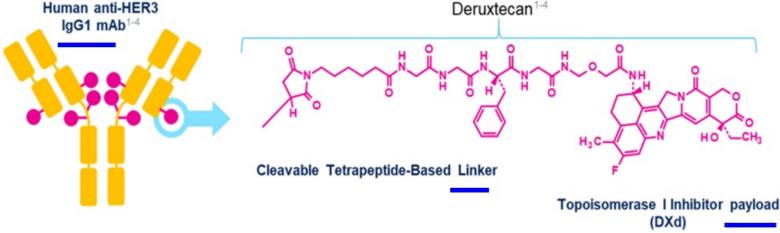

19 Apr 2021 clinical cutoff. Four patients did not have postbaseline disease assessments and are not included in the plot. 1Cho Ann Oncol 31:S813 Oral #12580.

AE, adverse event; CBR, clinical benefit rate (CR, PR, or SD ≥11 weeks); CR, complete response; IRR, infusion-related reaction; mDOR, median duration of response; mDOT, median duration of treatment; mF/U, median follow-up; mPFS, median progression-free survival; NE, not evaluable; NR, not reached; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease; SoD, sum of target lesion diameters; UNK, unknown

Equal Number of Responders Among Patients with and without Identified EGFR/MET-based Resistance

Genomic analysis used Guardant360 for ctDNA NGS and ThermoFisher for tissue NGS. NE, not evaluable (no postbaseline assessment for 4 patients).

BC Cho. 2021 ASCO

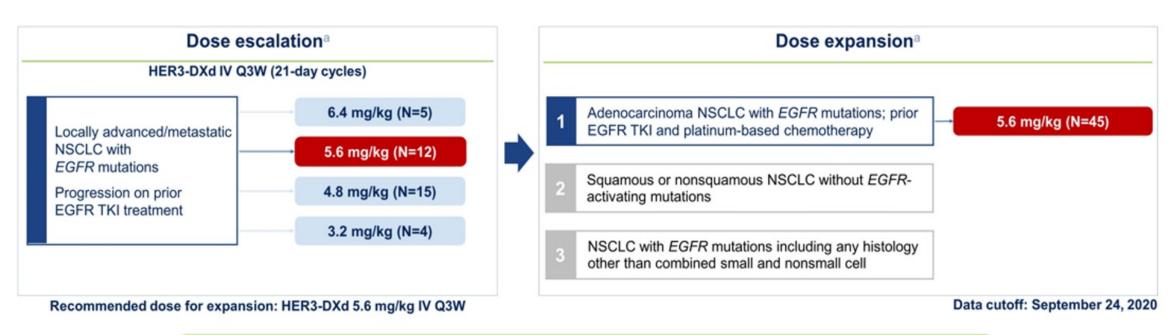


- HER3-DXd is an ADC with 3 components:¹⁻⁶
 - A fully human anti-HER3 IgG1 mAb (patritumab), covalently linked to:
 - A topoisomerase I inhibitor payload, an exatecan derivative, via
 - A tetrapeptide-based cleavable linker
- HER3-DXd is in clinical evaluation for NSCLC, metastatic breast cancer, and colorectal cancer

HER3 is expressed in 83% of NSCLC tumors^{7,8}

HER3 alterations are not known to be a mechanism of resistance to EGFR TKI in EGFRm NSCLC

^a HER3 overexpression is associated with metastatic progression and decreased relapse-free survival in patients with NSCLC.


1. Hashimoto Y, et al. Clin Cancer Res. 2019;25:7151-7161. 2. Nakada T, et al. Chem Pharm Bull (Tokyo). 2019;67(3):173-185. 3. Ogitani Y, et al. Clin Cancer Res. 2016;22(20):5097-5108. 4. Koganemaru S, et al. Mol Cancer Ther. 2019;18:2043-2050. 5. Haratani K. et al. J Clin Invest. 2020;130(1):374-388. 6. Ooitani Y. et al. Cancer Sci. 2016;107(7):1039-1046. 7. Scharpenseel H et al. Sci Rep 2019;9(1):7406.

Patritumab Deruxtecan U31402-A-U102

PA Janne. 2021 ASCO

U31402-A-U102 is a Phase 1 Dose Escalation and Dose Expansion Study in Patients With NSCLC

57 patients with EGFR TKI–resistant, *EGFR*m NSCLC were treated with HER3-DXd 5.6 mg/kg in dose escalation (N=12) and dose expansion Cohort 1 (N=45)

- Efficacy evaluation in pooled patients with EGFRm NSCLC treated with HER3-DXd 5.6 mg/kg (N=57) (Median Follow Up: 10.2 mo; range, 5.2-19.9 mo)
- Safety evaluation in all patients in dose escalation and dose expansion Cohort 1 (N=81)

Clinicaltrials.gov, NCT03260491; EudraCT, 2017-000543-41; JapicCTI, 194868. ^a Patients with stable brain metastases were permitted to enroll; A tumor biopsy was required prior to study entry but patients were not selected for inclusion based on measurement of HER3.

HER3-DXd Demonstrated Durable Antitumor Activity After Failure of EGFR TKI and Platinum-based Chemotherapy (PBC)

	HER3-DXd 5.6 mg/kg				
Outcomes (BICR per RECIST 1.1) Median Follow Up: 10.2 (range, 5.2-19.9) mo ^a	Prior TKI, ± PBC (N=57)	Prior OSI, PBC (N=44)			
Confirmed ORR, % (95% CI)	39 (26-52)	39 (24-55)			
Best overall response, n (%)					
CR	1 (2)	1 (2)			
PR	21 (37)	16 (36)			
SD, Non-CR/Non-PD	19 (33)	13 (30)			
PD	9 (16)	8 (18)			
Not evaluable	7 (12)	6 (14)			
Disease control rate, % (95% CI)	72 (59-83)	68 (52-81)			
Time to response, median (range), mo	2.6 (1.2-5.4)	2.7 (1.2-5.4)			
Duration of response, median (95% CI), mo	6.9 (3.1-NE)	7.0 (3.1-NE)			
PFS, median (95% CI), mo	8.2 (4.4-8.3)	8.2 (4.0-NE)			

The subgroup of patients treated with prior **osimertinib** (OSI) and platinum-based chemotherapy demonstrated similar efficacy to the overall efficacy population

BICR, blinded independent central review; CR, complete response; NE, not evaluable; ORR, objective response rate; OSI, osimertinib; PBC, platinum-based chemotherapy; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease. Data cutoff: September 24, 2020.

* For patients treated with the recommended dose for expansion of HER3-DXd (N=57)

MC Garassino. 2021 ASCO

Patritumab Deruxtecan

U31402-A-U102

JW MARRIOTT MIAMI | MIAMI, FLORIDA

MAM CANCER MEETING

APRIL 1-3, 2022

Program Directors

Luis E. Raez, MD, FACP, FCCP Edgardo S. Santos Castillero, MD, FACP

ALK Pathway

ALK is an oncogenic driver mutation for a distinct subset of NSCLC

Bit Sensitising Image: Sensitising 17% Image: Sensitising <t

detected

31%

KRAS

25%

21 m Host 2% BRAF 2% RET 2% — NTRK ~1% — PIK3CA 1% — MEK1 <1% Unknown oncogenic driver

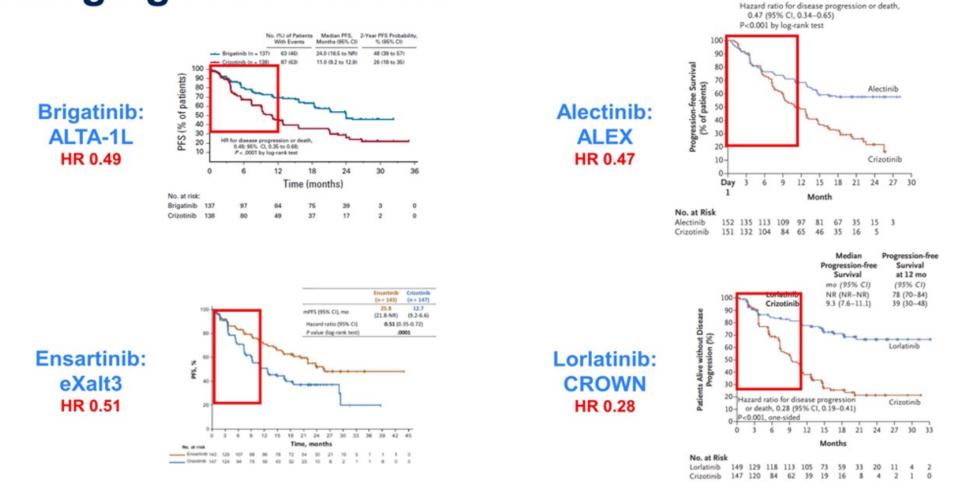
Patients tend to be...

Younger²⁻⁴

Median age ~52 years versus ~70 years for other types of NSCLC

Never or light smokers^{3,5,6}

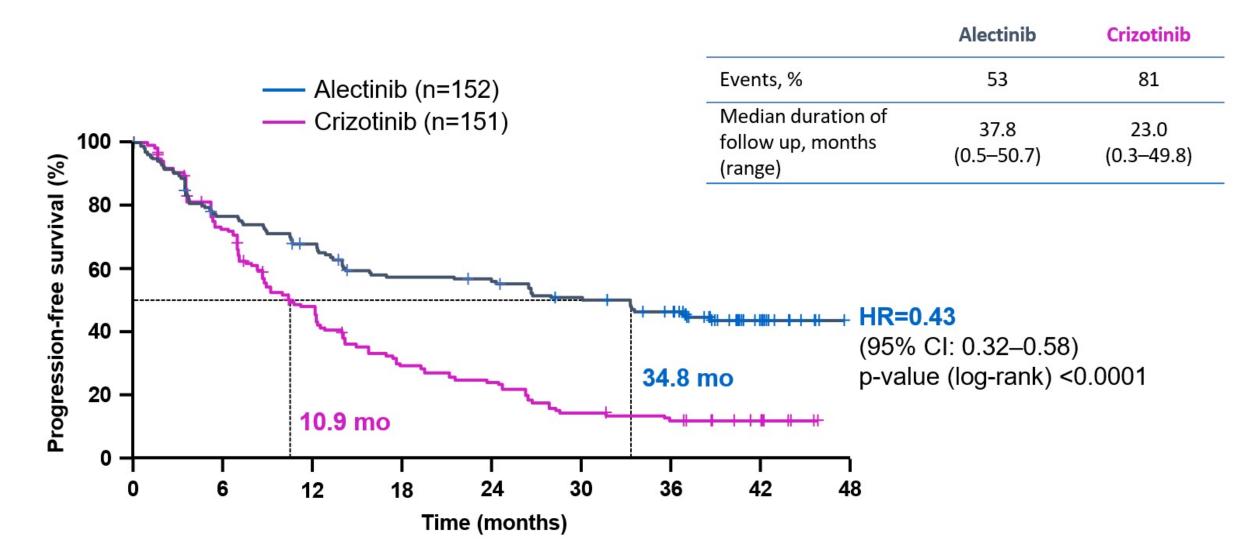
~70% patients with *ALK*+ NSCLC have never smoked


Advanced disease at presentation^{7–9}

- Pleural/pericardial effusion
- Multiple lesions/sites
- Symptomatic
- CNS metastases

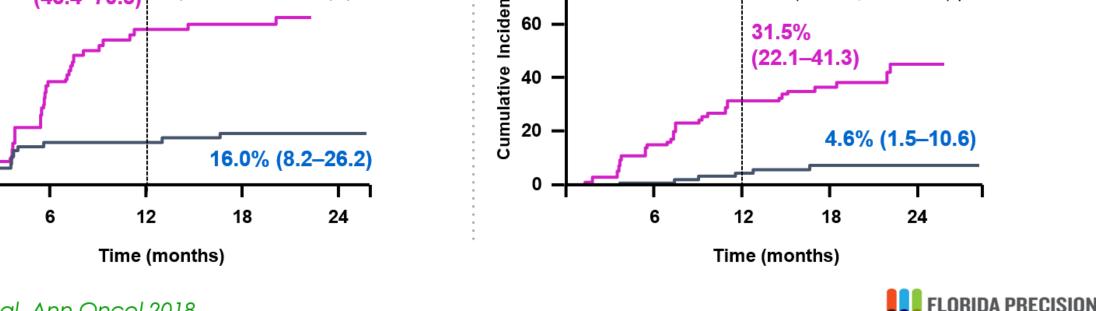
1. Tsao, et al. J Thorac Oncol 2016; 2. Chia, et al. Clin Epidemiol 2014; 3. Camidge, et al. Lancet 2012; 4. SEER Cancer Stat Fact Sheets Lung and Bronchus Cancer 5. Tao, et al. Thorac Cancer 2017; 6. Kayaniyil, et al. Curr Oncol 2016; 7. Solomon, et al. N Engl J Med 2014; 8. Soria, et al. Lancet 2017; 9. Peters, et al. N Engl J Med 2017

Managing ALK+ NSCLC



Camidge DR, et al, J Clin Oncol. 2020 Nov 1;38(31):3592-3603., Horn L, et al, WCLC Presentation, Aug 8, 2020. Peters S, et al, N Engl J Med. 2017 Aug 31;377(9):829-838. Shaw AT, et al, N Engl J Med. 2020 Nov 19;383(21):2018-2029.

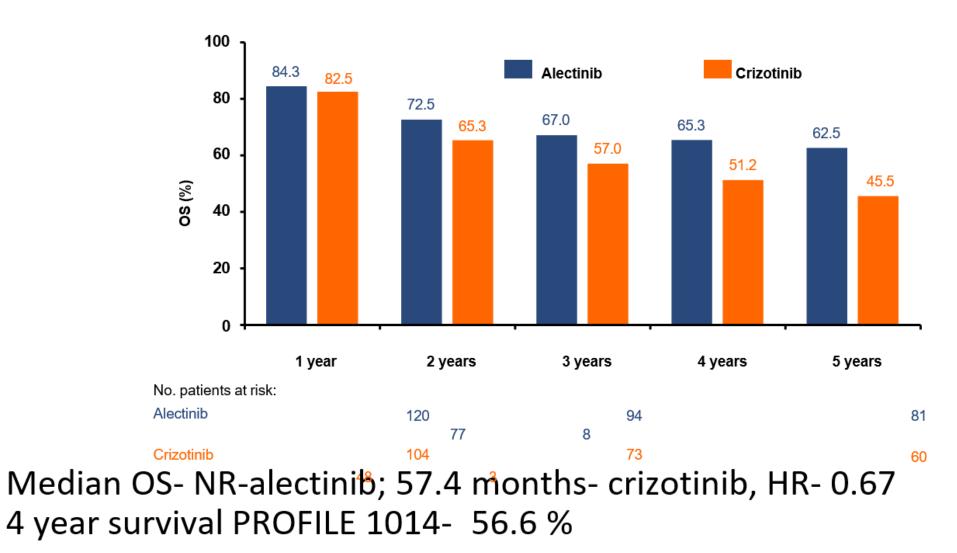
ALEX: Updated PFS


ALEX: CNS progression was lower with alectinib in patients with and without CNS metastases at baseline.

A Division of Genesis Care

With CNS metastases at baseline — Crizotinib 12 month CIR — Alectinib 12 month CIR - Crizotinib 12 month CIR - Alectinib 12 month CIR 100 100 Cumulative Incidence (%) Cumulative Incidence (%) Cause-specific HR 0.18 80 Cause-specific HR 0.14 80 58.3% (95% CI, 0.09-0.36) p<0.0001 (95% CI, 0.06-0.33) p<0.0001 (43.4 - 70.5)60 60 40 -40 20 20

Without CNS metastases at baseline



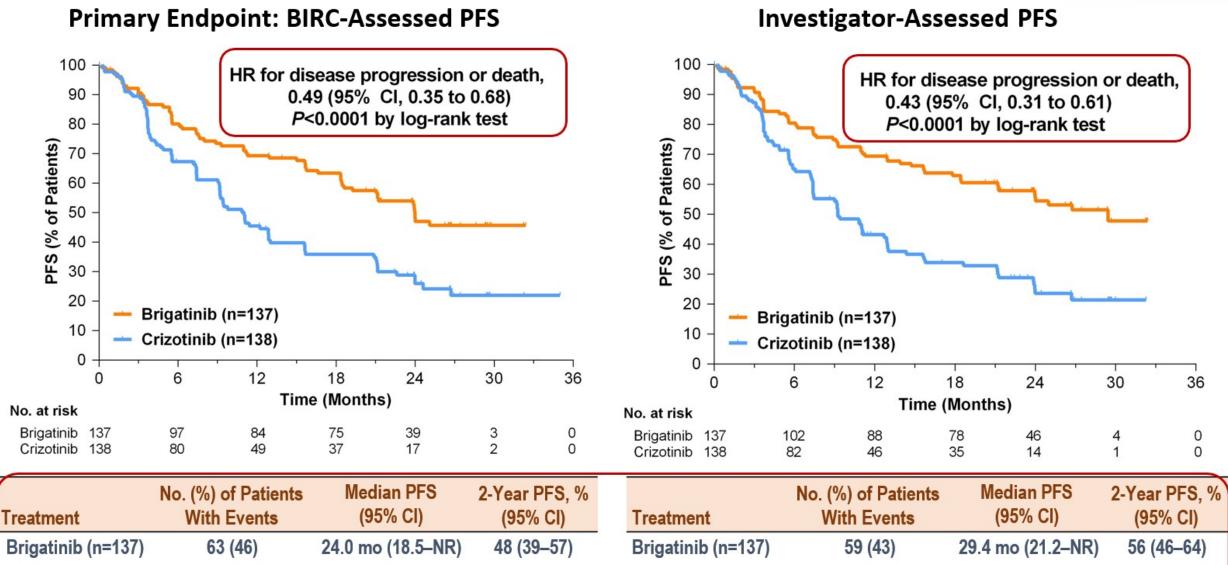
Gadgeel, et al. Ann Oncol 2018.

0

ALEX- Overall Survival Event Free Rate

Peters S, ASCO 2020

Updated PFS ALTA 1L Brigatinib


Crizotinib (n=138)

87 (63)

11.0 mo (9.2-12.9)

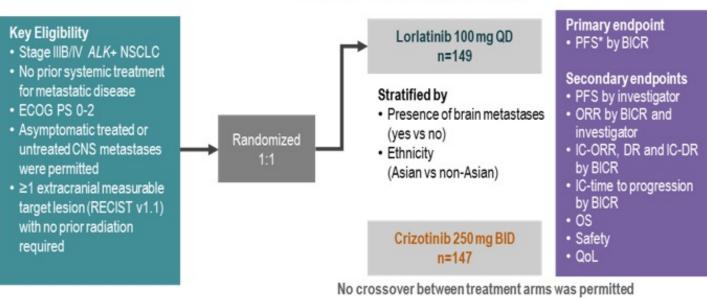
24 (16-32)

Crizotinib (n=138)

92 (67)

9.2 mo (7.4–12.9)

26 (18-35)


The CROWN study: Randomized Phase 3 Study Comparing Lorlatinib vs. Crizotinib as First-line treatment in ALK-positive NSCLC

Results from a planned interim analysis

Lorlatinib (a 3rd generation ALK TKI) was designed to be:

- highly potent and selective
- efficacious against ALK kinase domain mutations found in patients who develop resistance to 1st and 2nd generation ALK TKIs
- Highly CNS penetrant

Reference: Zou et. al. Cancer Cell 2015

CROWN Study Design

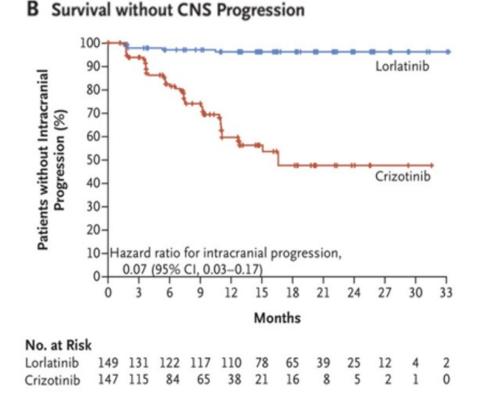
*Defined as the time from randomization to RECIST-defined progression or death due to any cause.

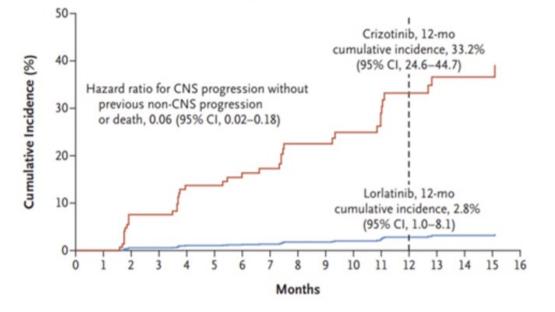
BICR, blinded independent central review; DR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; QoL, quality of life; RECIST, Response Evaluation Criteria in Solid Turnors. ClinicalTrials.gov number, NCT03052608

2020 ESMO Congress. Christine M. Lovly, MD, PhD.

Summary of CROWN Efficacy Results

	Drug (dose)	Clinical Trial	# of patie	nts CNS Mets at Baseline	
Lorlatinib		CROWN 296		Lorlatinib: 26%	
	100mg po qd	NCT03052608		Crizotinib: 27%	
ORR ((95% C	• •	PFS (months, by (95% CI)	BICR)	Intracranial Response Rate	
Lorlatinib: 76% (68-83)		Lorlatinib: NE		Lorlatinib: 82% (57-96)	
<u>Crizotinib</u> : 58% (49-66)		Crizotinib: 9.3 (7.6-11.1)		Crizotinib: 23% (5-54)	
Odds 3.89)	ratio: 2.25 (1.35-	HR: 0.28 (0.19 -	- 0.41)	 * Patients with measurable brain metastases at baseline 	


2020 ESMO Congress. Christine M. Lovly, MD, PhD.


Managing ALK+ NSCLC

18th Annual MIAMI CANCER MEETING Breakthrough to Excellence in Cancer Care: Digging More Into Personalized Medicine JW MARRIOTT MIAMI | MIAMI, FLORIDA APRIL 1-3, 2022

CROWN

C Cumulative Incidence of CNS Progression as First Event

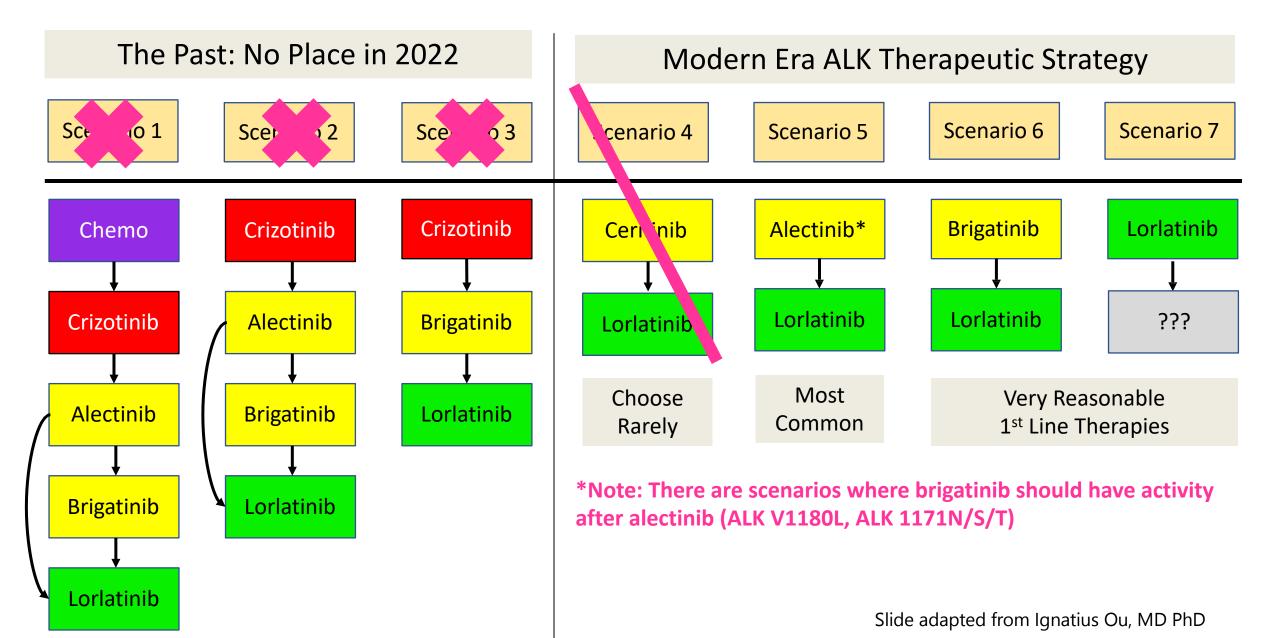
Shaw AT et al. N Engl J Med 2020; 383(21):2018-29.

Lung Cancer

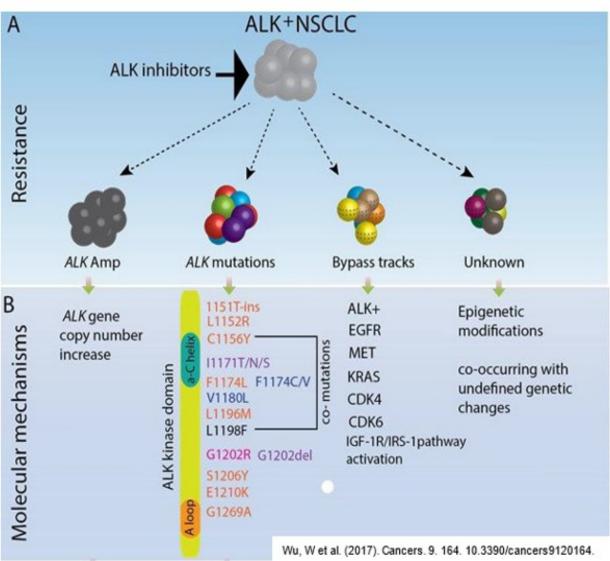
Clinical Management of Adverse Events Associated with Lorlatinib

TODD M. BAUER,^a ENRIQUETA FELIP,^b BENJAMIN J. SOLOMON,^c HOLGER THURM,^d GERSON PELTZ,^e MARC D. CHIODA,^f ALICE T. SHAW^g ^aSarah Cannon Cancer Research Institute/Tennessee Oncology, PLLC, Nashville, Tennessee, USA; ^bVall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ^cPeter MacCallum Cancer Centre, Melbourne, Victoria, Australia; ^dPfizer Oncology, La Jolla, California, USA; ^ePfizer Oncology, Groton, Connecticut, USA; ^fPfizer Oncology, New York, New York, USA; ^gMassachusetts General Hospital, Boston, Massachusetts, USA

Disclosures of potential conflicts of interest may be found at the end of this article.

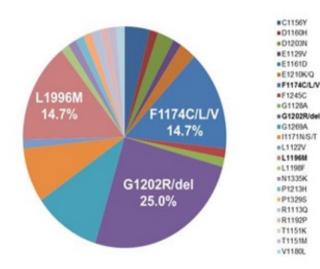


Oncologist 2019


Categorizing side effects of Lorlatinib

Hyperlipidemia	Co	gnitive effect	Mood effect	Physical symptoms	
Hyper- Hyper- cholesterolemia triglyceridemia	Hallucinations (Auditory, Visual Olfactory)/ Impulse co sleep terrors probler (vivid dreams)		Depression/ suicidal Euphoria ideation	Edema/ Peripheral weight gain neuropathy	
Onset: -4 weeks after starting lorlatinib Treatment: -Artorvastatin -Pitavastatin	Points: -Self awareness and with partner/ caregiver -Culture appropriate hallucinations -vivid dreams (dreams of being chased, moved legs and arms while dreaming -early onset (days of starting lorlatinib) -transient -if persistent, dose hold, rarely needs dose reduction	eness hance CNS in social sequalae cand affects "activity hip of daily living" is (i.e. profession ent actor) then dose tion if reduce n rediation -self-awareness -self-awareness -care-giver should also aware of this possibility -need permanent dose reduction	Points: Poi	Points:Points:-be aware of possibility-not classical chemo-induced peripheral neuropathy-onset usually months after starting lorlatinib-not classical chemo-induced peripheral neuropathy-can again over 20% of baseline weight-wrists, joints predominance-furosemide does not alleviate edema-be aware of possibility and difference-thigh-high compression stocking -dose interruption for up to 14 days or dose reduction-not classical chemo-induced peripheral neuropathy-can again over 20% of baseline weight-be aware of possibility and difference-furosemide does not alleviate edema-onset usually weeks or months after starting lorlatinib-thigh-high compression stocking -dose interruption for up to 14 days or dose reduction-dose interruption for up to 14 days	

Different Clinical Scenarios for Treatment of ALK+ NSCLC Patients

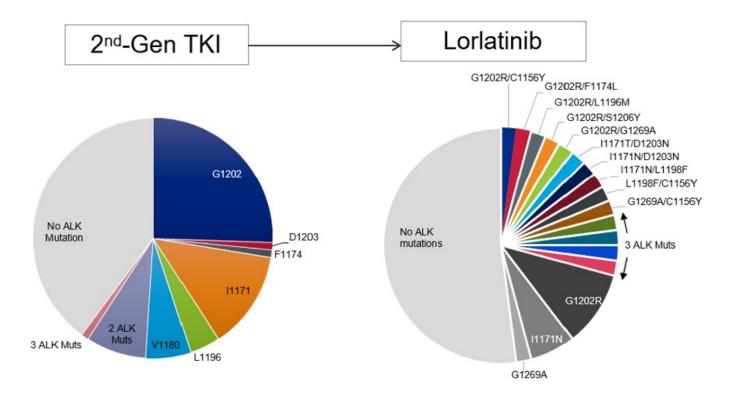


Resistance to ALK TKI Therapy

ALK Kinase Domain mutations – Data from the Lorlatinib phase 1/2 trial

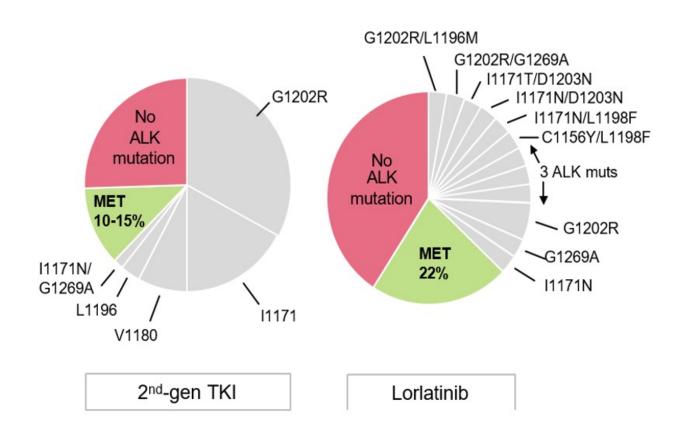
cfDNA analysis (EXP 2-5 from the Lorlatinib phase 1/2 trial):

- 45/190 patients (24%) with 1 or more ALK kinase domain mutations
- 75 mutations detected (used for the frequency denominator)

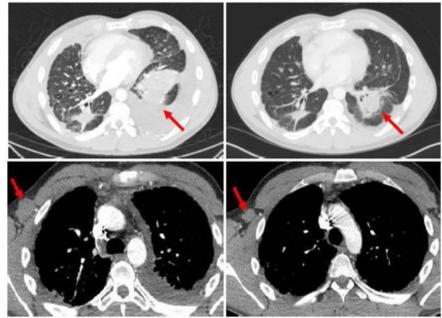

Shaw AT AACR 2018 Lov ly C AACR 2018

Dr. Christine Lovly. 2020 Presidential Symposium, WCLC; August 8, 2020.

Overcoming ALK-Independent ("Off-Target") Resistance


- Off-target mechanisms of resistance occur in a significant proportion of cases following 2G/3G ALK TKIs (up to 75% following lorlatinib used later-line)
- Certain off-target resistance mechanisms are known and may be clinically actionable

Shiba-Ishii A et al., biorxiv 2021. doi: https://doi.org/10.1101/2021.07.16.452681



MET Amplification Post-2G/3G ALK TKIs

Progression on Iorlatinib Response to **lorlatinib + criz**

Dagogo-Jack I et al. Clin Cancer Res 2020;26:2535-45

Overcoming ALK-Independent Resistance: Combinatorial Strategies

Combination	ALKi Anchor	Partner	Sponsor	ClinicalTrials.gov
ALKi+METi	Lorlatinib	Crizotinib	MGH	NCT04292119
ALKi+MEKi	Alectinib	Cobimetinib	MGH	NCT03202940
	Brigatinib	Binimetinib	UCSF	NCT04005144
	Ceritinib	Trametinib	UCSF	NCT03087448
	Lorlatinib	Binimetinib	MGH	NCT04292119
ALKi+SHP2i	Lorlatinib	PF-07284892	Pfizer	NCT04800822
	Lorlatinib	TNO155	MGH	NCT04292119
ALKi+mTORi	Ceritinib	Everolimus	MD Anderson	NCT02321501
ALKi+VEGFi	Brigatinib	Bevacizumab	City of Hope	NCT04227028

Emerging ALK Inhibitors and Combinations

- On-target resistance to 3G ALK TKI lorlatinib is mediated by compound ALK kinase domain mutations; novel 4G ALK TKIs with potency against double/triple ALK mutants are therefore being developed.
- □ **TPX-0131** is a 4G compact, macrocyclic ALK inhibitor with preclinical potency against ALK wild-type, G1202R, L1198F, and a broad range of ALK compound mutations, currently phase 1 testing (FORGE-1).
- NVL-655 is a 4G highly selective and CNS-penetrant ALK inhibitor with preclinical potency against ALK wild- type, G1202R, and G1202R-based compound mutations, anticipated to enter phase 1 testing in 2022.
- Off-target resistance to next-generation ALK TKIs is common.
- Clinical trials of combination regimens to overcome some of the known off-target mechanisms of resistance to ALK TKIs (e.g., ALKi+METi, ALKi+MEKi, ALKi+SHP2i) are enrolling patients with goals to assess safety and preliminary efficacy.

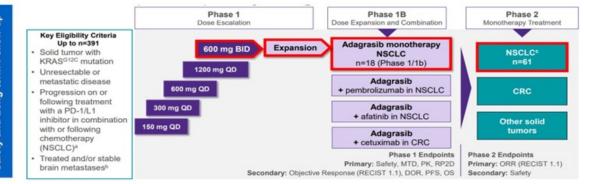
JW MARRIOTT MIAMI | MIAMI, FLORIDA

MAM CANCER MEETING

APRIL 1-3, 2022

Program Directors

Luis E. Raez, MD, FACP, FCCP Edgardo S. Santos Castillero, MD, FACP


K-Ras^{G12C} Pathway

AMG510 Sotorasib

MRTX849 Adagrasib

Li et al, WCLC 2020; Riely et al, ELCC 2021

Toxicity Profile→ <u>Sotorasib</u> and <u>Adagrasib</u>

Treatment Related AEs	Sotorasib Phase II (n= 126)		Adagrasib Phase I/II (all cohorts pooled, n = 110)		
Treatment Related AEs Any Grade <u>></u> Grade 3 Leading to treatment D/C	69.8% 20.6% 7.1%		85% 32% 4.5%		
Most Common TRAEs					
	Any Grade	≥ Grade 3	Any Grade	≥ Grade 3	
Nausea	19%	0	54%	2%	
Diarrhea	31.7%	4%	51%	0	
Vomiting	7.9%	0	35%	2%	
Fatigue	11.1%	0	32%	6%	
ALT increase	15.1%	6.3%	20%	5%	
AST increase	15.1%	5.6%	17%	5%	

Skoulidis et al, NEJM 2021; Riely et al, ELCC 2021

Rebecca S. Heist, MD. IASLC 2022 Targeted Therapies in Lung Cancer Meeting, Feb 22-26, 2022.

18th Annual -

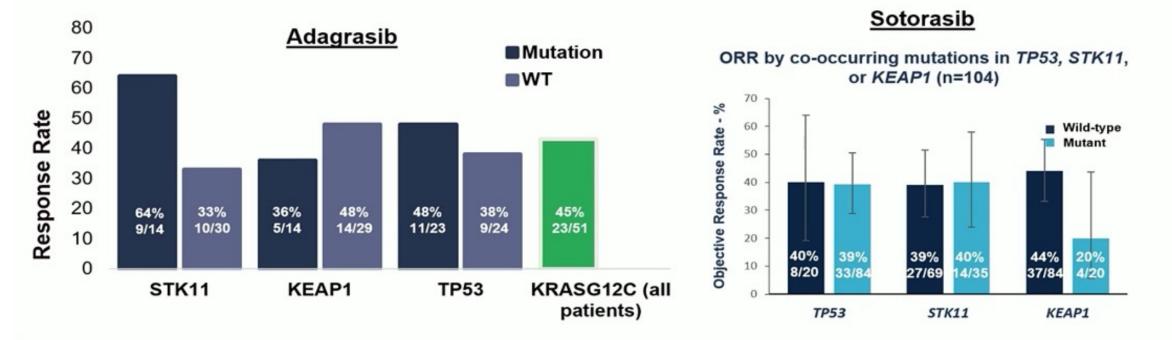

JW MARRIOTT MIAMI I MIAMI, FLORIDA

ging More Into Per

Efficacy of KRasG12C Inhibitors:

Drug	Phase	n	RR	DCR	PFS	os
Sotorasib	П	126	37.1%	80.6%	6.8 mo	12.5 mo
Adagrasib	1/11	51	45%	96%	Pending data	

Skoulidis et al, NEJM 2021; Riely et al, ELCC 2021

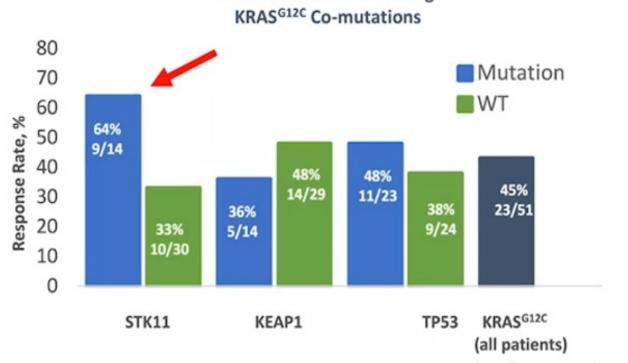

K-RAS G12C Inhibitors: Difficult-to-Treat Subsets

STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma № 🔛

Skoulidis et al, Ca Discovery 2018

KEAP1/NFE2L2 Mutations Predict Lung Cancer Radiation Resistance That Can Be Targeted by Glutaminase Inhibition

Binkley et al, Ca Discovery 2020


G12C inhibitors appear to work in subsets where other treatment modalities struggle

KRAS G12C inhibitors active in patients with STK11mt/KRASmt tumours

Response by STK11/KEAP1 Co-Occurring Mutations n = 104 80 Objective Response Rate – % 70 60 50 40 30 50% 42% 39% 20 11/22 26/62 41/104 23% 3/13 10 14% 1/7 0 All STK11 MUT MUT WT WT evaluable KEAP1 WT MUT MUT WT

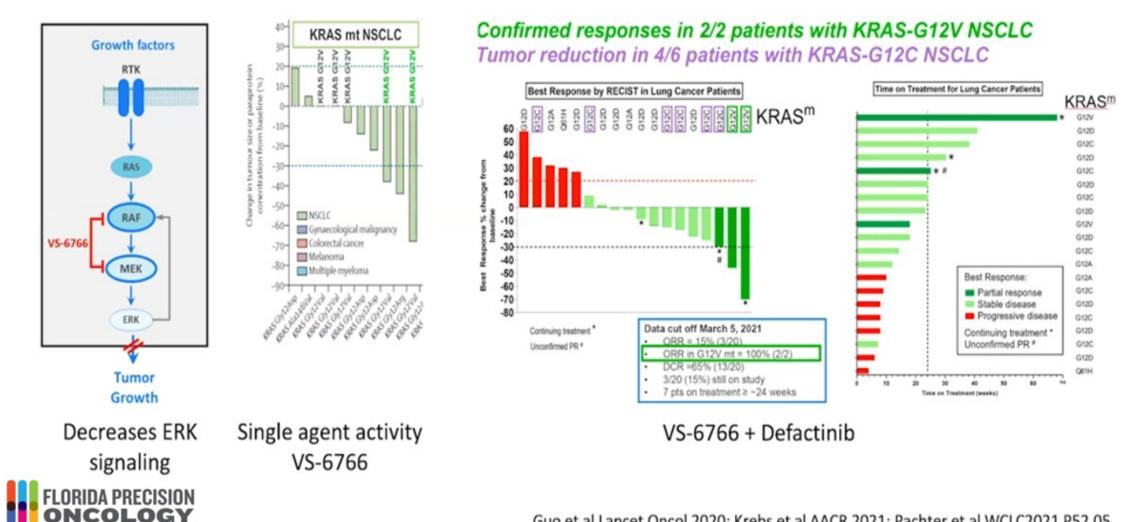
ORR in Patients Harboring

MIAMI CANCER Breakthrough to Excellence in Cancer Care: Digging More Into Personalized Medicine JW MARRIOTT MIAMI | MIAMI, FLORIDA

APRIL 1-3, 2022

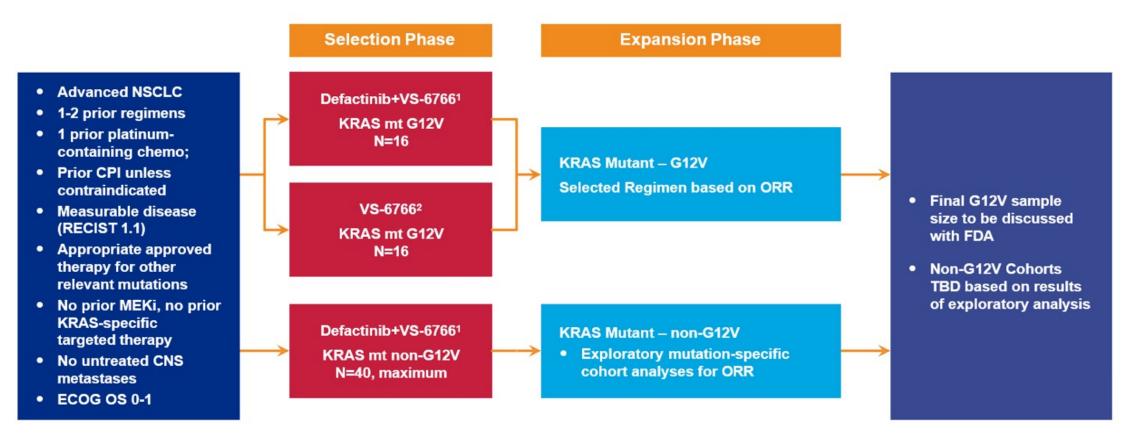
8th Annual -

Ongoing KRAS G12C inhibitor combinations


	Sotorasib	Adagrasib	GDC-6036	JDQ-443	D-1553	mRNA- 5671/V941
Anti-PD-1/L-1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Shp2 inhibitor	\checkmark	\checkmark	\checkmark	\checkmark		
EGFR inhibitor	\checkmark	\checkmark	\checkmark			
SOS-1 inhibitor		\checkmark				
MEK inhibitor	\checkmark					
VEGF inhibitor	\checkmark		\checkmark			
Chemotherapy	\checkmark				\checkmark	
mTOR inhibitor	\checkmark					
CDK inhibitor	\checkmark	\checkmark				

Updated from Dr. Greg Riely, IASLC TTLC2021; clinicaltrials.gov

VS-6766 (RAF/MEK inhibitor) + Defactinib (FAK inhibitor) – activity in KRAS G12V mutant cancers



Guo et al Lancet Oncol 2020; Krebs et al AACR 2021; Pachter et al WCLC2021 P52.05

A Division of Genesis Care

Phase 2 Trial of VS-6766+/- Defactinib in KRAS mutant NSCLC

NCT04620330

Thank You ! @EdgardoSantosMD edgardo_ny@hotmail.com edgardo.santos@usa.genesiscare.com

Conclusions

- Single agent Osi is standard of care as 1st line treatment for EGFR+ lung cancers.
- Addition of VEGF inhibition to Osi of unclear benefit with randomized studies ongoing.
- Addition of chemo to OSI being assessed in FLAURA2 to see if PFS/OS benefit redemonstrated with Osi.
- Start with a 2nd/3rd generation ALK TKI-choose based on safety, tolerability, efficacy, cost, convenience.
- At extra-CNS progression, consider re-biopsy and re-analysis ALK mutation status. If no actionable change -> pemetrexedbased chemo (add in vs swap out) +/- local ablative therapy.
- KRAS is druggable; studies also start to understand comutations effects on KRAS G12C mutant tumors (KEAP1, STK11).

