Update on ER+ Breast Cancer

Joseph A. Sparano, MD

Ezra Greenspan MD Professor in Clinical Cancer Therapeutics Chief, Division of Hematology and Oncology Icahn School of Medicine at Mount Sinai Deputy Director, Tisch Cancer Institute New York, NY, USA

Mount The Tisch Cancer Institute Sinai San Antonio Breast Cancer Symposium[®], December 6-10, 2022

OVERALL FEMALE BREAST CANCER STATISTICS

FINDING CURES TOGETHER

Ref (2)

This presentation is the intellectual property of the author/presenter. Contact them at Carlos Arteaoa@UTSouthwestern.edu, Angela.DeMichele@pennmedicine.upenn.edu for permission to reprint and/or distribute.

San Antonio Breast Cancer Symposium®, December 6-10, 2022

EARLY-ONSET BREAST CANCER IS ON THE RISE IN U.S. AND WORLDWIDE

AACER American Association for Cancer Research'

FINDING CURES TOGETHER

UNITED STATES

WORLD	DWIDE
-------	-------

	Average Annual Percent Change (AAPC) Estimates					
Age	Year Range	AAPC (%)	Lower 95% C.I.	Upper 95% C.I.	P-Value	Direction
Ages <	2010- 2019	1.0	0.4	1.7	<0.01	↑ Rising
50	2015- 2019	1.9	0.4	3.4	0.01	↑ Rising
Ages	2010- 2019	0.3	-0.0	0.5	0.07	Not Significant
50-64	2015- 2019	0.3	-0.0	0.5	0.07	Not Significant
Ages	2010- 2019	0.5	0.4	0.6	<0.01	↑ Rising
65+	2015- 2019	0.5	0.4	0.6	<0.01	↑ Rising

This presentation is the intellectual property of the author/presenter. Contact them at Carlos. Arteaga@UTSouthwestern.edu, Angela.DeMichele@pennmedicine.upenn.edu for permission to reprint and/or distribute.

San Antonio Breast Cancer Symposium[®], December 6-10, 2022 American Association AMERICAN AMERICAN AMERICAN AMERICAN ASSOCIATION: FDA APPROVAL OF 20 NEW

CLINICAL TRIALS PROCESS & INNOVATION: FDA APPROVAL OF 20 NEW THERAPEUTICS AGAINST BREAST CANCER OVER THE LAST DECADE

FINDING CURES TOGETHER

This presentation is the intellectual property of the author/presenter. Contact them at Carlos. Arteaga@UTSouthwestern.edu, Angela.DeMichele@pennmedicine.upenn.edu for permission to reprint and/or distribute.

Breast Cancer Mortality Trends in the United States According to Estrogen Receptor Status and Age at Diagnosis

Screening

5

- Adjuvant systemic therapy
 - Endocrine therapy
 - Chemotherapy
 - Anti-HER2 therapy

Jatoi et al. J Clin Oncol 2016 (PMID: 17404367)

Driver and Escape Mechanisms in ER-Positive Breast Cancer

Antiestrogen Therapy

Adjuvant Endocrine Therapy in ER-Positive Early Breast Cancer

ER-poor disease

Early Breast Cancer Trialists' Collaborative Group. Lancet 2011:378; 771 (PMID: 21802721)

Complete Estrogen Deprivation in Post and Premenopausal Women Compared with Tamoxifen (SERM)

EBCTCG. Lancet 2015 (PMID: 26211827)

AL

EBCTCG. Lancet Oncology 2022 (PMID: 35123662

Resistance to Endocrine Therapy: Definitions and Molecular Mechanisms

Created from: Cardoso F, et al. Ann Oncol. 2018;29:1634-1657.

EMERALD Phase 3 Study Design

Presence of visceral metastases

^aDocumentation of ER+ tumor with \geq 1% staining by immunohistochemistry; ^bRecruitment from February 2019 to October 2020; ^cProtocol-defined dose reductions permitted; ^dRestaging CT scans every 8 weeks; ^eBlinded Independent Central Review; ^fESR1-mutation status was determined by ctDNA analysis using the Guardant360 assay (Guardant Health, Redwood City, CA).

PFS, progression-free survival; Pts, patients; R, randomized; SOC, standard of care.

Median PFS & PFS Rate at 12 Months: All Patients and *mESR1* Group

All Patients

Only Tumors Harboring *mESR1*

Elacestrant

115

40.8%

(30.1% - 51.4%)

26.8%

(16.2% - 37.4%)

Ν

PFS rate at 6 months

(95% CI)

PFS rate at 12 months

(95% CI)

SOC

113

19.1%

(14.1-26.7%)

8.2%

(1.3% - 15.1%)

	Elacestrant	SOC
Ν	239	238
PFS rate at 6 months (95% CI)	34.3% (27.2%-41.5%)	20.4% (14.1-26.7%)
PFS rate at 12 months (95% CI)	22.3% (15.2%-29.4%)	9.4% (4.0%-14.8%)

Overall Survival (Interim Analysis)

 While no statistically significant differences were noted at the α=0.0001 level in OS, an evident trend favoring elacestrant over SOC was noted in both groups. Final analysis is expected to take place in late 2022/early 2023.

SERENA-2 study overview

Key inclusion/exclusion criteria:

- Recurrence or progression on at least one line of ET
- No prior fulvestrant or oral SERD in ABC
- No more than one line of ET in ABC setting
- No more than one line CT in ABC setting
- Measurable and non-measurable disease

- Primary endpoint: PFS (investigator assessment*)
- · Secondary endpoints: CBR24, ORR, OS, safety
- Translational endpoints: serial ctDNA analysis including ESR1m, serial CTCs analysis

*disease progression assessed by the Investigator and defined using RECIST, version 1.1

ABC: advanced breast cancer; CBR24: clinical benefit rate at 24 weeks; CDK4/6i: CDK4/6 inhibitor; CT: chemotherapy; CTC: circulating tumor cells; ctDNA: circulating tumor DNA; ER: estrogen receptor; ESR1m: mutation in estrogen receptor 1 gene; ET: endocrine therapy; HER2: human epidermal growth factor; PFS: progression-free survival; R: randomization; RECIST: Response Evaluation Criteria for Solid Tumors; SERD: selective estrogen receptor degrader

Primary endpoint: PFS by investigator assessment

In the overall population, camizestrant produces a statistically significant and clinically meaningful improvement in PFS for both 75 and 150 mg camizestrant doses over fulvestrant

*Statistically significant; aHRs adjusted for prior use of CDK4/6i and liver/lung metastases

CDK4/6i: CDK4/6 inhibitor; CI: confidence interval; HR: hazard ratio; PFS: progression-free survival

PFS in patients by detectable ESR1m

ESR1m detectable at baseline

ESR1m not detectable at baseline

In the sub-population of patients with detectable *ESR1* m at baseline, camizestrant at both doses produces a clinically meaningful improvement in PFS over fulvestrant

^aHRs adjusted for prior use of CDK4/6i and liver/lung metastases

CI: confidence interval; CDK4/6i: CDK4/6 inhibitor; ESR1m: mutation in estrogen receptor 1 gene; HR: hazard ratio; PFS: progression-free survival

ARV-471, a PROTAC estrogen receptor (ER) degrader in advanced ER-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer: phase 2 expansion (VERITAC) of a phase 1/2 study

Sara A Hurvitz,¹ <u>Anne F Schott</u>,² Cynthia Ma,³ Erika P Hamilton,⁴ Rita Nanda,⁵ George Zahrah,⁶ Natasha Hunter,⁷ Antoinette R Tan,⁸ Melinda L Telli,⁹ Jesus Anampa Mesias,¹⁰ Rinath Jeselsohn,¹¹ Pamela Munster,¹² Haolan Lu,¹³ Richard Gedrich,¹³ Cecile Mather,¹³ Janaki Parameswaran,¹³ Hyo S Han¹⁴

¹UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA; ²Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI; ³Washington University, St Louis, MO; ⁴Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ⁵University of Chicago Medicine, Chicago, IL; ⁶Norwalk Hospital, Norwalk, CT; ⁷Seattle Cancer Care Alliance, Seattle, WA; ⁸Levine Cancer Institute, Atrium Health, Charlotte, NC; ⁹Stanford University School of Medicine, Stanford, CA; ¹⁰Albert Einstein College of Medicine, Bronx, NY; ¹¹Dana-Farber Cancer Institute, Boston, MA; ¹²University of California San Francisco, San Francisco, CA; ¹³Arvinas Operations, Inc, New Haven, CT; ¹⁴Moffitt Cancer Center, Tampa, FL

Primary Endpoint: Clinical Benefit Rate^a (VERITAC)

	200 mg QD (n=35)	500 mg QD (n=36)	Total (N=71)
CBR, % (95% CI)	37.1 (21.5–55.1)	38.9 (23.1–56.5)	38.0 (26.8–50.3)
Patients with mutant <i>ESR1</i>	(n=19)	(n=22)	(n=41)
CBR, % (95% CI)	47.4 (24.4–71.1)	54.5 (32.2–75.6)	51.2 (35.1–67.1)

Progression-Free Survival^a (VERITAC)

^aLimited follow-up in 500-mg QD cohort led to ≥50% of patients censored for PFS (curve not shown) ESR1=estrogen receptor 1 gene; mPFS=median progression-free survival; PFS=progression-free survival; QD=once daily

ER Degradation^a With 200 mg QD ARV-471 (Phase 1/VERITAC)

- Median ER degradation was 69% (range: 28%–95%)
- Mean ER degradation was 71%

^aER immunoreactivity analyzed by QIF using the AQUA method, and ER positivity threshold derived by examining AQUA scores and visually inspecting all samples in the dataset to determine a cut point for ER positivity; *ESR1* mutation status determined from tumor biopsy (n=1) or circulating tumor DNA (n=8) AQUA=automated quantitative analysis; ER=estrogen receptor; *ESR1*=estrogen receptor 1 gene; QD=once daily; QIF=quantitative immunofluorescence

Key Druggable Pathways and/or Targets in Breast Cancer

Clinical Endpoints in Metastatic Breast Caner	Objective Response	Progression-Free Survival	e Overal Surviva	Agents with A OS Benefit	Other Agents	
PATHWAY – pathway signaling disruption mediates anti-tumor effects						
✓ ER-mediated signaling	X	Х	X	Tamoxifen Aromatase inhibitors	SERDs	
 ✓ CDK4/6-mediated signaling 	X	Х	X	Ribociclib Abemaciclib	Palbociclib	
✓ PI3K/AKT/mTOR signaling	X	Х			Alpelisib Everolimus	
✓ Immune checkpoints	X	Х	Х	Pembrolizumab		
✓ DNA repair	X	Х			Olaparib Talazoparib	
 ✓ Few/rare alterations ✓ NTRK fusions (secretory) ✓ HER2 (lobular) ✓ dMMR/MSI-H 	X X X	X X X			Entrectinib Neratinib Pembrolizumab	
TARGET - for anti-drug conjugates & delivery of toxic payloads						
✓ HER2	Х	X	Х	Trastuzumab deruxtecan		
✓ TROP2	X	Х	Х	Sacitizumab govitecan		

Biomarkers for Systemic Therapy in Metastatic Breast Cancer: ASCO Guideline Update

Test	Type of Recommendation	Quality of Evidence	Strength of Recommendation
Biomarker tests recommended by the ASCO expert panel			
PIK3CA	Evidence-based	High	Strong
Germline BRCA1 and BRCA2	Evidence-based	High	Strong
PD-L1	Evidence-based	Intermediate	Strong
dMMR/MSI-H	Informal consensus-based	Low	Moderate
ТМВ	Informal consensus-based	Low	Moderate
NTRK fusions	Informal consensus-based	Low	Moderate
Biomarker tests not recommended by the ASCO expert panel			
ESR1	Evidence-based	Insufficient	Moderate
DALDO	Evidence based	Low	Madarata
HRD	Informal consensus-based	Low	Moderate
TROP2 expression	Informal consensus-based	Low	Moderate
ctDNA	Informal consensus-based	Low	Moderate
CTCs	Informal consensus-based	Low	Moderate

Antiestrogen Therapy and CDK 4/6 Inhibitors

Antiestrogen Therapy and CDK 4/6 Inhibitors

Antiestrogen Therapy and CDK 4/6 Inhibitors

Summary of Characteristics and Adverse Effects of CDK4/6 Inhibitors

	Palbociclib	Ribociclib	Abemaciclib
IC50 In Vitro*	CDK4: 9-11 μM CDK6: 15 μM	CDK4: 11 μM CDK6: 39 μM	CDK4: 2 μM CDK6: 5 μM
Dose/Schedule	125 mg QD x 21/28 days	125 mg QD600 mg QDx 21/28 daysx 21/28 days	
Neutropenia	+++	+++	++
Nausea	+	++	+
Diarrhea	+	+	+++
Transaminase elevation	+	++	+
Creatinine elevation			+
QT prolongation		+	
Tamoxifen interaction	No	Yes	No
Dose modification Reduction Interruption Discontinuation	36% vs 1% 70% vs. 42% 10% vs. 6% (Paloma2)	54% vs. 7% 77% vs. 41% 8% vs. 2% (Monaleesa2)	43% vs. 6% 56% vs. 19% 20% vs. 3% (Monarch3)

*DeMichele A, et al. Clin Cancer Res. 2015 (PMID: 25501126)

A.I.s +/- CDK 4/6 Inhibitors as First-Line Endocrine Therapy in Postmenopausal Women (investigator assessment of response/progression)

Fulvestrant +/- CDK 4/6 Inhibitors as First or Second-Line Endocrine Therapy

Slamon et al Ann Oncol 2021 (PMID: 34102253)

Sledge et al. JCO 2017 (PMID: 28580882) Sledge et al. JAMA Oncol 2020 (PMID: 31563959)

Endocrine Therapy +/- CKD4/6 Inhibitors in Premenopausal Women Receiving OFS

Loibl et al. Oncologist 2017 (PMID: 28652278); Neven et al. Breast Cancer Res 2021 (PMID: 34425869); Im et al. NEJM 2019 (PMID: 31166679)

monarchE Study Design (NCT03155997)

official best of SABCS

IDFS Benefit in ITT Persists Beyond Completion of Abemaciclib

33.6% reduction in the risk of developing an IDFS event with an increase in absolute benefit in IDFS 4-year rates (6.4%) compared to 2-and 3-year IDFS rates (2.8% and 4.8% respectively)

DRFS Benefit in ITT Persists Beyond Completion of Abemaciclib

34.1% reduction in the risk of developing a DRFS event with an increase in absolute benefit in DRFS 4-year rates (5.9%), compared to 2-and 3-year rates (2.5% and 4.1%, respectively)

Fewer Patients with Metastatic Disease in the Abemaciclib arm

Survival Status

- Alive with metastatic disease
- Deaths due to breast cancer
- Deaths not related to breast cancer

Ki-67 is Prognostic, but Not Predictive of Abemaciclib Benefit

Within Cohort 1, similar abemaciclib treatment effects were observed regardless of Ki-67 index

Safety Findings Consistent with Previous Analyses

Abemaciclib + ET

Median duration of abemaciclib: 23.7 months.

Other events of interest, any grade	Abemaciclib + ET N = 2791, %	ET Alone N = 2800, %
VTE	2.5	0.7
PE	1.0	0.1
ILD	3.3	1.3

Abemaciclib dose adjustments due to AEs

dose holds: 61.7%

dose reductions: 43.6%

discontinuations 18.5% [8.9% after dose reduction]

All patients who received at least one dose of study treatment were included in the safety population

The safety profile of abemaciclib is considered manageable and acceptable for this high-risk population

ET alone

PI3K/AKT/M-TOR Pathway Most commonly dysregulated pathway in breast cancer

Biomarkers for Systemic Therapy in Metastatic Breast Cancer: ASCO Guideline Update

Test	Type of Recommendation	Quality of Evidence	Strength of Recommendation
Biomarker tests recommended by the ASCO expert panel			
PIK3CA	Evidence-based	High	Strong
Germline BRCA1 and BRCA2	Evidence-based	High	Strong
PD-L1	Evidence-based	Intermediate	Strong
dMMR/MSI-H	Informal consensus-based	Low	Moderate
ТМВ	Informal consensus-based	Low	Moderate
NTRK fusions	Informal consensus-based	Low	Moderate
Biomarker tests not recommended by the ASCO expert panel			
ESR1	Evidence-based	Insufficient	Moderate
DAL D2	Evidence based	Low	Moderate
HRD	Informal consensus-based	Low	Moderate
TROP2 expression	Informal consensus-based	Low	Moderate
ctDNA	Informal consensus-based	Low	Moderate
CTCs	Informal consensus-based	Low	Moderate

Randomized Trials of Endocrine Therapy +/- Everolimus in ER-Positive, HER2-Negative Metastatic Breast Cancer

Trial	Design	No.	Median PFS (mo.)	Median OS (mo.)
Bolero-2	Exemestane <u>+</u> Eve/Placebo	724 Phase III	7.8 vs. 3.2 HR 0.45, p<0.0001	31.0 vs. 26.6 HR 0.89, p=0.1426
TAMRAD	Tamoxifen <u>+</u> Everolimus	111 Phase II	8.6 vs. 4.5 HR 0.54 p=0.002	NR vs. 32.9 HR 0.45 p=0.007
PreCOG0102	Fulvestrant <u>+</u> Eve/Placebo	131 Phase II	10.4 vs. 5.1 HR 0.6, p=0.02	28.3 vs. 31.4 HR 1.13, p=0.37
MANTA	Fulvestrant <u>+</u> Eve/Placebo	130 Phase II	12.3 vs. 5.4 HR 0.61, p=0.02	Immature HR 0.56 p= 0.09

Baselga et al. NEJM 2012 (PMID: 22149876);Bachelot et al. J Clin Oncol 2012 (PMID: 22565002) Piccart et al. Ann Onc 2014 (PMID: 25231953); Kornblum et al. J Clin Oncol 2018 (PMID: 29664714); Schmid et al. JAMA Oncol 2019 (PMID: 31465093)

Gnant et al. JNCI 2013 (PMID: 23425564)

Everolimus: PIK3CA Mutation or Pathway Activation Status Not Predictive of Everolimus Benefit in BOLERO2

SOLAR1: Efficacy of Alpelisib by Tumor & ctDNA PIK3CA Mutation Status: Progression-Free Survival (PFS)

Juric et al. SABCS 2018 (GS3-08)

Number of patients still at risk

 Alpelisib + ful
 92
 87
 80
 77
 68
 61
 54
 52
 44
 43
 41
 38
 34
 31
 29
 24
 23
 19
 18
 16
 9
 8
 6
 2
 2
 1
 1
 0

 Placebo + ful
 94
 90
 58
 53
 42
 41
 37
 34
 30
 30
 26
 22
 20
 19
 18
 14
 11
 10
 9
 6
 6
 5
 2
 2
 1
 1
 1
 0

	ALP + F	UL	PBO + FU		
	Event n/N (%)	Median PFS	Event n/N (%)	Median PFS	HR
Patients with PIK3CA mutation: tissue	103/169 (60.9)	11.0	129/172 (75.0)	5.7	0.65
Patients with PIK3CA mutation: plasma	57/92 (62.0)	10.9	75/94 (79.8)	3.7	0.55
Patients <u>without</u> PIK3CA mutation: tissue	49/115 (42.6)	7.4	57/116 (49.1)	5.6	0.85
Patients <u>without</u> PIK3CA mutation: plasma	92/181 (50.8)	8.8	103/182 (56.6)	7.3	0.80

Capivasertib and fulvestrant for patients with aromatase inhibitor-resistant hormone receptorpositive/human epidermal growth factor receptor 2-negative advanced breast cancer: Results from the Phase III CAPItello-291 trial

Nicholas C Turner,¹ Mafalda Oliveira,² Sacha Howell,³ Florence Dalenc,⁴ Javier Cortes,⁵ Henry Gomez,⁶ Xichun Hu,⁷ Komal Jhaveri,⁸ Sibylle Loibl,⁹ Serafin Morales Murillo,¹⁰ Zbigniew Nowecki,¹¹ Meena Okera,¹² Yeon Hee Park,¹³ Masakazu Toi,¹⁴ Lyudmila Zhukova,¹⁵ Chris Yan,¹⁶ Gaia Schiavon,¹⁶ Andrew Foxley,¹⁶ and Hope S Rugo¹⁷

¹Institute of Cancer Research, Royal Marsden Hospital, London, UK; ²Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; ³The Christie NHS Foundation Trust, Manchester, UK; ⁴Institut Claudius Regaud, l'Institut Universitaire du Cancer de Toulouse Oncopole – IUCT Oncopole, Toulouse, France; ⁵International Breast Cancer Center (IBCC), Barcelona, Spain; ⁶Instituto Nacional de Enfermedades Neoplásicas (INEN), Departamento de Oncología Médica, Lima, Peru; ⁷Shanghai Cancer Center, Fudan University, Shanghai, China; ⁸Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁹GBG Forschungs GmbH, Neu-Isenburg, Germany; ¹⁰Institut de Recerca Biomèdica, Barcelona, Spain; ¹¹The Maria Skłodowska Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; ¹²ICON Cancer Centre, Adelaide, Australia; ¹³Sungkyunkwan University School of Medicine, Samsung Medical Centre, Seoul, Republic of Korea; ¹⁴Kyoto University Hospital, Kyoto, Japan; ¹⁵Loginov Moscow Clinical Scientific Center, Moscow, Russia; ¹⁶Oncology R&D, AstraZeneca, Cambridge, UK; ¹⁷University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA

Dual-primary endpoint: Investigator-assessed PFS in the overall population

+ indicates a censored observation. HR was estimated using the Cox proportional hazard model stratified by the presence of liver metastases, prior use of CDK4/6 inhibitor, and geographic region.

Investigator-assessed PFS by subgroup: Overall population

		Number of patients				HR (95%CI)
All patients		708				0.60 (0.51, 0.71)
٨٥٥	<65 years	491		·		0.65 (0.53, 0.79)
чуе	≥65 years	217		► ●		0.65 (0.47, 0.90)
	Asian	189		⊢		0.62 (0.44, 0.86)
Race	White	407				0.65 (0.52, 0.80)
	Other	112				0.63 (0.42, 0.96)
	1	395		· •	-	0.60 (0.48, 0.75)
Region	2	136				0.77 (0.51, 1.16)
	3	177		• •	I	0.60 (0.42, 0.85)
Menopausal status	Pre/peri	154			+	0.86 (0.60, 1.20)
females only)	Post	547		·	L	0.59 (0.48, 0.71)
iver meteotooo	Yes	306			— •	0.61 (0.48, 0.78)
	No	402		·		0.62 (0.49, 0.79)
liagoral matagtaga	Yes	478		·•		0.69 (0.56, 0.84)
/ISCEI AI MELASIASES	No	230		••	-	0.54 (0.39, 0.74)
- 	Primary	262		• 		0.66 (0.50, 0.86)
	Secondary	446		·		0.64 (0.51, 0.79)
Prior use of CDK4/6	Yes	496		·	-	0.62 (0.51, 0.75)
nhibitors	No	212			I	0.65 (0.47, 0.91)
Prior chamatharapy for APC	Yes	129		+		0.61 (0.41, 0.91)
The chemotherapy for ABC	No	579				0.65 (0.54, 0.78)
	Australia and Israel Decision		0.3 Favors capivasertib + fu	0.5 ulvestrant	1.0 Hazard ratio (95%	CI) — Favors placebo + fulves

AKT pathway alterations

Alteration; n (%)	Capivasertib + fulvestrant (N=355)	Placebo + fulvestrant (N=353)
Any AKT pathway alteration	155 (43.7)	134 (38.0)
Any PIK3CA PIK3CA only PIK3CA and AKT1 PIK3CA and PTEN	116 (32.7) 110 (31.0) 2 (0.6) 4 (1.1)	103 (29.2) 92 (26.1) 2 (0.6) 9 (2.5)
AKT1 only	18 (5.1)	15 (4.2)
PTEN only	21 (5.9)	16 (4.5)
Non-altered	200 (56.3)	219 (62.0)
AKT pathway alteration not detected	142 (40.0)	171 (48.4)
Unknown	58 (16.3)	48 (13.6)
No sample available	10 (2.8)	4 (1.1)
Preanalytical failure	39 (11.0)	34 (9.6)
Post analytical failure	9 (2.5)	10 (2.8)

AKT pathway alteration status was determined centrally using next-generation sequencing in tumor tissue

Dual-primary endpoint: Investigator-assessed PFS in the AKT pathway-altered population

+ indicates a censored observation. HR was estimated using the Cox proportional hazard model stratified by the presence of liver metastases and prior use of CDK4/6 inhibitor.

Adverse events (>10% of patients) – overall population

fulvestrant group (grade ≥3 in 0.3%). [†]All events shown were Grade 3 except one case of Grade 4 hyperglycemia in the capivasertib + fulvestrant arm.

Palbociclib Ribociclib Abemaciclib **Alpelisib Everolimus** Class CDK4/6 inhibitor CDK4/6 inhibitor CDK4/6 inhibitor PIK3CA inhibitor mTOR inhibitor 125 mg PO QD Dose 600 mg 150 mg BID 300 mg QD 10 mg QD D1-21/28 QD D1-21/28 Continuous continuous Continuous CYP3A4 Substrate Major Major Major Minor Major Setting 1st Line 1st Line 1s Line 2nd l ine 2nd Line 2nd Line 2nd Line 2nd Line Endocrine Rx Al or fulvestrant Al or fulvestrant Al or fulvestrant **Fulvestrant** Exemestane or fulvestrant PFS Yes Yes Yes Yes Yes OS No – Overall Yes Yes No No **Yes-ET Sensitive** Dose reduce (or 36 (10%) 54% (8%) 43% (20%) 64% (25%) ?? (19%) Paloma2 Monalessa2 Monarch3 Solar1 Bolero₂ stopped) Most common toxicity Neutropenia Neutropenia Diarrhea DM, Rash, Stomatitis, Rash Diarrhea

\$14.852

\$19,622

\$18,846

Pathway Directed Oral Targeted Agents for ER-Positive, HER2-Negative Metastatic Breast Cancer

Potent CYP3A4 inhibitors: clarithromycin, erythromycin, diltiazem, itraconazole, ketoconazole, ritonavir, verapamil, goldenseal and grapefruit.

\$15.891

Potent CYP3A4 inducers: phenobarbital, phenytoin, rifampicin, St. John's Wort and glucocorticoids.

\$14,939

*Up-to-Date – accessed 11/1/20 (based on 28-day course of therapy)

Cost (28 days)*

Target Directed Therapy - Antibody Drug Conjugates

Target Antigen: HER2 (trastuzumab vehicle) mAb isotype: lgG1 Linker type: cleavable Payload (class): Dxd (Camptothecin) Payload action: Topoisomerase-1 inhibitor **DAR:** 8

2

= Bystander killing effect

Chau et al. Lancet 2019 (PMID: 31478503) Corti et al. Cancers 2021 (PMID: 34207890)

moiety

Destiny Breast-04: TDXd vs. TPC as Second–Line Therapy for HER2-Low (1-2+ IHC, FISH-Neg) MBC

TROPICS-02: Phase III Trial Sacituzumab Govitecan vs. TPC in ER+ MBC

- Visceral metastases (ves/no)
- Endocrine therapy in metastatic setting ≥ 6 months (yes/no)
- Prior lines of chemotherapies (2 vs 3/4)

PFS & OS in the ITT Population

PFS		
BICR analysis	SG (n=272)	TPC (n=271)
Median PFS, mo (95% Cl)	5.5 (4.2-7.0)	4.0 (3.1-4.4)
Stratified HR (95% CI)	0.66 (0.53-0.83)	
Stratified Log Rank P value	0.0003	

2 (190) 0 (191) TPC 271 (0) 246 (16) 196 (64) 164 (95) 122 (137) 92 (163) 70 (174) 49 (183) 23 (193) 13 (196) 5 (198) 1 (199) 0 (199

OS²

SG demonstrated a statistically significant improvement in PFS and OS vs TPC

Rugo et al. ESMO 2022 (LBA76)

Antibody Drug Conjugates for Metastatic Breast Cancer

	Trastuzumab deruxtecan	Sacituzumab govitecan
Target	HER2	Trop2
Subtype	HER2-Pos (3+ IHC, FISH+) HER2-Low (1-2+ IHC, FISH-Neg)	TNBC ER-Pos, HER2-Neg
Dose	5.4 mg/kg q21d	10 mg/kg IV D1,8 q21d
Payload	SN-38 Topo I inhibitor	Govitecan Topo I inhibitor
Payload:Ab ratio	8	7.6
Metabolism	UGT1A1 Substrate	UGT1A1 Substrate
Setting	2 nd -3 rd line	2 nd -3 rd line
Improved PFS	HER2-Pos: Yes (vs. T-DM1) HER2-Low: Yes (vs. TPC)	TNBC: Yes (vs. TPC) ER-Pos, HE2-Neg: Yes (vs. TPC)
Improved OS	HER2-Pos: Yes (vs. T-DM1) HER2-Low: Yes (vs. TPC)	TNBC: Yes (vs. TPC) ER-Pos, HE2-Neg: Yes (vs. TPC)
Most common toxicity	Neutropenia, nausea	Neutropenia, diarrhea, nausea/vomiting
Cost* (per 21 day cycle)	\$11,020	\$19,320

Update on ER+ Breast Cancer

- Anti-estrogen therapy is a foundational component of therapy
 - Potentially curative when used as an "adjuvant" to local therapy
 - Prolongs survival in ER+ MBC
 - Current options includes SERMs (tamoxifen), SERDs (fulvestrant) and A.I.s
- CDK4/6 inhibitors are now standard component of first/second-line therapy
 - Improves OS, PFS, ORR in MBC
 - Improves IDFS/DRFS in adjuvant setting (impact on OS currently unknown)
- Targeting PIK3CA/AKT/M-TOR pathway a second-line therapeutic optioin
 - PIK3CA mutant (alpelisib) or non-mutant (everolimus)
 - Capivasertib may be a new options for PIK3CA pathway altered disease
- Novel oral SERDs (eg, elecestrant, others)
 - Modest efficacy in ESR1 mutant, endocrine therapy resistant MBC
- Antibody-drug conjugates
 - TDXd improves ORR, PFS, and OS in HER2-low disease
 - SC also has activity in heavily pretreated patient population