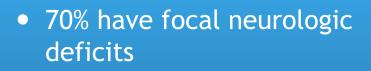


New Advances for therapies in PCNSL

Sepideh Mokhtari, MD Neuro-Oncology Moffitt Cancer Center March 25th, 2023


Introduction

- 4% of Intracranial tumors
- 4-6% of extra-nodal lymphoma
- Median age of 67 at diagnosis
- Spike in the early 1990s, due to the HIV epidemic
- Those who are 70-79 years of age have the highest incidence
 - 4.3 per 100 000/year

- 43% have nonspecific behavioral or neurocognitive changes
- Ocular involvement (20%)
 - Symptoms (4%)
 - Decreased acuity
 - Blurry vision
 - Floaters

Neurologic Deficits

- Increased ICP (33%)
 - Headache
 - Confusion
 - Nausea/Vomiting
- Seizures (14%)
 - The cortex is less frequently involved
- Leptomeningeal disease (1/3)

- Spinal met
 - Intradural
 - Thoracic

Diagnostic work up

• MRI Brain

- Isointense to hyperintense on T2-weighted MR image
- Enhance homogeneously
- Moderate amount of edema
- Restricted on diffusion weighted images
- MRI whole spine
- Ophthalmologic evaluation (slit lamp)
 - To detect cellular vitreal or subretinal infiltrates.
- CSF evaluation
- CT TAP or fluorodeoxyglucose (FDG) PET

- Bone marrow biopsy
- Testicular ultrasound
- Definitive diagnosis requires pathologic confirmation
 - Stereotactic biopsy

MRI Pattern

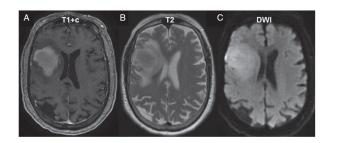


Fig. 1 PCNSL imaging pattern on MRI. (A) MRI T1 sequence with gadolinium contrast (T1+c) reveals homogeneously enhancing deep lesions. (B) Lesions are iso- to hyperintense on T2 imaging with a relatively small amount of edema. (C) Diffusion-weighted imaging (DWI) demonstrates restricted diffusion in the tumor.

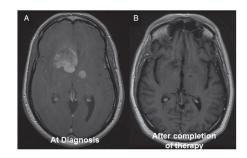
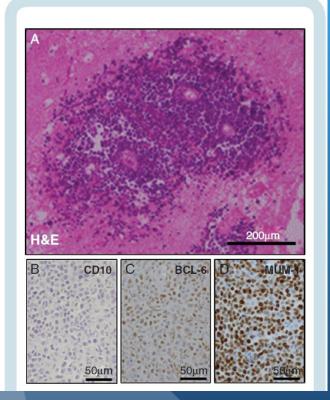
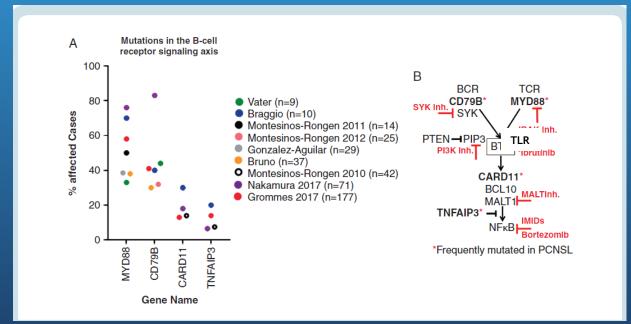
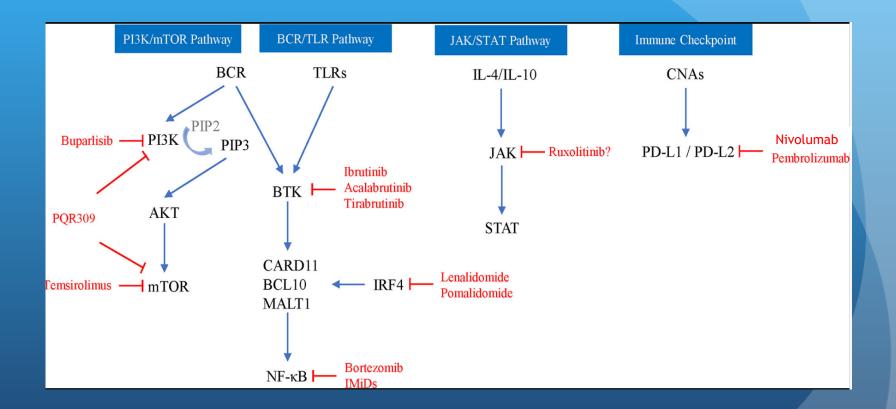



Fig. 2 PCNSL is highly chemosensitive. (A) PCNSL is highly chemosensitive with dramatic response on T1 with gadolinium (B) after initiation of methotrexate combination therapy.

Pathology


MOFFITT CANCER CENTER

- DLBCLs (90%)
 - CD20, CD19, CD22, CD 79a
- Others:
 - Burkitt, T-cell, or low-grade lymphomas
- Perivascular growth
- Nongerminal center/activated B-cell subtype (>75%)
 - CD10
 - BCL-6
 - MUM-1


Genomic

- Most mutated genes: MYD88, CD79B, CARD11, and TNFAIP3
- NK^kB promotes neoplastic proliferation and prevents apoptosis

Key Mechanisms of PCNSL and Related Targeted Agents

Tao et al. Front. Oncol., 29 April 2021

Pathogenesis

- Copy number Losses
 - 6p21.33 (HLA-B, HLA-C)
 - 6q21-23 (TNFAIP3)
 - 9p21.3 (CDKN2A)
- Copy number gains
 - 12q (MDM2, CDK4) and 9p24.1
 - PD-L1, PD-L2)
- Somatic hypermutation (SHM)
- Genetic features of vitreoretinal lymphoma (VRL)
 - Activation of the TLR pathway by

mutations in MYD88

- SHM genes may be similarly mutated
- Tumor microenvironment
 - IL-10
 - STAT3 => JAK2/STAT3
 - cell proliferation
 - Survival
 - Angiogenesis
 - Tumor associated Macrophages (TAM)
 - Overexpresses PDL1

Current Gold Standard

Surgery

- Biopsy only (stereotactic biopsy)
- To establish tissue diagnosis
- Avoid corticosteroid use prior to biopsy
- Surgical debulking is typically not pursued
 - Multiple retrospective studies have failed to demonstrate a survival benefit

Chemotherapy

- Methotrexate-based polychemotherapy
 - R-MPV
 - MT-R
 - MTX/cytarabine/thiotepa/rituxim ab (MATRix)
 - Rituximab/MTX/carmustine/tenip oside/prednisolone (R-MBVP)
 - Rituximab/MTX (R-M)

MOFFITT CANCER CENTER

Upfront Trials in PCNSL

Author	Year	Agents	Patients	Median Age	ORR (PR+CR)	Median PFS, mo	Median OS, mo
DeAngeliset al ⁶²	1992	M(1)+RT(40 + 14 boost)+AraC(3)	31	58	27/31 (87%)	41	42.5
Glass et al	1994	M(3.5)+RT(30-40)	25	56	23/25 (90%)	32	33
O'Brien et al ⁹⁴	2000	M (1)+RT (45 + 5.4 boost)	46	58	44/46 (96%)	NR	33
Abreyet al ⁶⁵	2000	M(3.5)+P(100)+V(1.4)+Ara-C(3)+IT M+IT A+RT(45)	52	65	49/52 (94%)	NR	60
Ferreriet al	2001	M(3)+P(100)+V(1.4)+Ara-C(3)+RT(45)	13	54	12/13 (92%)	18	25+
DeAngelis et al ⁶⁷	2002	M (2.5)+V(1.4)+P(100)+AraC (3)+IT M+RT(45 or 36)	102 (98 treated)	56.5	47/50 (94%)	24	37
Herrlinger et al 72	2002	M(8)	37	60	13/37 (35%)	10	25
Abrey et al ⁸⁸	2003	M(3.5)+AraC(3); BEAM	28 (14 transplanted)	53	Induction: 16/24 (57%), SCT 11/14 (77%)	5.6	Not reached
Batchelor et al ¹³	2003	M (B)	25	60	17/23 (74%)	12.8	22.8+
Pels et al ⁷⁴	2003	М(5)+AraC(3)+V(2)+ifcs(800)+dex(10)+cyclo(200) +IT M+IT A+IT P	65	62	43/61 (71%)	21	50
Poortmans et al 🕫	2003	M(3)+Ten(100)+B(100)+MP(60)+IT M+IT A+RT(40)	52	51	42/52(81%)	NR	46
Colombat et al ^{e7}	2006	M(3)+B(100)+ eto(100)+pred(60); BEAM+RT(30)	25 (17 transplanted)	52	Induction: 21/25 (84%), SCT 16/16 (100%)	40	Not reached
lllerhaus et a l ⁹⁶	2006	M (8)+AraC (3)+thio (40 mg/m²); B (400)+thio(5 mg/ kg)+RT(45)	30 (23 transplanted)	54	Induction: 21/30 (70%), SCT 21/21 (100%)	NR	Not reached
Ferrerietal ⁷⁷	2009	M(3.5)+/-AraQ(2)+RT(45)	79	59/58	27/39 (69%) vs 16/40 (40%)	3 vs 18	Nr
Thiel et al ¹⁵	2010	M (3;+ifos) +/- RT (45)	526 (all)/318 (TPP)	61	283/526 (53%)	18.3 vs 11.9	32.4 vs 37.1
Morris et al ⁷²	2013	R(500)+M(3.5)+V(1.4)+P(100)+RT(23.4)	52	60	41/52 (78%)	92.4	Not reached
Rubenstein et al ⁷⁶	2013	R(375)+M(8)+T(150)+AraC(2) vs eto(40)	44	61	34/47(72%)	48	Not reached
Om uro et al ⁷⁹	2015	R (500)+M (3.5)+V (1.4)+P (100); th io(250)+cycl o(60)+bu s(3.2)	32 (26 transplanted)	57	Induction: 31/32 (97%), SCT 24/26 (92%)	Not reached	Not reached
Om uro et a 🎮	2015	M (3.5)+V(1.4)+P(100)+AraC (3) vs M (3.5)+T (150)	95	72/73	37/45(82%) vs 34/42(74%)	9.5 vs 6.1	31 vs 14
Glass et al	2016	R(375)+M(3.5)+T(100)+RT(36)	66	57	30/35 (86%)	63	90
Ferrerietal ⁷⁵	2016	M(3.5)+AraC(2)+/-R(375)+/-thio(30)	227	58/57/57	40/75(53%)/51/69(73%)/65/75 (86%)	6/20/not reached	12/30/not reached
lllerhausetal ¹⁶	2016	R(375)+M(8)+AraC(3)+thio(40); R(375)+B(400)+thio(5 mg/kg)	79 (73 transplanted)	56	Induction: 73/79 (92%), SCT: 72/79 (91%)	74	Not reached
Fritsch et al ^{so}	2017	R(375)+M(3)+P(60)+L(110)	107 (all)/(69 R-MPL)	73	53/107 (50%); 32/69 (46% r-mpl)	10.3/(9.6 r-mpl)	20.7/(15.4 r-r

Ara C: cytarabine (g/m²); B: BCNU (mg/m²); BEAM: carmustine, etoposide, cytarabine, melphalar; bus: busulfan (mg/kg); CHOP: cyclophosphamide, doxorubicin, vincristine, prednisone; cyclo; cyclophosphamide (mg/m²); ifos: ifosfamide (mg/m²); IT A: intrathecal cytarabine; IT M: intrathecal methotrexate; IT P: intrathecal prednisone; M: methotrexate (g/m²); L: lomustine (mg/m²); N: not reported; P: procarbazine (mg/m²); day), SCT: stem cell transplant; pred: methylprednisone (mg/m²); R: rituximab (mg/m²); RT: whole brain radiation (dose used in Gy); T: temozolomide (mg/m²); Ten: teniposide (mg/m²); thio: thiotepa (mg/m²); V: vinc ristine (mg/m²).

Dose of Methotrexate

- The optimal dose of MTX is not known,
- At least 3 g/m2 is required for adequate penetration of the CNS
- Some regimens utilize dosages up to 8 g/m2
 - Toxicity often necessitates dose reductions
 - There is no clear benefit to these higher doses
- Institutional and practitioner preference

Radiation for PCNSL History

• 1970s-1980s:

- High dose WBRT 40-50 Gy + boost to 50-54 Gy
 - RR 50-80%, 5-yr OS ~15-20% (at best)
- 1980s-1990s:
 - High dose WBRT + boost + HD-MTX
- 2000s present:
 - 5-8 x cycles R-MVP with

optional treatment escalation

- Autologous stem cell transplant
- <u>Low-dose WBRT (23.4 Gy -</u> <u>RTOG 1114)</u>
- IELSG32 (WBRT 36 Gy + 9 Gy boost)
- PRECIS (WBRT 40 Gy)
 - Favored ASCT in young pts

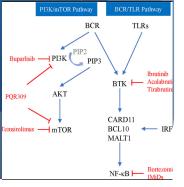
Radiation for PCNSL

- As part of consolidation
 - Preferably low dose (23.4 Gy, in responsive patients)
 - Awaiting results of RTOG 1114
- Associated with increased neuro-cognitive deficits in elderly patients and at higher doses
- Some centers still use WBRT as part of consolidation delivered at a lower dose (23.4 Gy)
- Given to younger patients to avoid neurocognitive issues
 - (*J Clin Oncol.* 2013;31(31):3971-3979)

Recurrent/Relapsing PCNSL

- Approximately 15%
- High in patents who are not candidates for HDC-ASCT
- Traditional strategies for salvage therapy:
 - MTX-rechallenge
 - Alternate cytotoxic chemotherapy regimens
 - WBRT
- Prognosis for relapsed disease is poor
 - PFS of only about a year with aggressive salvage therapy

BCR/TLR Pathway

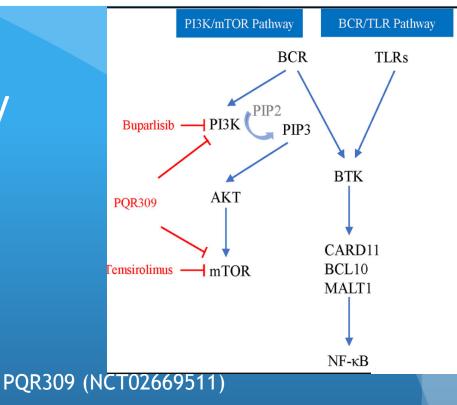


- PI3K Inhibitors
- Lenalidomide
 - IRF4 inhibition => $NF\pi B$
- Proteosome inhibitors
 - Prevent release of NK_KB to the nucleus
 - Don't cross blood-brain barrier (BBB)
- Ibrutinib
 - Targets BTK pathway
 - Used for treatment of R/R PCNSL in NCCN guideline
 - RR ~ 52% vs 25% in systemic DLBCL
 - MYD88 & CD 79b appear to coincide in approximately 37% of cases of PCNSL
 - Potential resistance due to CARD11 & TNFAIP3 mutations
 - PFS < 5 months (Grommes *et al.* Cancer Discov. 2017)

- Combination treatment PFS > 9 months (Grommes et al. Blood 2019)
 - Lenalidomide (NCT03703167)
 - Copanlisib (NCT03581942)
 - checkpoint inhibition (NCT04421560, NCT03770416)
 - Traditional chemotherapy (NCT04066920, NCT02315326)
 - Studies underway for usage in upfront setting
 - DA-TEDDI-R (NCT02203526)
 - R-MVP (NCT02315326, NCT04446962)
- Maintenance therapy following response to induction therapy (NCT02623010)

• Acalabrutinib (NCT04548648, NCT04462328)

• Tirabrutinib (NCT04947319)


PI3K/mTOR Pathway

Temsirolimus

- mTOR inhibitor
- Phase II study
 - RR ~54%
 - PFS 2.1 months
 - CSF conc. subtherapeutic

Buparlisib

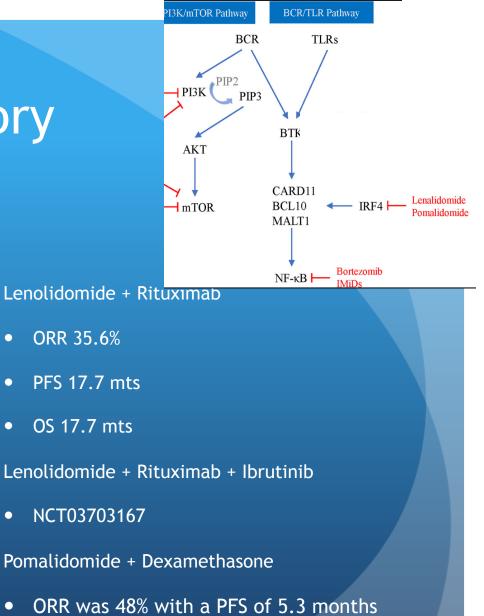
- RR 25%
- CSF conc. Subtherapeutic
- Incomplete blockade of the
- PI3K/AKT/mTOR pathway

• dual PI3K/mTOR inhibitor

Paxalisib (NCT04906096)

• PI3K/mTOR inhibitor with CNS penetrance

Copanlisib (PI3K inhibitor) + Ibrutinib (NCT03581942)


Immunomodulatory

Lenalidomide and pomalidomide

- 3rd generation (IMiDs)
- Toxicity
 - Marrow suppression, infection, and fatigue
- IRF4
 - **1** NKҡВ
 - MYC
- Block PI3K/AKT pathway
- Modulate TAM

Lenolidomide

RR 64% \bullet

Pomalidomide + immunotherapy (NCT03798314)

•

ightarrow

ightarrow

 \bullet

Recent Prospective Trials of Novel Agents

			1 1		0				
Author	Year	Agent(s)	Phase	Evaluable Patients	Disease Status	Median Age, y	ORR (PR + CR)	mPFS, mo	mOS, mo
Korfel [54]	2016	Temsirolimus	2	37	R/R	70	20/37 (54%)	2.1	3.7
Grommes [55]	2017	Ibrutinib	1	20 (13 PCNSL)	R/R	69	10/13 (77%)	4.6	15
Lionakis [40]	2017	TMZ, etoposide, liposomal doxorubicin, dexamethasone, rituximab, ibrutinib	1b	18	R/R, new	66	15/18 (83%)	15.3 in R/R	NR
Rubenstein [56]	2018	Lenalidomide + rituximab; lenalidomide maintenance	1	14 (7 PCNSL)	R/R	66	6/7 (86%)	6	NS
Tun [57]	2018	Pomalidomide + dexamethasone	1	25 (23 PCNSL)	R/R	NS, >60	11/23 (48%)	5.3	NS
Ghesquieres [58]	2019	Lenalidomide + rituximab	2	45 (34 PCNSL)	R/R	69	22/34 (65%)	3.9	NS
Grommes [59]	2019	Ibrutinib + M(3.5) + rituximab	1b	15 (9 PCNSL)	R/R	62	8/9 (89%)	NR	NR
Soussain [60]	2019	Ibrutinib	2	44	R/R	70	26/44 (59%)	4.8	19.2
Narita [61]	2021	Tirabrutinib	1/2	44	R/R	60	28/44 (64%)	2.9	NR

CR: complete response; M: methotrexate; mOS: median overall survival; mo: months mPFS: median progression-free survival; NR: not reached; NS: not specified; ORR: overall response rate; PCNSL: primary central nervous system lymphoma; PR: partial response; R/R: relapsed/refractory; TMZ: temozolomide; y: years.

Targeting the Immune System

PDL1

- Retrospective studies
 - Encouraging outcome
 - PFS > 13 months
 - Concurrent Rituximab or given after brain radiation
- Well tolerated
- Alternative treatment strategy
 - Elderly or frail
- Prospective studies
 - Monotherapy (NCT02857426)
 - + ibrutinib (NCT03770416, NCT04421560)
 - + lenalidomide (NCT04609046)
 - + pomalidomide (NCT03798314)

- Potential maintenance
 - (NCT04401774, NCT04022980)

CAR-T

- Initially patients with CNS disease were excluded from CART trials
 - Concern for ICANS
 - Potential for limited efficacy
- Preliminary data of trials enrolling pt w/ PCNSL
 - High rates of toxicity (CRS, ICANS)
- Ongoing trials
 - D19 CAR-T agents
 - tisagenlecleucel (NCT04134117)
 - axicabtagene ciloleucel (NCT04608487)

Immune Checkpoint

Nivolumah

Pembrolizumab

CNAs

PD-L1 / PD-L2

Other Targets

- Loss of CDKN2A
- Venetoclax
- BCL-2
- Penetrate the BBB

Selinexor

- Exportin 1
 - Blocks nuclear export
 - => accumulation of tumor suppressor proteins in the nucleus
 - => cell death

Ongoing Trials of Novel Agents

Agents	Clinicaltrails.Gov ID	Trial Start	Phase	Target Accrual	Eligible Age	Country
Upfront Induction						
Rituximab, MTX, lenalidomide, nivolumab	NCT04609046	2020	1	27	18+	USA
Rituximab, MTX, procarbazine, vincristine; and lenalidomide or ibrutinib	NCT04446962	2020	1b/2	128	18 to 60	France
Rituximab, MTX \pm lenalidomide	NCT04481815	2020	2	240	18 to 75	China
Rituximab, lenalidomide, MTX, and TMZ	NCT04737889	2021	2	30	18 to 70	China
Rituximab, MTX, procarbazine, vincristine, and ibrutinib	NCT02315326	2021	2	30	18+	USA
Upfront Maintenance						
Nivolumab maintenance	NCT04022980	2019	1b	20	65+	USA
MTX, rituximab, lenalidomide, with lenalidomide maintenance	NCT04120350	2019	1b/2	47	18 to 75	China
Rituximab, MTX, with ibrutinib maintenance	NCT02623010	2016	2	30	60 to 85	Israel
MTX or TMZ-based therapy with procarbazine or lenalidomide maintenance	NCT03495960	2019	2	208	70+	Italy
Lenalidomide/rituximab maintenance	NCT04627753	2020	2	30	19+	Korea
Nivolumab maintenance	NCT04401774	2020	2	25	18+	USA
Relapsed/Refractory Disease						
TMZ, etoposide, liposomal doxorubicin, dexamethasone, ibrutinib, rituximab, IT-cytarabine	NCT02203526	2014	1	93	18+	USA

Schaff and Grommes. Update on Novel Therapeutics for Primary CNS Lymphoma Cancers 2021, 13, 5372.

Ongoing Trials of Novel Agents (Cont.)

Agents	Clinicaltrails.Gov ID	Trial Start	Phase	Target Accrual	Eligible Age	Country	
Tisagenlecleucel	NCT04134117	2019	1	6	18+	USA	
Acalabrutinib and durvalumab	NCT04462328	2020	1	21	18+	USA	
Fludarabine, cyclophosphamide, axicabtagene ciloleucel	NCT04608487	2020	1	18	18+	USA	
Ibrutinib with rituximab and lenalidomide	NCT03703167	2019	1b	40	18+	USA	
Copanlisib with ibrutinib	NCT03581942	2018	1b/2	45	18+	USA	
Pembrolizumab, ibrutinib, and rituximab	NCT04421560	2020	1b/2	37	18+	USA	
PQR309	NCT02669511	2015	2	21	18+	Germany	
Nivolumab	NCT02857426	2016	2	47	18+	USA	
Abemaciclib	NCT03220646	2017	2	10	18+	USA	
Ibrutinib, rituximab, ifosfamide and etoposide, with ibrutinib maintenance	NCT04066920	2019	2	30	20 to 79	Korea	
Nivolumab and ibrutinib	NCT03770416	2019	2	40	18+	USA	
Nivolumab and pomalidomide	NCT03798314	2019	1	3	18+	USA	
Acalabrutinib	NCT04548648	2020	2	32	18+	USA	
Ibrutinib versus lenalidomide, with MTX, rituximab, etoposide	NCT04129710	2020	2	120	18 to 75	China	
Orelabrutinib	NCT04438044	2020	2	39	18 to 75	China	
Paxalisib	NCT04906096	2021	2	25	18+	USA	
Tirabrutinib	NCT04947319	2021	2	44	18+	USA	
IT: intrathecal: MTX: methotrexate: TMZ: temozolomide							

IT: intrathecal; MTX: methotrexate; TMZ: temozolomide.

Challenges to Development and Delivery

- PCNSL is a rare disease, limiting the ability to perform statistically significant head-to-head comparisons of treatment strategies
- Achieve adequate understanding of drug pharmacokinetics in the CNS
 - Proteasome inhibitors have poor penetration in CNS
- Penetration of the BBB
 - Multi-center study of BBB disruption (BBBD)
 - Mannitol + intra-arterial (IA) MTX
 - ORR of 81.9% (CRR 57.8%)
 - OS of 3.1 years

Development of drug resistance as monotherapy

Future Directions

- Will these agents obviate the need for MTX?
- Novel treatments are given in combination to MTX based treatment in the upfront setting
- Many of the novel therapies are oral and most can be administered in the outpatient setting
- Would be great to find agents that can be as effective as MTX
- Usage of biomarkers such as IL-10 may help monitor treatment response and allow for early detection of relapse
- ctDNA for detection and confirmation of genetic arrangements in CSF to monitor treatment response (NCT04401774)

Conclusion

- Understanding of Molecular drivers of PCNSL have led to the development of novel drug strategies.
- Important feature for PCNSL
 - Penetrate the CNS
 - Create responses
 - Responses are durable
- Consideration of combination therapy to avoid early resistance
- Harnessing of the immune system
- Genetic characterization and monitoring to further our understanding and predicting response

