Chronic Lymphocytic Leukemia Practical updates in treatment-naïve and relapse disease

Jose D. Sandoval-Sus, MD FACP

Assistant member, Department of Malignant Hematology & Cellular Therapy Moffitt Cancer Center at Memorial Healthcare System Pembroke Pines, FL

Malignant Hematology & Cellular Therapy

BTKi (single agent) persistent frontline therapies in CLL

With Ibrutinib, everything changed.

2. Burger JA. et al. Leukemia 2019 Oct 18.

RESONATE-2: 7-Year Follow-Up of Frontline Ibrutinib in Older CLL/SLL patients

Overall Response Rate (%)

PFS (primary endpoint)

Barr P et al. ASCO 2021. Abstr 7523.

RESONATE-2: 7-Year Follow-Up of Frontline Ibrutinib in Older CLL/SLL patients

Barr P et al. ASCO 2021. Abstr 7523.

Arm A – Ibrutinib + Rituximab Ibrutinib 420 mg PO daily, days 1-28 Cycle 8 until Ibrutinib 420 mg PO daily, days 1-28 progression: Rituximab 50 mg/m² IV, day 1 Ibrutinib 420 mg PO Progression Rituximab 325 mg/m² IV, day 2 daily, days 1-28 Ibrutinib 420 mg PO daily, days 1-28 Rituximab 500 mg/m² IV, day 1 Disease Fludarabine 25 mg/m² IV, days 1-3 Cyclophosphamide 250 mg/m² IV, days 1-Rituximab 50 mg/m² IV, day 1, cycle 1 Rituximab 325 mg/m² IV, day 2, cycle 1

Rituximab 500 mg/m² IV, day 1, cycles 2-6

Shanafelt TD et al. N Engl J Med 2019;381:432-43.

OG-ACRIN

cancer research group Reshaping the future of patient care

_=

Shanafelt TD et al. N Engl J Med 2019;381:432-43.

C

Λ

Number at risk

Overall Survival

Summary- Phase 3 study of FCR vs. Ibrutinib + rituximab in treatment naïve CLL patients Superior PFS and OS with better toxicity for IR over FCR in TN CLL patients age ≤ 70 yo

E1912 Update: PFS and OS

Outcome	I+R (N=354)	FCR (N=175)	HR (95% CI)	P Value
PFS (all patients)				
Events	58	52	0.39 (0.26-0.57)	< .0001
3-yr PFS, %	89	71		
PFS (IGHV mutated)				
Events/cases, n	10/70	8/44	0.42 (0.16-1.16)	.086
3-yr PFS, %	88	82		
PFS (IGHV unmutated)				
Events/cases, n	36/210	29/71	0.28 (0.17-0.48)	< .0001
■ 3-yr PFS, %	89	65		
OS (all patients)				
Events	11	12	0.34 (0.15-0.79)	.009
■ 3-yr OS, %	99	93		

✓ Median follow-up 48 months

✓ TP53 mutation present in 9% of patients receiving ibrutinib + rituximab vs 3% of patients receiving FCR

Shanafelt. ASH 2019. Abstr 33.

UK Flair Study: IR vs FCR

Hillmen P et al. ASH 2021

UK Flair Study: IR vs FCR

Hillmen P et al. ASH 2021

Phase 3 Study of Ibrutinib ± Rituximab vs BR in TN CLL. (ALLIANCE A041202)

Key eligibility criteria

- Age \geq 65 y and ECOG PS 0-2
- Treatment naive, symptomatic CLL
- CrCl \geq 40 mL/min; AST/ALT \leq 2.5xULN
- Include 17p/TP53

Primary endpoints: PFS **Secondary endpoints:** OS, TTP, DOR. Proportion achieving

MRD negativity, Biopsy proven CR, Toxicity

Patient Characteristics	All Patients (N = 547)
Median age, y (range)	71 (65-89)
ECOG PS 0-1	97%
FISH characteristics	
del(17p)	6%
del(11q)ª	19%
TP53 mutation	10%
Complex karyotype	29%
Zap-70 unmethylated	53%
IGVH unmutated (n=360)	61%

Phase 3 Study of Ibrutinib ± Rituximab vs BR in TN CLL

PFS

Pairwise comparisons

Ibrutinib vs BR HR: 0.39 (95% CI: 0.26-0.58) (1-sided p value <0.001)

IbruRitux vs BR HR: 0.38 (95% CI: 0.25-0.59) (1-sided p value <0.001)

IbruRitux vs Ibrutinib HR: 1.00 (95% CI: 0.62-1.62) (1-sided p value 0.49)

Woyach JA et al. N Engl J Med 2018;379:2517-28.

Phase 3 Study of Ibrutinib ± Rituximab vs BR in TN CLL: Long term follow up

4-year PFS

2-year OS

CANCER CENTER

Woyach JA et al. Blood. 2021;138, Abstr 639 (suppl 1).

Phase 3 Study of Ibrutinib ± Rituximab vs BR in TN CLL PFS by IGHV Mutation Status

Toxicities and outcomes of 621 ibrutinib-treated chronic lymphocytic leukemia patients in the United States: a real-world analysis

Journal of the European Hematology Association Owned & published by the Ferrata Storti Foundation

Concerns with long term treatment with Ibrutinib:

- Arterial hypertension (increases overtime)
 Important cardiovascular adverse events (elderly pts)
 Low grade but ongoing mild to moderate AEs:
 - Myalgias and arthralgias
 - Diarrhea
 - Skin rashes, nail changes.
- ✓ Increase bleeding
- ✓ Financial toxicity (ongoing costly therapy)

- A. fib (25%)
- Rash (16.5%)
- Discontinuation rate in PIII trials: 10%

Mato A et al. Haematologica May 2018 103: 874-879

Approved Bruton tyrosine kinase inhibitors (BTKi) for the treatment CLL

Brown J. Hematology Am Soc Hematol Educ Program 2018 Nov 30;2018(1).

Phase 3 ELEVATE-TN: **Acalabrutinib in Treatment-Naïve CLL**

Primary endpoint: PFS

٠

Patient demographics and • typical of other initial Rx studies

- **Acalabrutinib:** 100 mg twice daily continuously
- **Obinutuzumab:** 1,000 mg on d 1, 2, 8, and 15 of cycle 2, and d 1 of subsequent cycles
- Chlorambucil: 0.5 mg/kg on d 1 and 15 of each cycle

Phase 3 ELEVATE TN trial: Outcomes

Phase 3 ELEVATE TN trial Efficacy and safety 4-year-follow up

Overall Survival

Sharman JP et a. Leukemia. 2022 Jan 1.doi: 10.1038/s41375-021-01485

Phase 3 ELEVATE TN trial Efficacy and safety 4-year-follow up

	A + O (<i>n</i> = 178)		A (<i>n</i> = 179)	A (<i>n</i> = 179)		O + Clb (<i>n</i> = 169)	
Treatment exposure, median (range), months	46.6 (2.3–58.6)	45.7 (0.3–59.3))	5.6 (0.9–7.4)		
Common AEs (in \ge 25% of patients [any grade] in	any group), n (%	6)					
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	
Diarrhea	73 (41.0)	9 (5.1)	72 (40.2)	1 (0.6)	36 (21.3)	3 (1.8)	
Headache	71 (39.9)	2 (1.1)	68 (38.0)	2 (1.1)	20 (11.8)	0	
Neutropenia	60 (33.7)	55 (30.9)	22 (12.3)	20 (11.2)	76 (45.0)	70 (41.4)	
Fatigue	50 (28.1)	4 (2.2)	39 (21.8)	2 (1.1)	30 (17.8)	2 (1.2)	
Arthralgia	47 (26.4)	2 (1.1)	35 (19.6)	2 (1.1)	8 (4.7)	2 (1.2)	
Cough	46 (25.8)	1 (0.6)	40 (22.3)	1 (0.6)	15 (8.9)	0	
URTI	44 (24.7)	4 (2.2)	46 (25.7)	0	16 (9.5)	1 (0.6)	
Nausea	41 (23.0)	0	41 (22.9)	0	53 (31.4)	0	
IRR	25 (14.0)	5 (2.8)	0	0	68 (40.2)	10 (5.9)	
Selected events of clinical interest, n (%)							
Cardiac events ^a	37 (20.8)	14 (7.9) ^b	34 (19.0)	15 (8.4) ^c	13 (7.7)	3 (1.8)	
Atrial fibrillation/flutter	7 (3.9)	1 (0.6)	11 (6.1)	2 (1.1)	1 (0.6)	0	
Bleeding	84 (47.2)	5 (2.8)	75 (41.9)	5 (2.8)	20 (11.8)	0	
Major bleeding ^d	7 (3.9)	5 (2.8)	7 (3.9)	5 (2.8)	2 (1.2)	0	
Hypertension	14 (7.9)	6 (3.4)	13 (7.3)	5 (2.8)	7 (4.1)	6 (3.6)	
Infections	134 (75.3)	42 (23.6)	132 (73.7)	29 (16.2)	75 (44.4)	14 (8.3)	
SPMs	28 (15.7)	13 (7.3)	24 (13.4)	5 (2.8)	7 (4.1)	3 (1.8)	
Excluding NMS	15 (8.4)	10 (5.6)	11 (6.1)	4 (2.2)	3 (1.8)	2 (1.2)	

CANCER CENTER

Sharman JP et a. Leukemia. 2022 Jan 1.doi: 10.1038/s41375-021-01485

Phase 3 Randomized Study of Zanubrutinib vs Bendamustine + Rituximab in Patients With Treatment-Naive CLL/SLL <u>SEQUOIA Trial</u>

- Multicenter, multicohort, open-label, part-randomized phase III trial.
- Primary endpoint (cohort 1): IRC-assessed PFS
- Secondary endpoints (cohort 1): investigator-assessed PFS, ORR, OS, safety

SEQUOIA Trial (Cohort 1)

Baseline characteristics

Characteristic	Zanubrutinib (n = 241)	Bendamustine + Rituximab (n = 238)
Median age, yr (IQR)	70 (66-75)	70 (66-74)
Aged ≥65 yr, n (%)	196 (81.3)	192 (80.7)
Male, n (%)	154 (63.9)	144 (60.5)
ECOG PS 2, n (%)	15 (6.2)	20 (8.4)
Region, n (%) North America Europe Asia/Pacific	34 (14.1) 174 (72.2) 33 (13.7)	28 (11.8) 172 (72.3) 38 (16.0)
Binet stage C*	70 (29.0)	70 (29.4)
Bulky disease ≥5 cm	69 (28.6)	73 (30.7)
Cytopenia ⁺	102 (42.3)	109 (45.8)
del(11q)	43 (17.8)	46 (19.3)
TP53 mutation	15/232 (6.5)	13/223 (5.8)
Unmutated IGHV gene	125/234 (53.4)	121/231 (52.4)

SEQUOIA Trial (Cohort 1)

IRC-PFS based on **IGHV** mutational status

- Median f/up: 26 months
- Median PFS was better with Zanu vs. BR in nearly all subgroups:
 - ✓ Bulky disease (HR, 0.52; 95% CI, 0.27-0.97)
 - ✓ Unmutated *IGHV* (HR, 0.24; 95% CI, 0.24-0.43)
 - ✓ Del(11q) (HR, 0.21; 95% CI, 0.09- 0.50)
- OS is the same for both groups

• Zanu had a more favorable safety profile vs. BR:

- ✓ Fewer grade \ge 3 AEs: 53% vs 80%.
- ✓ Fewer serious AEs: 37% vs 50%.
- ✓ Fewer dose reductions due to AEs: 8% vs 37%
- ✓ Fewer Tx discontinuations: 8% vs 14%

SEQUOIA Trial (Cohort 1) Common Adverse Events (AEs)

A Equip $>12\%$ of Dationto $n(\%)$	Zanubrutinib (n = 240)*		Bendamustine + Rituximab (n = 227)*	
AES IN $\geq 12\%$ OF Patients, IT (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Contusion	46 (19.2)	0 (0.0)	8 (3.5)	0 (0.0)
Upper respiratory tract infection	41 (17.1)	2 (0.8)	27 (11.9)	2 (0.9)
Neutropenia	37 (15.4)	27 (11.3)	129 (56.8)	116 (51.1)
Diarrhea	33 (13.8)	0 (0.0)	30 (13.2)	4 (1.8)
Arthralgia	32 (13.3)	2 (0.8)	20 (8.8)	1 (0.4)
Fatigue	28 (11.7)	3 (1.3)	36 (15.9)	2 (0.9)
Rash	26 (10.8)	0 (0.0)	44 (19.4)	6 (2.6)
Constipation	24 (10.0)	1 (0.4)	43 (18.9)	0 (0.0)
Nausea	24 (10.0)	0 (0.0)	74 (32.6)	3 (1.3)
Pyrexia	17 (7.1)	0 (0.0)	60 (26.4)	8 (3.5)
Vomiting	17 (7.1)	0 (0.0)	33 (14.5)	3 (1.3)
Anemia	11 (4.6)	1 (0.4)	43 (18.9)	4 (1.8)
Thrombocytopenia	9 (3.8)	4 (1.7)	31 (13.7)	16 (7.0)

SEQUOIA Trial (Cohort 1) AEs of interest

$\Delta E_{c} = p \left(\frac{9}{2} \right)$	Zanubrutinib (n = 240)*		Bendamustine + Rituximab (n = 227)*	
AES, II (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Anemia	11 (4.6)	1 (0.4)	44 (19.4)	4 (1.8)
Neutropenia	38 (15.8)	28 (11.7)	129 (56.8)	116 (51.1)
Thrombocytopenia	11 (4.6)	5 (2.1)	40 (17.6)	18 (7.9)
Arthralgia	32 (13.3)	2 (0.8)	20 (8.8)	1 (0.4)
Atrial fibrillation	8 (3.3)	1 (0.4)	6 (2.6)	3 (1.3)
Bleeding	108 (45.0)	9 (3.8)	25 (11.0)	4 (1.8)
 Major bleeding 	12 (5.0)	9 (3.8)	4 (1.8)	4 (1.8)
Diarrhea	33 (13.8)	2 (0.8)	31 (13.7)	5 (2.2)
Hypertension	34 (14.2)	15 (6.3)	24 (10.6)	11 (4.8)
Infections	149 (62.1)	39 (16.3)	127 (55.9)	43 (18.9)
Myalgia	9 (3.8)	0 (0.0)	3 (1.3)	0 (0.0)
Other cancers	31 (12.9)	17 (7.1)	20 (8.8)	7 (3.1)
 Dermatologic 	16 (6.7)	2 (0.8)	10 (4.4)	2 (0.9)

SEQUOIA (Cohort 2): IRC-Assessed PFS in Patients With del(17p)

Combined (time limited frontline therapies) in CLL Venetoclax plus Obinutuzumab

ORIGINAL ARTICLE

Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions

K. Fischer, O. Al-Sawaf, J. Bahlo, A.-M. Fink, M. Tandon, M. Dixon, S. Robrecht, S. Warburton, K. Humphrey, O. Samoylova, A.M. Liberati, J. Pinilla-Ibarz, S. Opat,

Open-label, multicenter, randomized phase III trial

*Obinutuzumab could also be administered at 100 mg on Day 1, 900 mg on Day 2, and then 1000 mg on Days 8 and 15 of cycle 1.

- Primary endpoint: investigator-assessed PFS
- Secondary endpoints: IRC-assessed PFS, ORR, MRD negativity, OS, safety

Fischer. K et al. NEJM. 2019;380:2225-36

CLL14: Patient Demographics

Characteristic	Venetoclax + Obinutuzumab (n = 216)	Chlorambucil + Obinutuzumab (n = 216)
Median age, yrs	72	72
Binet stage A/B/C, %	21/36/43	20/37/43
Median total CIRS score	9	8
Median CrCl, mL/min	65.2	67.5
TLS risk category low/int/high, %	13/64/22	12/68/20
IGHV unmutated, %	61	59
TP53 deleted and/or mutated, %	12	12
Cytogenetics, %		
■ del(17p)	9	7
del(11q)	18	20
Trisomy 12	18	21
No abnormalities	25	22
 del(13q) alone 	31	31

- There were no significant differences between the groups at baseline.
- Scores on the Cumulative Illness Rating Scale (CIRS) range from 0 to 56, with higher scores indicating more impaired function of organ systems.

ORR and measurable residual disease (MRD) in CLL14 Updated follow up

H-MRD Missing PD or Death Withdrew

2. Al-Sawaf O et al. J Clin Oncol. 2021 39:4049-4060

<u>CLL14 (time limited therapy)</u>: Venetoclax + Obi Vs. Obi + Chlorambucil Updated follow up

Median f/up 52.4 months

All patients have been off study treatment for at least 3 years

Al-Sawaf O et al. J Clin Oncol. 2021 39:4049-4060

<u>CLL14 (time limited therapy)</u>: Venetoclax + Obi Vs. Obi + Chlorambucil Updated follow up

PFS by IgHV status

Median f/up 52.4 months

All patients have been off study treatment for at least 3 years

Al-Sawaf O et al. J Clin Oncol. 2021 39:4049-4060

<u>CLL14 (time limited therapy</u>): Venetoclax + Obi Vs. Obi + Chlorambucil Updated follow up

Complex Karyotype is Not Prognostic with VenG

Al-Sawaf O et al. J Clin Oncol. 2021 39:4049-4060

Randomized Phase 3 Study of Venetoclax-Based Time-Limited Combination Treatments vs Standard Chemoimmunotherapy in Frontline CLL Fit Patients <u>GAIA (CLL13) trial</u>

CLL13 Coprimary Endpoint: MRD by Flow on peripheral blood

- CIT (Arm 1): Chemoimmunotherapy (FCR and BR)
- RVe (Arm 2): Rituximab + Venetoclax

%

proportion of ITT population in

- GVe (Arm 3): Obinutuzumab + Venetoclax
- GIVe (Arm 4): Obinutuzumab + Ibrutinib + Venetoclax

Response rates at Month 15

	RVe	GVe	
1 (0/)			

Adverse Event	Arm 1 (%)	Arm 2 (%)	Arm 3 (%)	Arm 4 (%)
Febrile Neutropenia	11.1	4.2	3.1	7.8
Infections	19.9	11.4	14.0	22.1
Fumor Lysis Syndrome	4.2	10.1	8.8	6.5

GIVe

Eichhorst B et al. ASH abstract 71. Blood. 2021;138(suppl 1)

Combined (time limited frontline therapies) in CLL

Ibrutinib plus Venetoclax (Ibru+Ven)

Why Ibru + Ven?

Ibrutinib and Venetoclax for First-Line Treatment of CLL

Treatment Naïve CLL + High Risk:

At least 1 of: del(17p), *TP53* mut, del(11q), unmutated *IGHV*, *a*ge > 65 yrs **(N=80)**

Timofeeva N, Gandhi V. Blood Cancer J. 2021 Apr 29;11(4):79 Jain N et al. N Engl J Med 2019;380:2095-103.

Phase 3 RCT of fixed duration ibrutinib + venetoclax vs G-Clb in previously untreated CLL GLOW study

- Primary endpoint: PFS by IRC

-Secondary endpoints:

uMRD in BM, CR per IRC, OS, safety

- Current MRD analysis: uMRD at <10⁻⁴ and <10⁻⁵ by NGS

- PB/BM concordance calculated for patients with evaluable data at EOT+3

Median follow-up: 34.1 months

Phase 3 RCT of fixed duration ibrutinib + venetoclax vs G-Clb

in previously untreated CLL

GLOW study

uMRD rates (<10⁻⁴) on BM and PB

uMRD at EOT+3, %	lbr + Ven (n = 106)	Clb + O (n = 105)	P Value
<10-4			
BM BP	51.9	17.1	<.0001
	54.7	39.0	.0259
concordance	92.9	43.6	

uMRD rates (<10⁻⁴) on BM for Ibru+Ven vs. Clb+O across prespecified subgroups

Characteristic, %	lbr + Ven	Clb + O	RR
Bulky disease (≥5 cm)			
No	50.0	19.4	2.58
Yes	56.1	13.2	4.26
Elevated BL LDH			
No	53.5	13.0	4.13
Yes	48.6	21.6	2.25
IGHV			
Mutated	44.4	18.5	2.40
Unmutated	58.2	14.8	3.93
Del11q			
No	50.0	18.4	2.72
Yes	60.0	11.1	5.40

 5 of 7 patients (71.4%) with mutated *TP53* achieved uMRD <10⁻⁵ in both BM and PB with lbr + Ven.

MRD Dynamics Posttreatment

uMRD Dynamics From EOT+3 to EOT+12	lbr + Ven	Clb + O
Sustained uMRD <10 ⁻⁴ , % (n/N)	84.5 (49/58)	29.3 (12/41)
Sustained uMRD <10 ⁻⁵ , % (n/N)	80.4 (37/46)	26.3 (5/19)
Decrease in uMRD <10 ⁻⁴ rate, %	6	27

- uMRD in PB better sustained with lbr + Ven vs Clb + O from EOT+3 to EOT+12.
- Patients treated with Ibr+Ven with detectable MRD ≥10⁻⁴ at EOT+3 less likely to:
 - ✓ Convert to PD at EOT+12 vs patients treated with Clb+O
 - ✓ Have increasing levels of detectable MRD at EOD+12 vs patients treated with Clb+O

Phase 3 RCT of fixed duration ibrutinib + venetoclax vs G-Clb

in previously untreated CLL

GLOW study

Grade 3 or Higher AEs in ≥5% of Patients

	l+V (N = 106)	Clb+O (N = 105)
Median exposure, mos (range)	13.8 (0.7-19.5)	5.1 (1.8-7.9)
Any, %	75.5	69.5
Neutropenia ^a	34.9	49.5
Infections ^b	17.0	11.4
Thrombocytopenia	5.7	20.0
Diarrhea	10.4	1.0
Hypertension	7.5	1.9
Atrial fibrillation	6.6	0
Hyponatremia	5.7	0
TLS	0	5.7

CLL 17

Patients with previously untreated CLL

Incl. fit and unfit pts Incl. pts with del17p/TP53 mut

Relapse/Refractory (R/R) CLL

Ibrutinib Acquired Resistance in Patients With Progressive CLL^[2]

- Frontline ibrutinib d/c rate at 5 yrs: 41%^[1]
- R/R predicted ibrutinib d/c rate at 5 yrs: 53.7% (4 sequential studies)^[7]
- Appearance of BTK C481 mutations dominant reason for progressive CLL after covalent BTKi^[1-8]
- BTK C481 mutations prevent covalent BTKi from effective target inhibition^[1-6]

Woyach. JCO. 2017;35:1437. 2. Lampson. Expert Rev Hematol. 2018;11:185. 3. Woyach. NEJM. 2016;374:323.
 Byrd. NEJM. 2016;374:323. 5. Xu. Blood. 2017;129:2519. 6. Hershkovitz-Rokah. Br. J. Haematol. 2018;181;306.
 Burger. Leukemia. 2020;34:787. 8. Woyach. ASH 2019. Abstr 642.

ELEVATE-RR (Acalabrutinib vs. Ibrutinib in R/R CLL) Phase 3, Randomized, Non-Inferiority Open-Label trial

<u>Key exclusion criteria</u>: Known CNS lymphoma or leukemia, significant cardiovascular disease ≤6 months before screening, Hx of bleeding diathesis, requiring or receiving anticoagulation with warfarin or equivalent vitamin K antagonists within 7 days of first dose of study drug, History of stroke or intracranial hemorrhage, Prior exposure to ibrutinib, BCR inhibitor or a BCL-2 inhibitor.

Primary Endpoint: IRC-Assessed PFS

At a median follow-up of 40.9 months (range 0.0–59.1), acalabrutinib was non-inferior to ibrutinib with a median PFS of 38.4 months in both arms (HR: 1.00; 95% CI 0.79–1.27)

	Any g	rade	Grad	le ≥3
Events, n (%)	Acalabrutinib (n=266)	lbrutinib (n=263)	Acalabrutinib (n=266)	lbrutinib (n=263)
Cardiac events	64 (24.1)	79 (30.0)	23 (8.6)	25 (9.5)
Atrial fibrillation ^{a*}	25 (9.4)	42 (16.0)	13 (4.9)	10 (3.8)
Ventricular arrythmias ^b	0	3 (1.1)	0	1 (0.4)
Bleeding events*	101 (38.0)	135 (51.3)	10 (3.8)	12 (4.6)
Major bleeding events ^c	12 (4.5)	14 (5.3)	10 (3.8)	12 (4.6)
Hypertension ^{d*}	25 (9.4)	61 (23.2)	11 (4.1)	24 (9.1)
Infections ^e	208 (78.2)	214 (81.4)	82 (30.8)	79 (30.0)
ILD/pneumonitis*	7 (2.6)	17 (6.5)	1 (0.4)	2 (0.8)
SPMs excluding NMSC	24 (9.0)	20 (7.6)	16 (6.0)	14 (5.3)

Byrd JC et al.ASCO Virtual Annual Meeting; June 4-8, 2021.

Phase 3 Randomized Study of Zanubrutinib vs. Ibrutinib in Patients with R/R CLL/SLL <u>ALPINE study</u>

- Ongoing randomized, multicenter phase III trial
- **<u>Primary endpoint</u>**: ORR (Not by IRC)
- Secondary endpoints: PFS, DoR, OS; safety, patient-assessed QoL

Hillmen. EHA 2021. Abstr LB1900. NCT02477696.

ALPINE Study: Response rates and <u>Investigator assessed</u> PFS *(Interim results)*

Outcome, % (95% Cl)	Zanubrutinib (n = 207)	lbrutinib (n = 208)	P Value
Efficacy			
ORR (Invest Assessed)	78.3 (72.0-83.7)	62.5 (55.5-69.1)	.0006
ORR (IRC- assessed)	76.3	64.4	.0121
ORR in del(17p)	83.3	53.8	NR
12-mo PFS	94.9 HR = 0.40 (0	84.0).23 – 0.69)	.0007

Hillmen. EHA 2021. Abstr LB1900. NCT02477696.

ALPINE Study: Adverse events of special interest (Interim results)

Select AEs, any grade %	Zanubrutinib 207)	(n =	lbrutinib (n = 208)
Afib or flutter (key secondary point <i>p=.0014</i>)	2.5		10.1
Cardiac disorders	13.7		25.1
Hemorrhage	35.8		36.2
Major hemorrhage	2.9		3.9
Hypertension	16.7		16.4
Infections	59.8		63.3
Neutropenia	28.4		21.7
Secondary primary malignancies	8.3		6.3
Skin cancers	3.4		4.8
Thrombocytopenia	9.3		12.6

Hillmen. EHA 2021. Abstr LB1900. NCT02477696.

Phase II study of acalabrutinib in ibrutinib-intolerant patients with relapsed/refractory chronic lymphocytic leukemia

Characteristic	N=60
Age in years, median (range)	69.5 (43-88)
Men, n (%)	38 (63)
ECOG PS ≤1, n (%)	58 (97)
Number of prior systemic therapies, n (%)	
1	14 (23)
2	18 (30)
3	11 (18)
≥4	17 (28)
β 2-microglobulin >3 mg/L, n/N (%)	46/58 (79)
Genetic risk features, n/N (%)	
Unmutated <i>IGHV</i>	46/58 (79)
del(11q) ^a	14/60 (23)
del(17p) ^a	17/60 (28)
Rai stage III-IV, n (%)	31 (52)
Lymph nodes ≥5 cm, n (%)	19 (32)
Laboratory values, median (range)	
Lymphocyte count, 10 ⁹ /L	12.3 (0.9-172.4)
Neutrophil count, 10 ⁹ /L	3.3 (0.4-20.1)
Hemoglobin, g/dL	12.2 (7.5-17.3)
Platelet count, 10 ⁹ /L	117.5 (37-350)

 Pts with R/R CLL in need of therapy that were intolerant to Ibrutinib patients with disease activity received acalabrutinib; med 2 prior tx (range 1-10)

CANCER CENTER

Rogers K et al. Hematologica 2021;106(9):2364-2373

Ibrutinib-tolerance adverse events and recurrence after acalabrutinib treatment

Adverse event Number of patients		<i>P</i>	Acalabrutinib experience for same patients				
V		Total L	ower grad	le Same grad	de Higher grade		
Atrial fibrillation	16 ^b	2	2	0	0		
Diarrhea	7	5	3	2	0		
Rash	7	3	3	0	0		
Bleeding ^{c,d}	6	5	3	2	0		
Arthralgia	7 ^e	2	1	1	0		
Total	41	24	18	6	1		

^aAmong 60 patients meeting the study enrollment criteria, 41 patients had a medical history of one or more (43 events in total) of the following categories of ibrutinib-intolerance events: atrial fibrillation, diarrhea, rash, bleeding, or arthralgia.^bIncludes patients with atrial flutter (n=2). ^cEvents categorized as bleeding included ecchymosis, hemorrhage, epistaxis, contusion, hematuria, and subdural hematoma. ^dAll but one patient experienced a different type of bleeding event with acalabrutinib compared with ibrutinib treatment. ^eIncludes one patient with arthritis.

Acalabrutinib is well tolerated in patients with Ibrutinib intolerance

Rogers K et al. Hematologica 2021;106(9):2364-2373

Tackling BTK resistance = 3rd generation BTK inhibitors

Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study

Anthony R Mato, Nirav N Shah, Wojciech Jurczak, Chan Y Cheah, John M Pagel, Jennifer A Woyach, Bita Fakhri, Toby A Eyre, Nicole Lamanna, Manish R Patel, Alvaro Alencar, Ewa Lech-Maranda, William G Wierda, Catherine C Coombs, James N Gerson, Paolo Ghia, Steven Le Gouill, David John Lewis, Suchitra Sundaram, Jonathon B Cohen, Ian W Flinn, Constantine S Tam, Minal A Barve, Bryone Kuss, Justin Taylor, Omar Abdel-Wahab, Stephen J Schuster, M Lia Palomba, Katharine L Lewis, Lindsey E Roeker, Matthew S Davids, Xuan Ni Tan, Timothy S Fenske, Iohan Wallin, Donald E Tsai, Nora C Ku, Edward Zhu, Jessica Chen, Ming Yin, Binoj Nair, Kevin Ebata, Narasimha Marella, Jennifer R Brown, Michael Wang

MOFFITT

Mato AR et al. Lancet 2021;397(10277):892-901.

Pirtobrutinib Efficacy in BTK Pre-treated CLL/SLL Patients

Pirtobrutinib Efficacy in BTK Pre-treated CLL/SLL Patients

	All doses and patients (n=618)						
		Treatment-	emergent AEs, (≥1	5%), %		Treatment-r	elated AEs, %
Adverse Event	Grade 1	Grade 2	Grade 3	Grade 4	Any Grade	Grades 3/4	Any Grade
Fatigue	13%	8%	1%	-	23%	1%	9%
Diarrhea	15%	4%	<1%	<1%	19%	<1%	8%
Neutropeniaª	1%	2%	8%	6%	18%	8%	10%
Contusion	15%	2%	-	-	17%	-	12%
AEs of special interest ^b							
Bruising ^c	20%	2%	-	-	22%	-	15%
Rash ^d	9%	2%	<1%	-	11%	<1%	5%
Arthralgia	8%	3%	<1%	-	11%	-	3%
Hemorrhage ^e	5%	2%	1% ^g	-	8%	<1%	2%
Hypertension	1%	4%	2%	-	7%	<1%	2%
Atrial fibrillation/flutter ^f	-	1%	<1%	<1%	2% ^h	-	<1%

- No DLTs reported and MTD not reached
- 96% of patients received ≥1 pirtobrutinib dose at or above RP2D of 200 mg daily
- 1% (n=6) of patients permanently discontinued due to treatment-related AEs

Mato AR et al. ASH 2021; Abstract 391.

Venetoclax + Rituximab vs BR in previously treated CLL/SLL patients MURANO Study

Multicenter, randomized, open-label phase III trial

Kater A et al. J Clin Oncol 2020: 38:4042-4054.

MURANO trial: 4 year follow up

(Includes impact of genomic complexity and mutations)

Kater A et al. J Clin Oncol 2020; 38:4042-4054.

MURANO trial: 4 year follow up Impact of cytogenetics in CLL outcomes

PFS on the VenR based on cytogenetics

PFS on the BR based on cytogenetics

del(13q) —

Kater A et al. J Clin Oncol 2020; 38:4042-4054.

HR, 0.96

MURANO trial: 5 year follow up

PFS & OS

Outcome	VenR (n = 194)	BR (n = 195)		
Median PFS, mos	53.6	17.0		
5-yr PFS <i>,</i> %	37.8	Not evaluable		
HR (95% CI)	0.19 (0.15-0.26)			
P value	< 0.0001			
Median OS, mos	Not evaluable	Not evaluable		
5-yr OS, %	82.1	62.2		
HR (95% CI)	0.40 (0.26-0.62)			
P value	< 0.0001			

PFS and OS according to uMRD status at EOT with VenR

Category	PFS Since EOT, % (95% CI)		
Category	24 Mos	36 Mos	
			vs low-MRD+: 0.40 (0.18-0.91);
uMRD (< 10 ⁻⁴) (n = 83)	85.4 (77.4-93.4)	61.3 (47.3-75.2)	<i>P</i> = .0246 vs high-MRD+:
			0.02 (< 0.01-0.18); <i>P</i> < .0001

Catagony	OS Since EO	ЦВ	
Category	24 Mos	36 Mos	
uMRD (< 10 ⁻⁴)	98.8	95.3	HR: NS
(n = 83)	(96.4-100.0)	(90.0-100.0)	
MRD (≥ 10 ⁻⁴)	88.6	85.0	<i>P</i> = NS
(n = 35)	(78.0-99.1)	(72.8-97.2)	

Kater A et al. ASH 2021. Abstr 125.

MURANO trial: 5 year follow up

Among 83 patients with uMRD at EOT:

- 32 (38.6%) sustained uMRD.
- 28 (33.7%) had MRD conversion without.
 PD
- 19 (22.9%) had MRD conversion with PD.
- Median time from MRD conversion to PD: 25.2 mos (95% CI: 19.4-30.4).

Kater A et al. ASH 2021. Abstr 125.

Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia

David L. Porter, M.D., Bruce L. Levine, Ph.D., Michael Kalos, Ph.D., Adam Bagg, M.D., and Carl H. June, M.D.

Bone Marrow-Biopsy Specimens

D Contrast-Enhanced CT

Article

Decade-long leukaemia remissions with persistence of CD4⁺ CAR T cells

https://doi.org/10.1038/s41586-021-04390-6	J. Joseph Melenhorst ^{1,2,3,4,5,15,16} , Gregory M. Chen ^{6,15} , Meng Wang ^{1,2,3,14} , David L. Porter ^{3,7,15} ,
Received: 7 May 2021	Changya Chen ^{8,9} , McKensie A. Collins ^{1,2,310} , Peng Gao ^{8,9} , Shovik Bandyopadhyay ¹⁰ , Hongxing Sun ^{1,2,3} , Ziran Zhao ^{1,2,3} , Stefan Lundh ^{1,2,3} , Iulian Pruteanu-Malinici ¹¹ ,
Accepted: 29 December 2021	Christopher L. Nobles ¹² , Sayantan Maji ^{1,2,3} , Noelle V. Frey ³ , Saar I. Gill ³ , Lifeng Tian ^{1,3} ,
Published online: 02 February 2022	Irina Kulikovskaya ^{12,3} , Minnal Gupta ^{12,3} , David E. Ambrose ^{12,3} , Megan M. Davis ^{12,3} , Joseph A. Fraietta ^{12,312} , Jennifer L. Brogdon ¹¹ , Regina M. Young ^{12,3} , Anne Chew ^{12,3} ,
Check for updates	Bruce L. Levine ^{1,2,3} , Donald L. Siegel ^{12,13} , Cécile Alanio ^{4,5,14} , E. John Wherry ^{4,5,14} , Frederic D. Bushman ¹² , Simon F. Lacey ^{1,2,3} , Kai Tan ^{2,4,6,9,10,1655} & Carl H. June ^{1,2,3,4,5,1655}

First patients of pioneering CAR T-cell therapy 'cured of cancer' | Cancer | The Guardian

2/14/22, 7:35 AM

Advertisement

Cancer

First patients of pioneering CAR T-cell therapy 'cured of cancer'

Cancer-killing cells still present 10 years on, with results suggesting therapy is a cure for certain blood cancers

Linda Geddes Science correspondent Wed 2 Feb 2022 11.00 EST

🗅 Doug Olson still has cancer-killing cells 10 years after infusion. Photograph: AP

Two of the first human patients to be treated with a revolutionary therapy that engineers immune cells to target specific types of cancer still possess cancer-killing cells a decade later with no sign of their illness returning.

The finding suggests CAR T-cell therapy constitutes a "cure" for certain blood cancers, although adapting it to treat solid tumours is proving more challenging.

Patient characteristics

Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor–Modified T Cells After Failure of Ibrutinib

Cameron J. Turtle, Kevin A. Hay, Laïla-Aïcha Hanafi, Daniel Li, Sindhu Cherian, Xueyan Chen, Brent Wood, Arletta Lozanski, John C. Byrd, Shelly Heimfeld, Stanley R. Riddell, and David G. Maloney

Prior Therapies Progression on Intolerant to Time on Ibrutinib Complex Del Age Histology (No.) Ibrutinib Ibrutinib (months) 17p No. (years) Venetoclax Karyotype CLL/Richter's 65 No 12 No Yes 9 Yes No 2 CLL/PLL 54 3 No 0.75 No No Yes Yes CLL/Richter's 64 9 Yes No No 3 10 No Yes 4 CLL 59 7 No Yes No Yes No 1 5 CLL 55 7 Yes No 17 Refractory Yes No CLL 61 6 6 Yes No 11 No No Yes CLL 63 7 No 7 No 3 Refractory No Yes 8 CLL 62 5 Yes No 14 No Yes Yes 53 CLL 5 Yes No No 9 13 Yes Yes 68 10 CLL/Richter's 4 Yes No 16 No Yes No 11 CLL 53 5 Yes No 34 No Yes Yes 12 CLL 70 5 No Yes 5 No No Yes 47 3 No 13 13 CLL/Richter's Yes No No Yes 14 CLL/IPCs 40 Yes No 14 No Yes 4 Yes 15 CLL 73 3 Yes No 4 No No Yes 16 CLL 61 4 No Yes 0.75 No Yes No 17 SLL/Richter's 70 6 Yes No 8 No No No 58 26 18 CLL 7 Yes No Refractory Yes No 50 19 CLL 6 Yes No 22 Refractory Yes Yes CLL 20 64 5 Yes No 19 No Yes No 21 CLL/IPCs 53 5 No 39 No Yes Yes No 22 CLL 62 Yes No 9 7 Refractory Yes No 23 CLL 66 4 No 26 Yes No Yes No 24 CLL 58 7 Refractory Yes No 19 Yes Yes **RT/PLL =6 (25%)** N=19 (79%) N=6 (25%) N=16 N=14 (66%) (58%)

- U Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucer in pts with R/R CLL/SLL

A Figure 2

100

10

0

Best overall response (%)

82% (n (95% CI

14%

5%

(N

Characteristic	All patients (n = 23)
Age, y	66 (50-80)
High-risk features, any	19 (83)
del17p	8 (35)
mutated TP53	14 (61)
unmutated IGHV	8 (35)
complex karyotype	11 (48)
Lines of prior therapy	4 (2 – 11)
prior CIT	20 (87)
prior ibrutinib	23 (100)
prior venetoclax	15 (65)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-					
$\begin{array}{c} \text{Grade 1} & 7 (30) & \frac{d}{d} (33)^{1} & 4 (23) \\ \hline \text{Grade 2} & \frac{d}{d} (35) & \frac{d}{d} (41) \\ \hline \text{Grade 3} & \frac{d}{d} \frac{d}$			Any grade	17 (74)	7 (78)	10 (71)				
$ \begin{array}{c ccccc} & R_{1}(25) & \frac{1}{2}(44_{1}^{1} & 4.221) \\ \hline Grade 3 & (H \neq 23) & Dose (Hyo) & 0 \\ \hline Grade 3 & (H \neq 23) & Dose (Hyo) & 0 \\ \hline Grade 3 & (H \neq 23) & Dose (Hyo) & 0 \\ \hline Grade 3 & (H \neq 23) & Dose (Hyo) & 0 \\ \hline Grade 3 & (H \neq 23) & Dose (Hyo) & 0 \\ \hline Grade 3 & (H \neq 23) & (H \neq 23) & (H \neq 1) \\ \hline Grade 3 & (H \neq 23) & (H \neq 24) & (H \neq 1) \\ \hline Tregalac RS resolution, days & 12 (896) & 642449 & 12.5 (2866) \\ \hline Faddet a^{12} & 0 & (H \neq 2) & (H \neq 2) & (H \neq 1) \\ \hline Grade 3 & (H \neq 23) & (H \neq 2) & (H \neq 2) & (H \neq 1) \\ \hline Faddet 3 & (H \neq 2) & (H \neq 2) & (H \neq 2) & (H \neq 1) \\ \hline Faddet 3 & (H \neq 2) & (H \neq 2) & (H \neq 2) & (H \neq 2) & (H \neq 1) \\ \hline Faddet 3 & (H \neq 2) \\ \hline Faddet 3 & (H \neq 2) \\ \hline Faddet 4 & (Grade 3 & (H \neq 2) & (H$			Grade 1	7 (30)	3 (33)	4 (29)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		г	Grade 2	8 (35)	4 (44)	4 (29)	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Grade 3	All patients (N=23)	Dose level 1 (n = 9)	Dose level 2 (n = 14)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	Patients with CRS	0	0	0	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			And Grade	17 (74)	7 (978)	10 (71)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Ting age CRS onset, days	37(1300)	731 3 30)	241 2 99)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Tiropate CRS resolution, days	128(23:550)	64(2+4))	12.45 (<u>(29</u>)50)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Pagents with NES*	2 (9)	0	2 (14)	=			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Ģ⊎ằ¶fist qe	9 (39)	2 (22)	7 (50)	- I			
$\frac{11}{100} \frac{11}{100} \frac{11}{100$		l	Grade 3	9	8	9	J			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Time to CRS onset, days	34(1-10)	7 (1 <mark>0</mark> 10)	241290)				
45% (n=3) (n=2) (n=2) (n=2) (n=1)		-	Time to CRS resolution, days	12 (2-50)	62(2=30)	12.5 (14)	-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	Grade 4 [†] Patients with NEs*	1 (4)	0	1 (7)	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ନନ୍ ୟୁକ୍ତି a de	9 (39)	2 (22)	7 (\$0)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			TirogageNE onset, days	4 (2 0 21)	16 (1 d –21)	4 (2 0 -11)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Time to VE resolution days	20.5 (6750)	8 5 (6–11)	29.5 (99-)50)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(Pathenatherwaith CRS and/or NE	148((1778))	Z (Z2)	121 ((1749))	1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Pateattewith CRS only	91 (649)	5 (656)	41 ((279))				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Grade 5	0	0	0)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Tocilizumab and/or corticosteroid							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Time to NE resolution, days	20.5(6-50)	8.5 (6-11)	29.5(9-50)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Patients with CRS and/or NE	18 (78)	7 (78)	11 (79)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Patients with 2013 onlyd	9 (39)	5 (56)	4 (29)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Patoentic oviter Nie sonly	⁸ 1(35) 1(4)	2 (22)	⁶ 1 (7)				
$\begin{array}{c} \text{Use}\\ \text{Tocilizumab only}\\ \text{Corticosteroids only}\\ Corticos$			Toditizilizmateanal/d/oconthicostenoids	15 (65)	5 (56)	10 (71)				
$\begin{array}{c} 0(120) & 3(30) & 3(21) \\ \hline Corticosteroids only \\ 6 (n = 18/22) & 78\% (n = 7/9)Both toc8g3math and 1/13) \\ Cl, 59.7-94.8) (95\% Cl, 40.0-9?921icog85wide1, 54.6-98.1) \\ Tocilizumab and/or corticosteroids \\ (n=10) & 56\% \\ (n=5) & 38\% \\ (n=5) & 38\% \\ (n=5) & 46\% \\ (n=6) & (n=2) & 46\% \\ (n=8) & 22\% \\ (n=2) & (n=2) & 8\% (n=1) \\ \hline Total \\ (N=22) & (n=9) & (n=13) \end{array}$			Use Tocilizumah only	6 (26)	3 (33)	3 (21)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Corticosteroids only	1 (4)	0	1 (7)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(n = 18/22)	78% (n = 7	7/9)Both toc納岛城省b and 1/13)	1 (1)	0 (00)	1 (<i>1</i>)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1, 59.7–94.8)	(95% CI, 40.0	-9721 ic (95% c1, 54.6-98.1)	8 (35)	2 (22)	6 (43)	19 months 050		+ Cen	sore
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	, ,	Toćilizumab and/or corticosteroids	15 (65) 10	⁰ 5 (56)	Subgroup* (me	dian 13 month	s, 95% CI, 2.8–№	IR)	5010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				8 val (ю - Ч					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45%		38%	urvi		_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(n=10)	56%	(n=5)	s 6	i0 -			+		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(n=5)		-fr				+		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				sssic				41		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				160 2	eo -					
(n=8) 22% (n=2) (n=6) 0 1 1 1 1 4% (n=3) 22% (n=2) 8% (n=1) Number at risk 8% (n=1) Number at risk 5% (n=1) 0 1 3 6 9 12 15 18 21 4% (n=3) 22% (n=2) 8% (n=1) Number at risk Total 22 21 18 14 13 12 12 8 6 5% (n=1) 0 10 9 6 5 5 2 1 Total DL1 DL2 (N=22) (n=9) (n=13) 0 0 0 0 0 0 0	36%	22%	46%	ā						
Vinite Vinit Vinit Vinit <td>(n=8)</td> <td>(n=2)</td> <td>(n=6)</td> <td></td> <td>0</td> <td></td> <td>12</td> <td>15 19</td> <td>21</td> <td></td>	(n=8)	(n=2)	(n=6)		0		12	15 19	21	
4% (n=3) 22% (n=2) 8% (n=1) Number at risk Total 22 / 1 / 1 / 1 / 1 / 2 / 1 / 2 / 2 / 2 /		()			01 3	0 9	Months	10 10	21	
Total DL1 DL2 (N=2) (n=9) (n=9) (n=13)	% (n=3)	22%	8% (n=1)	Number at risk			wontins			
Total DL1 DL2 (N=22) (n=9) (n=13)	$\frac{1}{2}$ (n-1)	(n=2)	8% (n=1)	Total Subarours*	22 21 18	14 13	12	12 8	6	
(N=22) (n=9) (n=13) MOFFITT	Total	1		Subgroup	10 10 9	0 3	5	5 Z	'	
	N=22)	(n=0)	(n=13)							
	N-22)	(11-3)	(11-10)			MOF	FI	ГТ (n d	1

CR/CRi PR/nPR SD PD

Siddiqi T et al. Blood 2021; blood.2021011895 [Online ahead of print].

CANCER CENTER

Thank you very much to:

- All the patients and caregivers.
- All our RN, ARNPs, PharmD and others.
- All my mentors.

MOFFITT () Memorial Malignant Hematology & Cellular Therapy

Email: jose.sandoval@moffiitt.org; jsandovalsus@mhs.net

