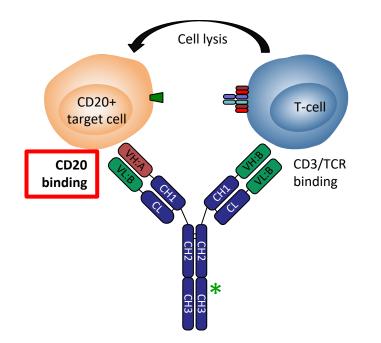

"B cell lymphomas: Updates and Future Directions"

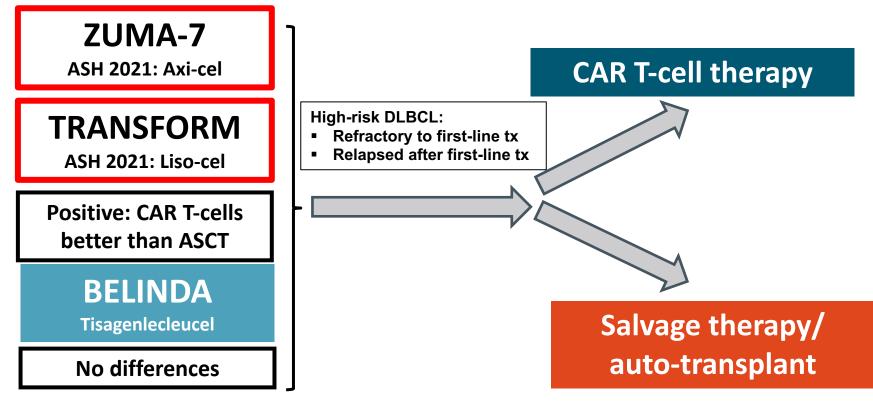

Eduardo M. Sotomayor, MD

Director, TGH Cancer Institute Professor, Morsani College of Medicine University of South Florida

2013-2021: New Agents for B-Cell Malignancies

ASH 2021: Bispecific Antibodies....a game changer?

Cross-linking results in targeted activation of local T-cells and T-cell-mediated killing of CD20+ B-cells (independently of TCR-mediated recognition)


New Options: Targeting CD19, CD79b and CD20 (again..)

- **CD19** is an enticing target for novel approaches:
 - CD19 CAR T-cells (Several B-cell malignancies)
 - Tafasitamab, anti-CD19 antibody (+/- Lenalidomide) (R/R DLBCL)
 - Loncastuximab Tesirine (Anti-CD19 Antibody-Drug Conjugate) (R/R DLBCL)
- CD79b ADC
 - Polatuzumab vedotin-R-CHP in frontline DLBCL (POLARIX Study)
- CD20 is....again an enticing target for bi-specific antibodies:
 - Several bi-specific directed T-cell engager (BITE) targeting CD20 and CD3 (CD20 x CD3)....

Targeting CD19 in B-cell lymphomas: CAR T-cells Successes, Failures and Opportunities

- Autologous CD19 CAR T-cells have shown significant efficacy in patients with relapsed/refractory CD19 positive DLBCL and other B-cell lymphomas.
 - Three platforms are FDA-approved (Axi-cel, Tisa-cel and Liso-cel) for DLBCL
 - One platform approved for MCL (Brexucabtagene autoleucel)
 - One platform approved for follicular lymphomas (Axi-cel)
 - Cost, manufacture time, toxicity, progression while waiting for engineered T cells. Mechanisms of resistance
 - It is estimated that 30-40 percent of patients with large B-cell lymphoma might be cured with CD19 CAR T-cells....
 - Remaining 60 percent: Unmet need
- Moving CD19 CAR T cells into the first relapse setting:
 - Is it better than autologous stem cell transplant for patients with DLBCL that relapsed within 12 months of frontline chemoimmunotherapy?
 - ASH 2021: ZUMA-7, TRANSFORM and BELINDA Trials

ASH 2021: Will CD19 CAR T-cell Replace Autologous transplant for DLBCL?

ASH 2021: Real World Data with CAR T-cells

	Author	Study	n	ORR (%)	CR (%)	Toxicities
US Lymphoma CAR T Consortium (Brexu-cel)	Y. Wang	Multicenter, retrospective	107 leuk. 93 infused 46% TP53 7% CNS 82% prior BTK 73% ineligible for ZUMA-2	86% TP53:82%	64% TP53: 50%	CRS: 88% (8% gr≥ 3) ICAN 58% (33% gr≥ 3) 26% ICU admission Use of toci and steroids more frequent
12 US Academic Centers (Brexu-cel)	J. Romancick	Multicenter, retrospective	55 leuk 52 infused 100% prior BTK (56% failures) 13% CNS	88%	69%	CRS: 84% (10% gr≥ 3) ICAN 57% (31% gr <u>></u> 3) 4/7 pts with CNS involvement developed NT
European Sites (Brexu-cel)	G. lacoboni	7 European sites, retrospective	28 leuk 19 infused 32% prior ASCT 15% bridging therapy after apheresis 13% CNS	81	67	CRS: 89% (5% gr> 2) ICAN 63% (26% gr >2) 11% ICU admission

Polatuzumab Vedotin

- Humanized anti-CD79b mAb conjugated to MMAE
 - CD79b is a B-cell-specific surface antigen expressed in NHL

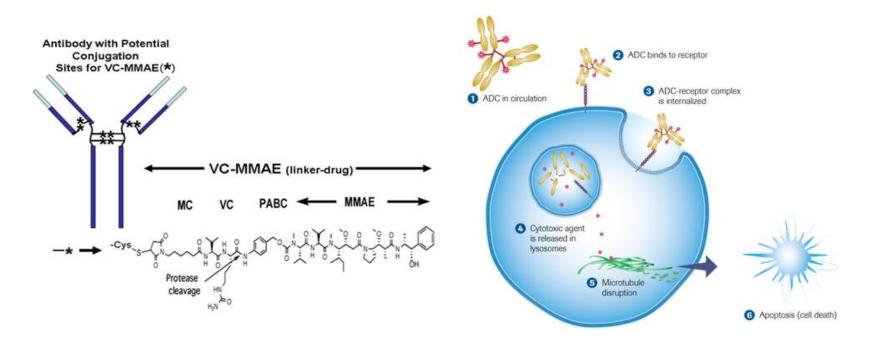
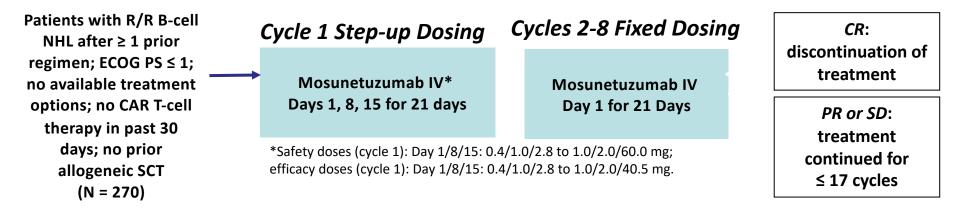


Figure from: Morschhauser, et al. J Clin Oncol. 2014;32(15_suppl):8519. Doman, et al. Blood. 2009;114:2721-2729. Polson, et al. Blood. 2007;110:616-623. Sehn, et al. ASH 2017;Abstract 2821.

POLARIX: Pola-R-CHP vs. R-CHOP for previously untreated patients with DLBCL (ASH 2021)

- Polatuzumab vedotin-piiq is a CD79b ADC
- 789 pts in 23 countries
 - No differences in CR rate (78% Pola-R-CHP vs 74% R-CHOP)
 - No differences in OS at 2 years (88.7 % vs 88.6%)
- Study meet its primary endpoint with a 27% reduction in the relative risk of disease progression, relapse or death associated with Pola-R-CHP
 - At 2 years, 76.7% of those receiving pola-R-CHP and 70.2% of those receiving R-CHOP survived without disease progression or relapse
- Similar rates of adverse events/drug dose reductions or drug discontinuation

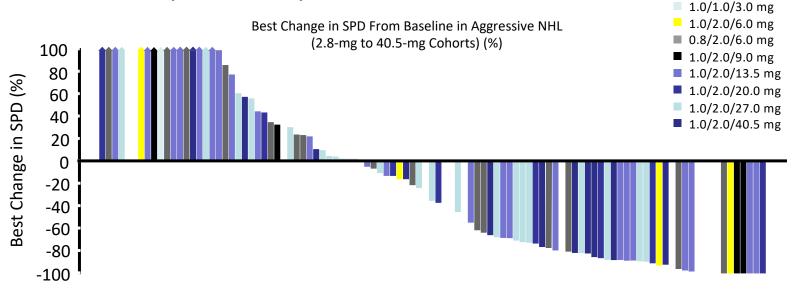

Structure of Selected BITE/Bispecific Antibodies

Bispecific Ab	Targets	Design	Ig Fragment Formats
Blinatumomab	CD19 x CD3		 2 murine scFv joined by glycine-serine linker Monovalent CD19 and monovalent CD3 binding Cloned from murine Abs
Mosunetuzumab	CD20 x CD3		 Humanized mouse IgG1-based Ab Bivalent CD20 and monovalent CD3ε binding Modified Fc devoid of FcγR and complement binding
Glofitamab	СD20 2 х CD3		 Immunized mouse IgG1-based Ab Bivalent CD20 and monovalent CD3ε binding Modified Fc devoid of FcγR and complement binding
Odronextamab	CD20 x CD3		 Fully human IgG4-based heterodimeric Ab Monovalent CD19 and monovalent CD3ε binding Fc-dependent effector function-minimized Ab with Fc of the antiCD3ε heavy chain modified to reduce Protein A binding Common κ light chain from antiCD3ε mAb
Epcoritamab	CD20 x CD3		 Humanized mouse IgG1-based Ab Monovalent CD20 and monovalent CD3ɛ binding IgG1 Fc modified to minimize Fc-dependent effector functions and to control Fab-arm exchange of mAb half-molecules, resulting in high bispecific product yield

Schuster. ICML 2021. Abstr EB16

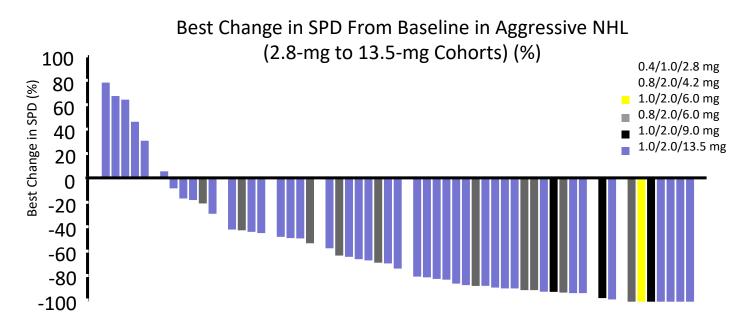
Mosunetuzumab in R/R B-cell NHL: Study Design

Open-label phase l/lb study


Primary objectives: safety, tolerability, maximum tolerated dose, best objective response

Mosunetuzumab-Dose Escalation: Responses in Patients With Aggressive NHL

0.4/1.0/2.8 mg

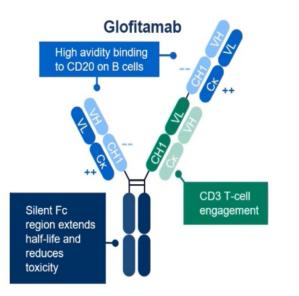

0.8/2.0/4.2 mg

- ORR: 37.1% (n/N = 46/124)
- CR: 19.4% (n/N = 24/124)

Mosunetuzumab-Dose Escalation: Responses in Patients With Indolent NHL

- ORR: 62.7% (42/67)
- CR: 43.3% (29/67)

Efficacy in Patients With Prior CAR T-Cell Therapy and in Retreated Patients

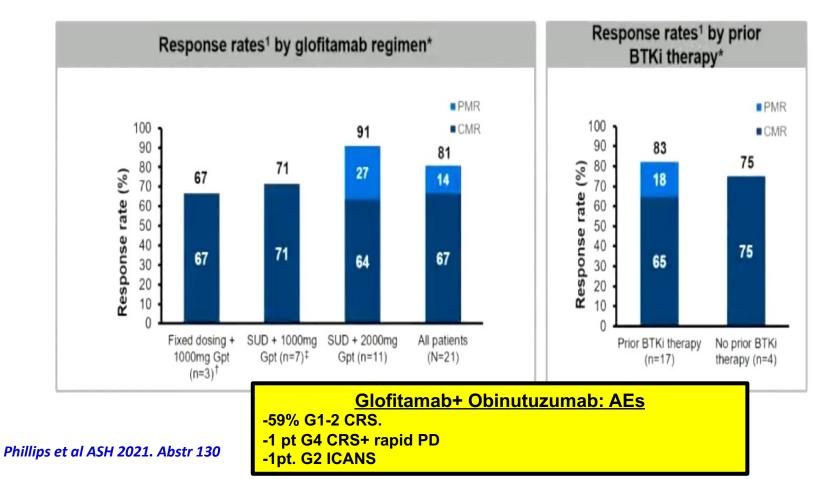

Response, n (%)	Patients With Prior CAR T-Cell Therapy
Total population with prior CAR T-cell therapy (n = 18) ORR CR	7 (38.9) 4 (22.2)
DLBCL (n = 9) • ORR • CR	2 (22.2) 2 (22.2)
trFL (n = 5) ▪ ORR ▪ CR	1 (20) 0
FL (n = 4) • ORR • CR	4 (100) 2 (50)

Response, n (%)	Retreated Patients (n = 4)
ORRCR	3 (75) 1 (25)

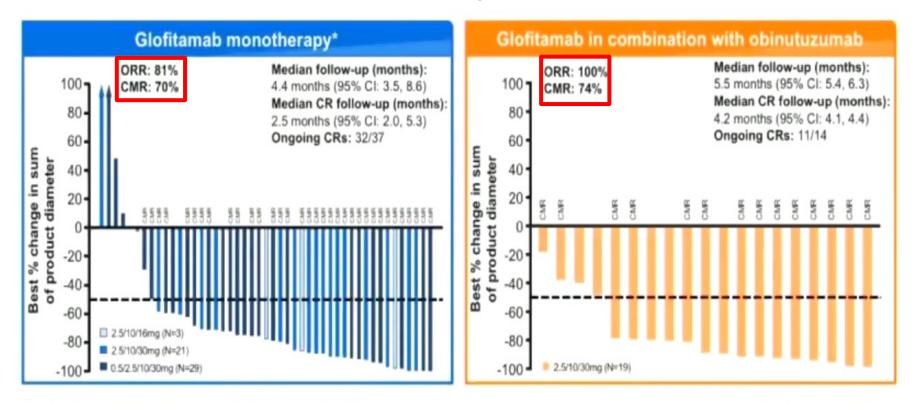
No CRS events occurred during retreatment

S. Schuster et al. ASH 2019. Abstr 6.

ASH 2021 "Game changer": Bispecific antibodies



<u>R/R Mantle Cell Lymphoma</u> Glofitamab+ Obinutuzumab -ORR: 81% CMR: 67%


R/R Follicular lymphomaGlofitamab:ORR: 81% CMR: 70%Glofitamab+Obinutuzumab:ORR:100%,CMR: 74%

- Glofitamab is a BiAbs with unique IgG full length antibody with 2:1 configuration.
- Superior pre-clinical activity over classical 1:1 BiAbs
- Obinutuzumab pretreatment allowed for rapid escalation and mitigating the risk of CRS

Glofitamab in R/R MCL: Clinical Activity

Glofitamab monotherapy and w/Obinutuzumab for R/R Follicular Lymphoma

<u>Mosunetuzumab monotherapy for R/R FL with > 2 lines of</u> <u>therapy</u>

Key inclusion criteria	Mosunetuzumab administration
 FL (Grade 1–3a) ECOG PS 0–1 	 Q3W intravenous administration C1 step-up dosing (CRS mitigation) D15: 60mg D1: 60mg C1 step-up dosing (CRS mitigation)
 ≥2 prior regimens, including ≥1 anti-CD20 Ab ≥1 alkylating agent 	 Fixed-duration treatment B: 2mg B: 2mg B: 30mg C: 01: 30mg C: 01: 30mg C: 01: 30mg C: 02: 03:> 08 / 021/2

<u>Mosunetuzumab monotherapy for R/R FL with > 2 lines of</u> <u>therapy</u>

Efficacy endpoint ¹	IRF N (%) [95% CI]	Investigator N (%) [95% CI]
CR	54 (60%) [49%, 70%]	54 (60%) [49%, 70%]
ORR	72 (80%) [70%, 88%]	70 (78%) [68%, 86%]

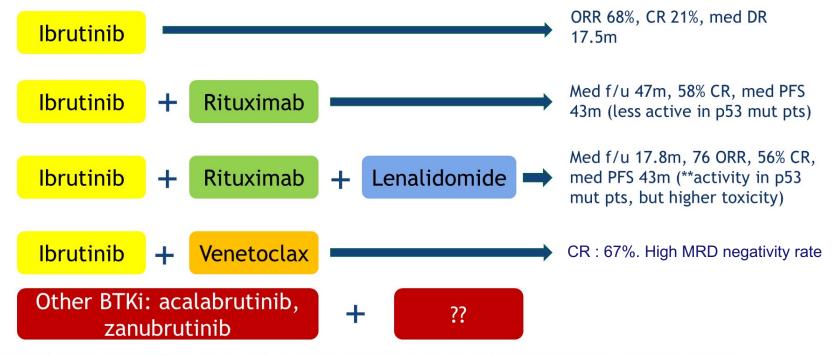
Duration of response in responders

DoRC, duration of response in complete responders; mo, month; NE, not estimable

Budde et al ASH 2021. Abstr 127

Future Directions in B-cell NHL Therapy

- I. How to better combine these novel therapies
 - Duplets versus triplets; safety and "financial toxicity"
 - Finite versus infinite treatment (increasing role of MRD assessment)


II. Can these novel agents be moved to the frontline setting?

- With chemotherapy: POLARIX Study (DLBCL), SHINE, WINDOW-1 (MCL)
- "Chemo-free" : Targeted agents alone or in combination, Bispecific antibodies

III. Resistance (innate, acquired, TME-mediated) to targeted therapy and/or immunotherapy

-BTK resistance: Pirtobrutinib

Building on Ibrutinib in R/R MCL

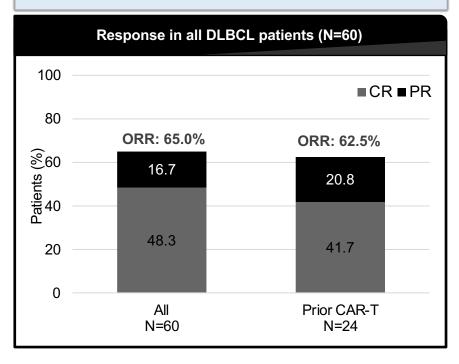
Wang New Engl J Med. 2013 Aug 8;369(6):507-16; Jain P Br J Haematol. 2018 Aug;182(3):404-411; Jerkeman Lancet Haematol. 2018 Mar;5(3):e109-e116

Sonali Smith at ASCO 2020 Virtual Education Program

Completed trials

- AIM: **ibrutinib** + venetoclax (activity in p53 MCL)
- OAsIs: **ibrutinib** + obinutuzumab + venetoclax (activity in p53 MCL)
- Venetoclax+ lenalidomide+ rituximab (less active in p53 MCL)

Ongoing trials (partial list):

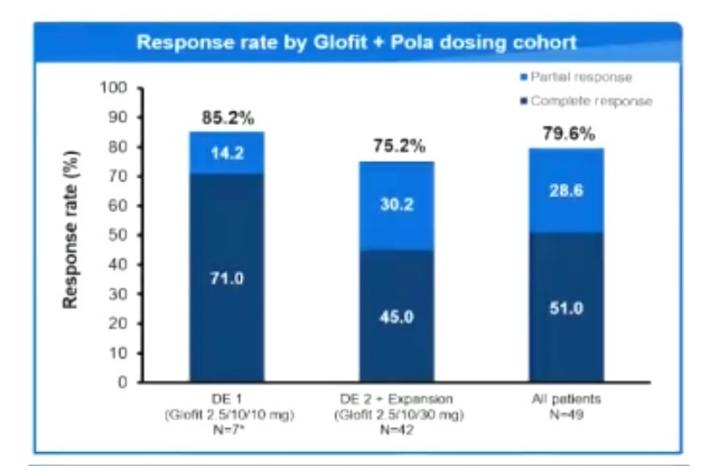

- Ibrutinib + ixazomib (phase II)
- Ibrutinib + copanlisib (phase II)
- Ibrutinib + palbociclib (phase II)
- SYMPATICO: Ibrutinib vs ibrutinib + Venetoclax (phase III)

<u>Combinations of Targeted Therapies in Frontline MCL</u> (ASH 2021)

Regimen	Author	Phase	Line of Therapy	ORR (%)	CR (%)	Toxicities
Zanubrutinib, obinutuzumab, venetoclax (in <i>TP53</i> mutated)	A. Kumar	II	Frontline	92	80	17% G3 infusion reaction, 8% G3 neutropenia, 33% G1 nausea, 17% G1 LFTs
Acalabrutinib, rituximab, venetoclax	M. Wang	lb	Frontline	100	90%	62% diarrhea, 52% headache, 48% fatigue. G3-4: 24% neutropenia, 10% pneumonia, 19% COVID-19

Mosunetuzumab + Polatuzumab for R/R DLBCL

Median duration of response: NE (0.03–17.8 months)*



 Median PFS: 8.9 months (95% CI: 3.5, NE)*

 Of 29 patients achieving CR, 28 (96.6%) remained in CR and 1 (3.4%) had PD at data cut-off

Budde et al ASH 2021. Abstr 533

Glofitamab + Polatuzumab in R/R DLBCL

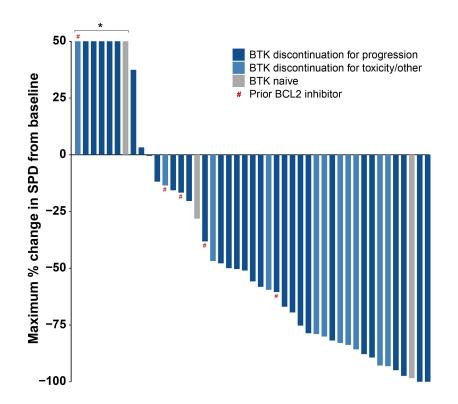
Frontline: Mosunetuzumab in Previously Untreated Elderly Patients with DLBCL

- Elderly patients with DLBCL unfit for conventional treatment (>80 y/o)
- Stepping up dose (D1/D8/D15)
- Optional pretreatment with prednisone+ vincristine
- ORR: 63%; CR: 45%. Durable responses
- CRS mostly grade 1 and limited to first administration
- Might represent a "Chemo-free" option for elderly patients (versus mini-R-CHOP?)

Future Directions in B-cell NHL Therapy

I. We are "victims" of our own successes.... A good challenge to have

- How to better combine these novel therapies...duplets versus triplets; safety and "financial toxicity"
- Finite versus infinite treatment (increasing role of MRD assessment)


II. Can these novel agents be moved to the frontline setting?

- With chemotherapy: POLARIX Study (DLBCL), SHINE, WINDOW-1 (MCL)
- "Chemo-free" : **Bispecific antibodies,** checkpoint blockade antibodies, targeted agents alone or in combination

III. Resistance (innate, acquired, TME-mediated) to targeted therapy and/or immunotherapy

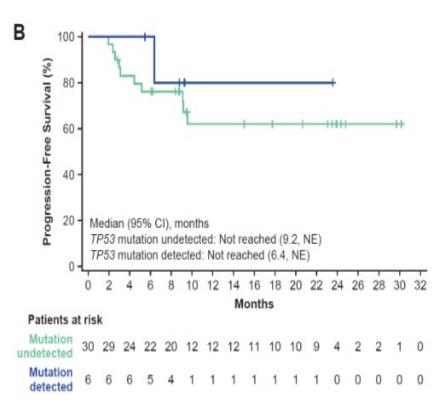
-BTK resistance : Pirtobrutinib (LOXO-305)

Pirtobrutinib in R/R MCL

All MCL Patients	n=56
Overall Response Rate, % (95% CI)	52% (38-65)
Best Response	
CR, n (%)	14 (25)
PR, n (%)	15 (27)
SD, n (%)	10 (18)
BTK Pre-Treated MCL Patients	n=52
BTK Pre-Treated MCL Patients Overall Response Rate, % (95% Cl)	n=52 52% (38-66)
Overall Response Rate, % (95% CI)	
Overall Response Rate, % (95% CI) Best Response	52% (38-66)

Opportunities in a "crowded" Therapeutic Landscape: Good Science + Unmet Needs

I. <u>Science</u>:


- Allo CAR T-cells
- Beyond T-cell immunotherapies... Harnessing Innate Immunity
 - Genetically engineered NK cells
 - Genetically engineered Macrophages

II. Unmet Needs in Non-Hodgkin's lymphomas

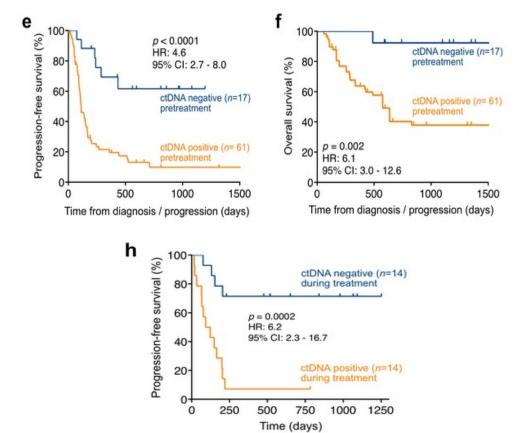
- Difficult to treat lymphomas:
 - Double/triple hit large B cell lymphomas
 - POD24 low grade lymphomas
 - MCL with p53 abnormalities
 - Transformed lymphomas

Efficacy of CAR T-cells in TP53 altered MCL

- ZUMA-2 two-year PFS for patients with TP53 mutated MCL: 80%
- Real world data: 31 pts (46%) with *TP53* alteration.
- -ORR 82%, CR 50%
- -overall 3-month PFS: 80.6%
- -overall 6-month OS: 82.1%

2022: Unmet Needs in NHL

I. Emerging Needs in Non-Hodgkin's lymphomas


- Innate or acquired resistance to novel agents
 - BTK resistance (MCL, CLL, WM, MZL)
 - CD19 CAR T-cells (DLBCL, MCL, FL)
 - Double refractory (FL, MCL)....*triple refractory*

II. "Wide open" lymphomas waiting for scientific discoveries and novel therapies

- T-cell/NK malignancies
- Viral-associated lymphomas
- CNS lymphomas

CNS Lymphomas: Plasma ctDNA levels and clinical outcomes

- Novel deep sequencing and phased variant enrichment and detection sequencing method applied to samples from patients with CNS lymphoma.
- Plasma ctDNA levels correlated with tumor volume. Patients with plasma ctDNA+ at baseline had worse PFS and OS.
- -Those with ctDNA+ during treatment had worse PFS.

THANK YOU !

esotomayor@tgh.org