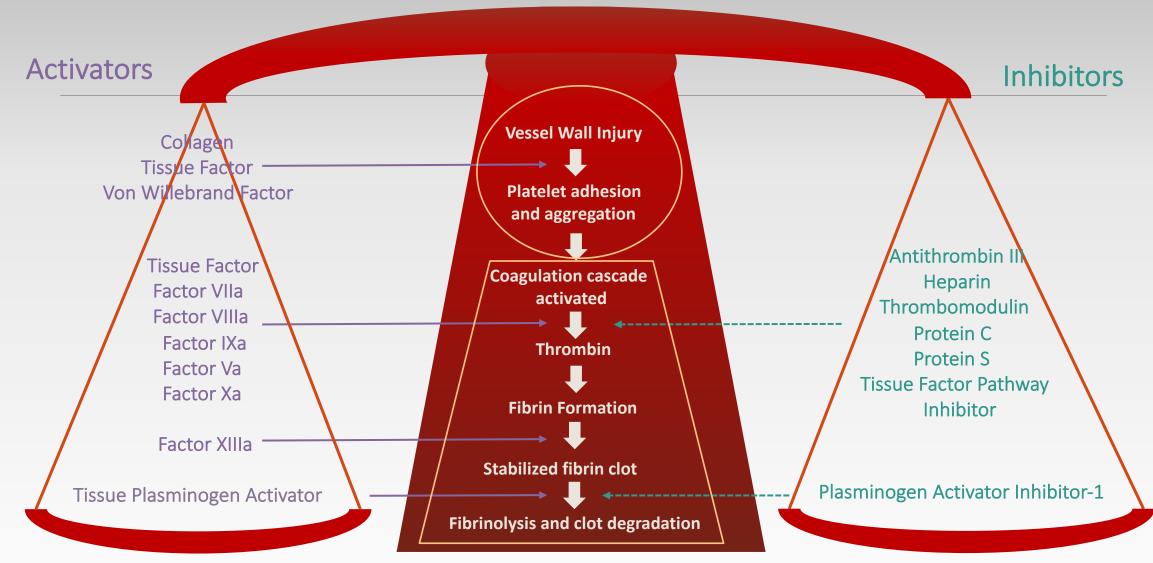


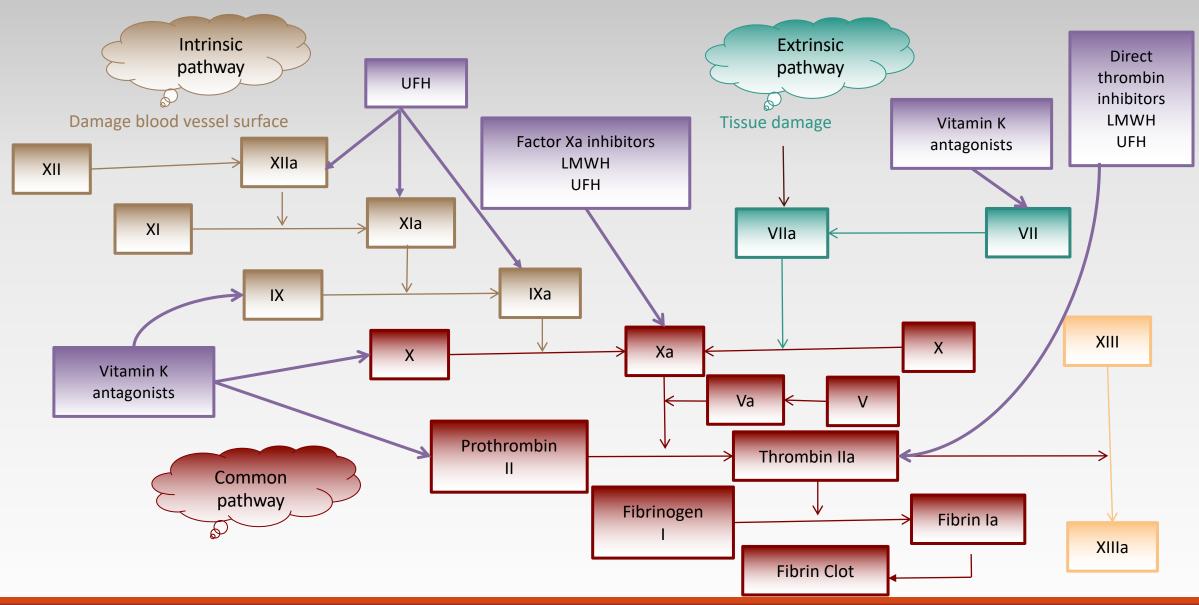
Thrombosis and the Oncology Patient

PAMELA DUDKIEWICZ, DNP, APRN, FNP-BC, AOCNP®

MARCH 3RD, 2023


Objectives

- Discuss normal hemostasis and the coagulation cascade
- Discuss an overview of thromboembolism, epidemiology and disease state of and risk for thrombosis
- Discuss the VTE in patients with cancer
- Review currently available antithrombotic agents
- Understand the guidelines for VTE prophylaxis
- Identify high-risk cancer patients and recommendations for treatment


Hemostasis and Coagulation

- Hemostasis: The complex process by which the body stops bleeding upon injury and maintains blood in the vascular system
 Vessel wall, platelets, and plasma proteins
 Imbalance= bleeding or thrombosis
- Coagulation: A cascading system of proteins which provides a vital role in hemostasis
 - Consists of three pathways (intrinsic, extrinsic and common)

Hemostasis Overview

Coagulation Cascade

Overview of Thromboembolism

Thrombosis

- A blood clot formed in a blood vessel, obstructing blood flow. The clot does not move to different parts of the body
- Classified as venous (formed in a vein) or arterial (formed in an artery) thrombosis
- Most common
 - o DVT
 - o PE
- Treatment anticoagulants

Embolism

- A complete or part of a blood clot that detaches from its site, causing a blockage in a part of the body. This clot can travel through the body.
- Classified as venous embolism and arterial embolism (blocked vessel in any part of body, caused by the moving clot).
- Most common
 - o Stroke
 - Heart Attack
- Treatment antiplatelets

Both conditions are characterized by a blood clot, but are *different* conditions

Incidence/Prevalence of Thromboembolism

- VTE affects as many as 500,000 people in the US annually
- Overall incidence is higher in African American populations and lower in Asian populations
- Men>women except women in childbearing years (16-44 years) compared to men of similar age
- 60,000-100,000 is the estimated number of Americans who die each year from DVT/PE
 10-30% will die within one month of diagnosis
 - o Sudden death is the first symptom in about 25% of people who have a PE
- Of the non-fatal cases of VTE, 40% are from PEs and 60% are from DVTs
- Among people who have had a DVT, ½ will have long-term complications
- 33% will have a recurrence within 10 years

Facts about Thromboembolisms

- ~ 274 people die every day from blood clots
- 70% of all patients with thrombosis are provoked clots
 - Known risk factors
 - Surgery
 - Hospitalization
 - Cancer
 - Medical illness
 - Genetics
 - 2% per year recur after 3 months of anticoagulation therapy

- 30% of all patients with thrombosis are unprovoked clots
 - Absence of identifiable risk factors
 - o Idiopathic
 - 7-11% per year recur if anticoagulant therapy stopped after 3, 6, 12, or 24 months

Relationship between cancer and thrombosis

- Armand Trousseau
 - First described the relationship between cancer and thrombosis in 1865

"There appears in the cachexiae...a particular condition of the blood that predisposes it to spontaneous coagulation."

Armand Trousseau

1801-1867

Thromboembolism and Cancer

- Frequently complicates the course of malignancy, especially with medical and surgical anti-cancer treatments
- Can involve both venous and arterial systems
- Venous events- most common
 - Deep vein thrombosis (DVT)
 - Pulmonary embolism (PE)
- Arterial events
 - o Stroke
 - Myocardial infarction
- Generally, presents after cancer diagnosis, however, can be the presenting symptom that leads to a cancer diagnosis

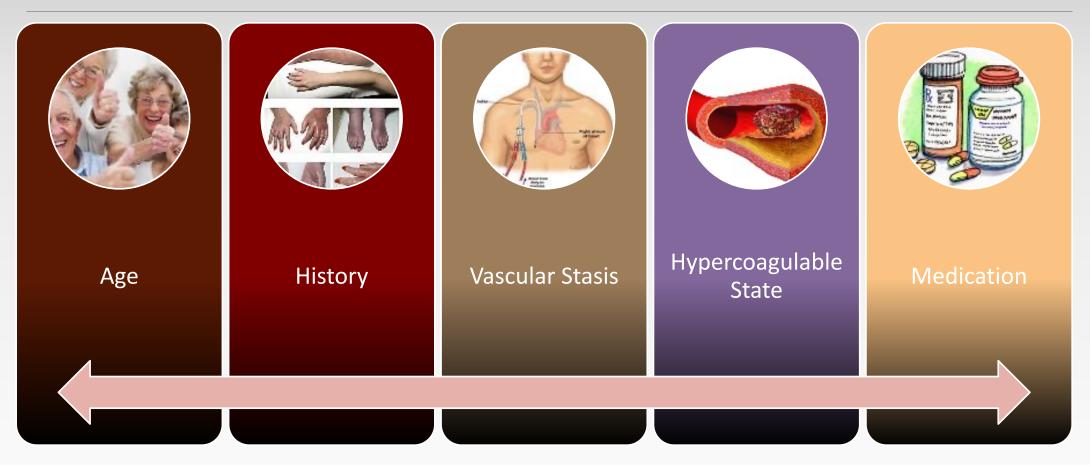
Epidemiology of VTE and Cancer

- Of all cases of VTE:
 - 18% occur in cancer patients
 - Annual incidence of VTE is 8/1000 cancer patients/year
 - Up to 7-fold greater risk of VTE development in cancer patients
- Of all cancer patients:
 - 20% will have symptomatic VTE
 - As many as 50% have VTE on autopsy
- Compared to patients without cancer:
 - Higher risk of first and recurrent VTE
 - Higher risk of bleeding on anticoagulants
 - Higher risk of dying

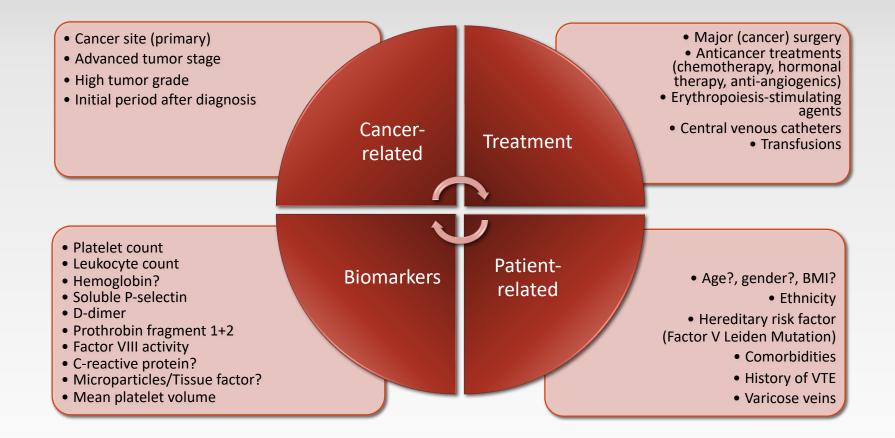
Burden of VTE and Cancer

- Cancer is a strong and independent risk factor for venous thromboembolism (VTE)
- VTE represents one of the most important causes of morbidity and mortality in cancer patients as well as the 2nd leading cause of death in patients with cancer
- Lower survival rates and poorer prognosis in cancer patients with VTE compared to those without
- Healthcare costs are approximately 40-50% higher in cancer patients with VTE compared to those without
- Appropriate prevention and treatment of cancer-associated VTE is vital to reduce its burden on patients and the health system at large

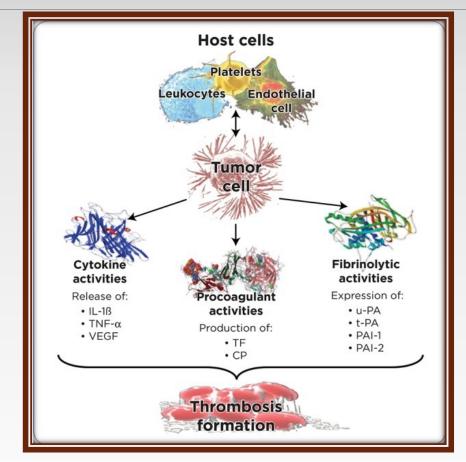
Common VTE in Cancer


Deep Vein Thrombosis

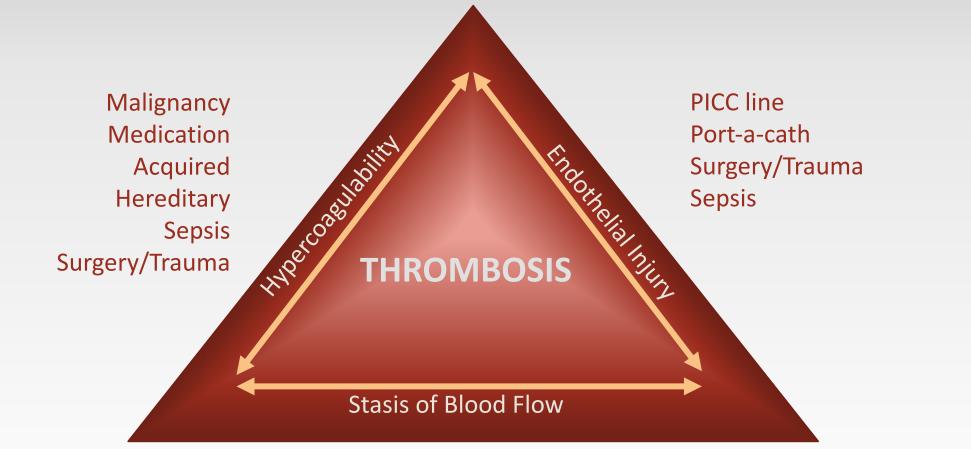
- Symptoms
 - Swelling, pain, warmth, or erythema of unilateral extremity
 - Heaviness in the extremity
 - o Unexplained persistent calf cramping
 - Swelling in face, neck, or supraclavicular space
 - Catheter dysfunction
- **Signs**
 - Dilation of superficial veins and palpable cord
 - o + Homan's sign
- Diagnostic studies
 - o Duplex venous ultrasonography
 - o Contrast-enhanced CT
 - o MRI
 - o Standard venography
 - o Serum D-dimer


Pulmonary Embolism

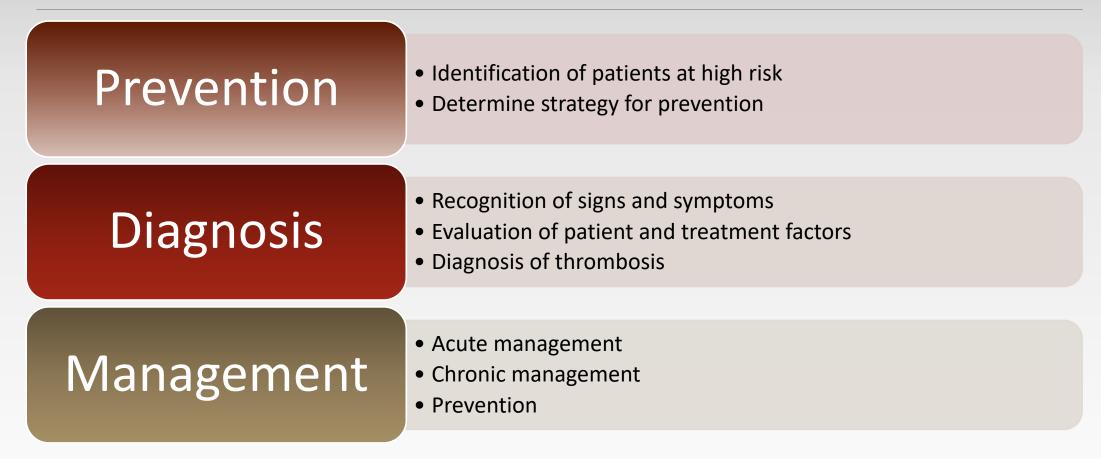
- Symptoms
 - o Dyspnea (acute onset)
 - o Pleuritic chest pain
 - o Hemoptysis
 - o Cough
 - Pain and/or edema to lower extremity
 - Apprehension
- Signs
 - o Tachypnea
 - Signs of DVT
 - o Tachycardia
 - o Hypoxia
 - o Murmur
- Most common
 - CT angiography
 - VQ lung scan
 - Pulmonary angiography


Risk for VTE

Risk Factors for VTE in Patients with Cancer



Pathogenesis of Cancer-Associated VTE


Mechanism	Function
Procoagulant activity	Production of:Tissue factorCancer procoagulant
Fibrinolytic activity	 Expression of: Urokinase-type activator Tissue-type plasminogen activator Plasminogen activator inhibitor-1 Plasminogen activator inhibitor-2
Cytokine activity	 Release of: Interleukin-1β Tumor necrosis factor-α Vascular endothelial growth factor
Host cell-tumor cell activity	 Interaction with: Endothelial cells Leukocytes; monocytes and macrophages Platelets Tumor cells

Virchow's Triad

Immobility, Age, Heart or Lung Failure

Clinical Issues and Thrombosis

Currently Available Anticoagulants for Prevention and Treatment of VTE

Anticoagulant Options for Treatment of VTE

- ♦ Heparin (UFH) IV, SC
- Low Molecular Weight Heparin (LMWH)
 - Dalteparin SC
 - o Enoxaparin SC
- Vitamin K Antagonist
 O Warfarin PO

- Factor Xa Inhibitors
 Apixaban PO
 - Rivaroxaban PO
 - Fondaparinux SC
- Direct Thrombin Inhibitors
 Dabigatran PO

Unfractionated Heparin

♦ MOA

 acts at multiple sites in the coagulation process; binds to antithrombin III, catalyzing inactivation of thrombin and other clotting factors

Dosage

o VTE Prophylaxis- 5000 units SC Q 8-12 h

○ VTE Treatment- 18 units/kg/h IV

- ♦ Therapeutic monitoring
 - aPTT (1.5 2.5 x mean normal value)
- ♦ Reversal agent-
 - 0 100% neutralization Protamine sulfate
 - Removed by Hemodialysis- partial

Low Molecular Weight Heparin (LMWH)

MOA

- Binds to antithrombin III and accelerates activity, inhibiting thrombin and factor Xa
- Dosage
 - VTE Prophylaxis:
 - 40 mg SC (enoxaparin)
 - 5000 IU SC qd (dalteparin)
 - VTE Treatment:
 - Enoxaparin 1mg/kg SC q12h or 1.5 mg/kg qd
 - Dalteparin 200 IU/kg SC qd

- Therapeutic monitoring
 - Minimal effect on aPTT
 - Anti-Xa activity in select populations (pregnancy, obesity, renal dysfunction, children)
- Reversal Agent
 - Partially reversed with *protamine sulfate* (~60%)
 - o Removed by Hemodialysis- ~ 20%

Enoxaparin

Dalteparin

Vitamin K Antagonists

MOA

- Inhibits the synthesis of vitamin K dependent clotting factors (factors II, VII, IX, protein C/S)
- Dosing
 - Initially administered with parenteral UFH, LMWH or fondaparinux for at least 5 days until INR is 2 or greater
- Prophylaxis
 - Start 2-5 mg daily and adjust for a target INR of 2-3 (A fib) or INR 2.5-3.5 (mechanical valves)
- Treatment
 - Start 2-5 mg along with parenteral bridging x 5 days`

- Therapeutic Monitoring
 PT/INR
- Reversal agent
 - o Vitamin K
 - Fresh frozen plasma (FFP)
 - Prothrombin complex concentrate (PCC)
 - Recombinant activated factor VII

Factor Xa Inhibitors

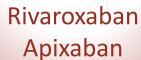
• MOA

- (synthetic) selectively binds to AT-III potentiating FXa neutralization and inhibiting thrombin formation
- Dosage: weight based
 - Prophylaxis: 2.5 mg SC qd
 - Treatment: <50 kg- 5 mg SC qd
 - 50-100 kg- 7.5 mg SC qd
 - >100 kg- 10 mg SC qd

- Therapeutic monitoring
 - Fondaparinux specific anti-FXa activity, seldom indicated.
 - Monitor renal functions periodically
- Reversal agent
 - Consider *rFVIIa* for reversal; but no proven benefit
 - $\,\circ\,$ Removed by Hemodialysis- No

Oral Factor Xa Inhibitors

• MOA


• Selective inhibitor of FXa, inhibiting free and clot-based FXa, decreasing thrombin generation

Dosing

- Prophylaxis
 - 10 mg qd PO (knee/hip) (rivaroxaban)
 - 20 mg qd PO A .fib
 - 2.5 mg bid PO (knee/hip) (apixaban)
 - 5 mg bid PO A. fib
- o Treatment
 - 15 mg bid PO x 21 days, then 20 mg qd (rivaroxaban)
 - 10 mg bid PO x 7 days, then 5mg bid (apixaban)

Therapeutic Monitoring

- Rivaroxaban or apixaban specific anti-FXa activity
- Monitor renal functions periodically
- Reversal Agent
 - Consider 4-factor PCC
 - Andexanet alfa Life-threatening bleeding only
 - Removed by Hemodiaysis- No

Direct Thrombin Inhibitor

♦ MOA

 Directly inhibits thrombin by reversibly binding to free and clot-based thrombin and inhibiting thrombin-induced platelet aggregation

Dosing

- o Prophylaxis
 - 110 mg PO 1-4 h x1 postop, then 220 mg qd x 28-35 days (hip replacement)
 - 150 mg bid PO (A fib)
- Treatment*
 - 150 mg bid PO

- Therapeutic Monitoring
 - o Dilute thrombin time (dTT)
 - Ecarin clotting time (ECT)
 - o aPTT
- Reversal agent
 - Activated charcoal (if within 2 hours of ingestion)
 - Consider 4-factor PCC
 - Idarucizumab Life-threatening bleeding or emergency surgery
 - Removed by Hemodialysis- ~ 65%

Dabigatran

*Crcl 15-30: 75 mg bid; CrCl <15: not defined

Prophylaxis of VTE in Cancer Patients

Identifying at-risk populations

- Hospitalized patients
 - Adult medical and surgical patients
 - Diagnosis of cancer or suspicion of cancer
- Ambulatory cancer patients
 - Surgical oncology patients: high-risk abdominal or pelvic cancer patients
 - Multiple myeloma patients on IMiD therapy

Current Guidelines

- VTE prophylaxis guidelines have been published by several groups
 - oAmerican Society of Clinical Oncology (ASCO)
 - National Comprehensive Cancer Network (NCCN)
 - o European Society of Medical Oncology (ESMO)

Guidance Questions to be Considered

- What is the appropriate workup to search for occult malignancy in patients with idiopathic VTE?
- How can high-risk cancer patients be identified for primary thromboprophylaxis?
- What is the appropriate immediate and long-term treatment for cancer patients with acute VTE including DOACs?
- What is the appropriate duration of anticoagulation?
- What is the appropriate treatment strategy in patients with recurrent VTE on anticoagulation?

Occult Malignancy and Idiopathic VTE

- Unprovoked VTE have a 4-fold risk of underlying cancer
- Up to 10% of patients with unprovoked VTE may be diagnosed with cancer within the 1st year following VTE

Recommendations

- Patients with unprovoked VTE should undergo a thorough medical history and physical exam, basic labs studies (CBC, metabolic profile and LFTs) and chest x-ray
- Patients should undergo, if not up-to-date, age-specific and gender-specific cancer screening (cervical, breast, prostate and colon)
- Further clinical trials are required to assess the risk and benefits of more extensive occult cancer screening in patient s with unprovoked VTE

Identifying High-Risk Cancer Patients

- VTE estimate in general cancer population the risk is
- DOACs and LMWH are pharmacokinetically similar ~ 13/1000 person-years
- VTE estimate in metastatic disease or those on thrombogenic regimens the risk is 68/1000 person-years and as high as 200/1000 person-years amongst patients with primary brain tumors
- Utilizing a validated risk assessment tool can be helpful

Predictive Model for VTE (The Khorana Score)

Patient Characteristics	Risk Score
Site of cancer Very high-risk (stomach, pancreas) High-risk (lung, lymphoma, gynecologic, bladder, testicular)	2 1
Prechemotherapy platelet count > 350,000/mm ³	1
Hemoglobin level less than 10 g/dL or use of red cell growth factors	1
Prechemotherapy leukocyte count > 11,000/mm ³	1
Body mass index > 35 kg/m ² or more	1
High-risk score ≥ 3 Intermediate risk score 1-2 Low-risk score 0	

Identifying High-Risk Cancer Patients

Recommendations

- No routine VTE prophylaxis in unselected and low-risk outpatients and in patients with high-risk for bleeding (primary brain tumors)
- Outpatient LMWH in high-risk (Score > 3 or advanced pancreatic cancer) patients receiving chemotherapy as well as aspirin or LMWH in myeloma patients on IMiDbased regimens
- Inpatient VTE prophylaxis with LMWH or UFH in hospitalized cancer patients with an acute medical illness
- Inpatient VTE prophylaxis with LMWH or UFH in cancers patients undergoing major surgery
- Post-op VTE prophylaxis with LMWH up to 4 weeks in patients undergoing abdominal/pelvic surgery for cancer with high-risk features (immobility, obesity, and VTE history)

Immediate and Long-Term Treatment

- Cancer patients with VTE have higher rates of complications, including 12% annual risk of bleeding complications and up to 21% annual risk of recurrent VTE
- Cancer-associated VTE may be resistant to warfarin and extended therapy with LMWH have shown superiority
- DOACs efficacy and safety in cancer-associated VTE remains uncertain.
 - LMWH showed significant reduction in recurrence whereas DOACs did not
 - LMWH showed a non-significant increase in bleeding risk whereas DOACs showed a non-significant reduction in bleeding risk

CLOT Trial

Multicenter, open-label, randomized study (N=676)

Initial therapy- dalteparin followed by 6 months of either dalteparin or warfarin with target INR 2.5

676 Cancer patients with VTE

dalteparin --- dalteparin

dalteparin --- warfarin

- Results- Symptomatic recurrent DVT/PE including death r/t PE was 27 patients (7%) in dalteparin group and 53 patients (15%) in warfarin group. No difference in major bleeding.
- What is the appropriate treatment strategy in patients with recurrent VTE on anticoagulation?

Immediate and Long-Term Treatment

Recommendations

- Patients with active cancer (known disease or receiving anti-cancer treatment) and VTE be treatment) and VTE be treated with LMWH for at least 6 months
- Patients with incidentally diagnosed VTE be treated similarly to patients with VTE based on symptoms with at least 6 months of LMWH monotherapy, with the exceptions of isolated subsegmental PE where treatment made on case-by-case basis

Appropriate Duration and Preferred Agent

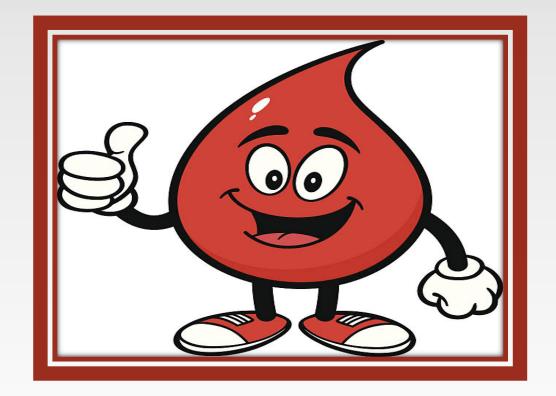
- Optimal duration of anticoagulation has not been assessed beyond 6 months
- Consensus is to continue for at least 6 months and reassess
- Recommendations
 - Anticoagulation with LMWH for a minimum of 6 months after a diagnosis of cancer-associated VTE and should continue beyond if patient has active malignancy or ongoing anti-cancer therapy
 - Patients low-risk for recurrence should be discontinued after 6 months in the absence of active malignancy (cured or complete remission)
 - Patients with high-risk for recurrence should continue with anticoagulation with periodic reevaluation

Strategy in Patient with Recurrent VTE

- Recurrent VTE is not uncommon in malignancies even with patients receiving appropriate anticoagulation, however no randomized trials to provide evidence-based approach
- Empirical approaches have been described
- Inferior vena cava (IVC) filters should only be used temporarily in patients with acute VTE and anticoagulation is contraindicated
 - Prospective randomized study of patients who received filters had shortterm protection from PE, but higher rates of DVT and filter-site thrombosis
 - IVC filters were associated with increased metastases and reduced survival in cancer patients

Strategy in Patient with Recurrent VTE

- Cancer patients with symptomatic recurrent VTE despite therapeutic anticoagulation with an agent other than LMWH; transition to therapeutic LMWH, assuming no contraindications
- Cancer patients with symptomatic recurrent VTE despite optimal anticoagulation with LMWH continue LMWH at a higher dose, starting at an increase of ~25% of the current dose or resuming therapeutic weight-adjusted dose if the patient was at a non-therapeutic dose at the time of the recurrence
- Advise against IVC filters except in the presence of absolute contraindications to pharmacologic anticoagulation and only retrievable filters should be used


Conclusion

- For more than 150 years, clinicians have recognized that cancer patients are at an increased risk for developing VTE events
- VTE is a very prevalent issue in cancer patients affecting quality of life, overall survival and healthcare costs
- Despite an increasing awareness of cancer-associated VTE and the publications of evidence based guidelines, recommendations are not followed sufficiently
- Many factors are involved in determining if and when to hold anticoagulation, how soon before surgery and the timing to resume after
- It is essential, as providers to be proactive and promote the use of evidence-based guidelines similar to those developed by the NCCN, ASCO, and ESMO to improve patient outcomes

References

- Ageno W, Gallus AS, Wittkowsky A, et al. Oral anticoagulant therapy: Antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (9th Edition). Chest. 2012;141:e44S-e88S.
- Ay, C et al. Cancer-associated venous thromboembolism: burden, mechanisms, and management. Thromb Haemost 2017;117(2):219-230.
- Barnes GD, Ageno W, Ansell J, et al. Recommendation on the nomenclature for oral anticoagulants: communication from the SSC of the ISTH. J Throm Haemost. 2015 Jun;13(6):1154-6.
- Bartholomew JR. Update on the management of venous thromboembolism. Cleveland Clinic Journal of medicine. 2017 December; 84(3):39-46.
- Flanga, A, et al. Coagulation and cancer: biological and clinical aspects. J Thromb Haema 2013;11(2):223-233.
- Garcia DA, Baglin TP, Weitz JI, et al. Parenteral anticoagulants, antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. *Chest*. 2012 Feb;141(suppl 2):e24S-43S.
- Hawbaker S. Venous thromboembolism in the cancer population: pathology, risk, and prevention. J Adv Pract Oncol; 2012;3(1):23-33
- Heit, JA; Epidemiology of venous thromboembolism. Nature Review Cardiology. 2015;12(8):464–474.
- Jaffer, AK. An overview of venous thromboembolism: impact, risks, and issues in prophylaxis. *Cleveland Clinic Journal of Medicine* 2008 April;75(3):S3-S6.
- Kearon C, Akl EA, Omelas J, et al. Antithrombotic therapy for VTE disease. CHEST guideline and expert panel report. Chest. 2016 Feb;149(2):315-52.
- Khorana, AA, et al. Guidance for the prevention and treatment of cancer-associated venous thromboembolism. *J Thromb Thrombolysis* 2016;41(1):81-91.
- Lyman, GH. Venous thromboembolism in the patient with cancer: focus on burden of disease and benefits of thromboprophylaxis. *Cancer.* 2011;117(7):1334-1349.
- Lyman, GH, et al., Venous thromboembolism risk in patients with cancer receiving chemotherapy: a real-world analysis. The Oncologist. 2013;18(12):1231-1329.
- Mandala, M, et al. Management of venous thromboembolism (VTE) in cancer patients: ESMO clinical practice guidelines. Ann Oncology 2011;22(6): vi85-vi92.
- Nigel, SK, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J Clinical Oncology. 2020; 38(5): 496-520.
- Nutescu EA, Burnett A, Fanikos J, et al. Pharmacology of anticoagulants used in the treatment of venous thromboembolism. J Thromb Thrombolysis. 2016 Jan;41(1):15-31.
- Schulman s, Ageno W, Konstantinides SV. Venous thromboembolism: past, present and future. *Thromb Haemost.* 2017;117:1219-1229.
- Song, AB, et al. Direct oral anticoagulants for treatment and prevention of venous thromboembolism in cancer patients. Vasc Health Risk Manag. 2019 Jun 21;15:175-186.
- Witt DM, Clark NP, Kaatz S, et al. Guidance for the practical management of warfarin therapy in the treatment of venous thromboembolism. *J Thromb Thrombolysis*. 2016 Jan;41(1):187-205.
- Yan, AR, et al. Risk factors and prediction models for venous thromboembolism in ambulatory patients with lung cancer. Healthcare. 2021 Jun 21;9(6):778.

Thank you!

