# De Novo AML

#### Rami Komrokji, MD

Senior Member and Professor of Oncologic Sciences Section Head-Leukemia and MDS Vice Chair-Malignant Hematology Department Moffitt Cancer Center

# Acute Myeloid Leukemia





. American Society of Clinical Oncology. http://www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/statistics. Accessed July 23, 2019

# AML is characterized by genetic heterogeneity

- The complexity of each case is illustrated by the presence of multiple leukemic blast clones harboring varying genetic and epigenetic aberrations<sup>1-3</sup>
- A study of 1540 patients found<sup>2</sup>:
  - 5234 driver mutations across 76 genes or genomic regions
  - 86% of patients have *at least* 2 mutations
- Clonal evolution involves the acquisition and loss of specific mutations over the course of disease<sup>4,5</sup>



Adapted from Patel et al, 2012.

References: 1. Riether C, et al. Cell Death Differ. 2015;22:187-198. 2. Papaemmanuil E, et al. N Engl J Med. 2016;374(23):2209-2221. 3. Watts J, et al. F1000Research. 2018;7:(F1000 Faculty Rev):1196. 4. Ding L, et al. Nature. 2012;481(7382):506-510. 5. Paguirigan AL, et al. Sci Transl Med. 2015;7(281):1-18. 6. Patel JP, et al. N Engl J Med. 2012;366(12):1079-1089.

# AML classification

#### 2016 WHO AML Subcategories<sup>1</sup>

#### AML with recurrent genetic abnormalities

11 different subcategories listed

#### AML with myelodysplasia-related changes (AML-MRC)

#### Therapy-related myeloid neoplasms (e.g., t-AML)

#### AML, not otherwise specified

9 different subcategories listed

#### Myeloid sarcoma

#### Myeloid proliferations related to Down syndrome

2 different subcategories listed

- Primary " de novo AML"
- Secondary AML
  - AML with MDS related changes
  - Therapy related AML

#### The WHO defines AML-MRC as1:

- · 20% or more blasts in the peripheral blood or bone marrow and any of the following:
  - Previously documented MDS or MDS/MPN
  - Morphologic detection of multilineage dysplasia (≥50% dysplastic cells in ≥ 2 cell lines, excluding cases when a mutation of NPM1 or biallelic mutation of CEBPA is present)
  - Myelodysplasia-related cytogenetic abnormalities

| Complex karyo               | otype (3 or more unbalanced or balanced abnormalities):                                                                                                                                  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unbalanced<br>abnormalities | -7/del(7q), del(5q)/t(5q), i(17q)/t(17p), -13/del(13q), del(11q), del(12p)/t(12p), idic(X)(q13)                                                                                          |
| Balanced<br>abnormalities   | t(11;16)(q23.3;p13.3), t(3:21)(q26.2;q22.1), t(1;3)(p36.3;q21.2), t(2;11)(p21;q23.3), t(5;12)(q32;p13.2), t(5;7)(q32;q11.2), t(5;17)(q32;p13.2), t(5;10)(q32;q21.2), t(3;5)(q25.3;q35.1) |

MPN=myeloproliferative neoplasm.

Reference: 1. Arber DA, et al. Blood. 2016;127(20):2391-2405.

# AML ontogeny can be mutationally defined

|                   |                 | Second | dary AML   | De No     | vo AML |         |
|-------------------|-----------------|--------|------------|-----------|--------|---------|
|                   |                 | м      | utated cas | ses, n (% | .)     | P value |
| SRSF2 -           | <b>→→→→</b> ↓ E | 19     | (20)       | 1         | (1)    | < 0.000 |
| ZRSR2             |                 | 7      | (8)        | 0         | (0)    | 0.000   |
| SF3B1 -           | ► <b>→ →</b>    | 10     | (11)       | 1         | (1)    | 0.000   |
| ASXL1 -           | <b>→→→</b> :    | 30     | (32)       | 5         | (3)    | < 0.000 |
| BCOR -            | H               | 7      | (8)        | 2         | (2)    | 0.03    |
| EZH2 -            | <b>→</b> →→     | 8      | (9)        | 3         | (2)    | 0.00    |
| U2AF1 -           | <b>H</b>        | 15     | (16)       | 8         | (4)    | 0.00    |
| STAG2 -           | i               | 13     | (14)       | 3         | (2)    | 0.0     |
| NF1 -             |                 | 6      | (6)        | 7         | (4)    | 0.000   |
| RUNX1 -           | H+++            | 29     | (31)       | 19        | (11)   | < 0.000 |
| CBL -             |                 | 5      | (5)        | 3         | (2)    | 0.1     |
| NRAS -            |                 | 21     | (23)       | 15        | (8)    | 0.00    |
| TET2 -            |                 | 19     | (20)       | 17        | (9)    | 0.01    |
| GATA2 -           | F               | 2      | (2)        | 2         | (1)    | 0.      |
| TP53 -            | <b>→</b>        | 14     | (15)       | 16        | (9)    | 0.1     |
| KRAS -            | <b>—</b>        | 7      | (8)        | 8         | (4)    | 0.      |
| PTPN11 -          | <b>—</b>        | 5      | (5)        | 9         | (5)    |         |
| IDH1 -            | <b>H</b>        | 10     | (11)       | 20        | (11)   | 22      |
| IDH2 -            | H-+             | 10     | (11)       | 19        | (11)   |         |
| SMC1A -           |                 | 3      | (3)        | 7         | (4)    | 13      |
| RAD21 -           | <b></b>         | 2      | (2)        | 5         | (3)    |         |
| FLT3 -            | <b>H</b>        | 18     | (19)       | 50        | (28)   | 0.1     |
| DNMT3A -          | H+++            | 18     | (19)       | 51        | (28)   | 0.1     |
| SMC3 -            |                 | 2      | (2)        | 7         | (4)    | 0.      |
| CEBPA -           | F               | 3      | (3)        | 13        | (7)    | 0.2     |
| NPM1 -            |                 | 5      | (5)        | 54        | (30)   | < 0.000 |
| 1g23-rearranged - |                 | 0      | (0)        | 11        | (6)    | 0.00    |
|                   |                 |        | (0)        | 10        | (0)    | < 0.000 |

Lindsley, et al. Blood 2015

# Differential outcomes based on mutational profile



Lindsley, et al. Blood 2015

# AML Risk Stratification by Cytogenetics and Molecular Abnormalities (ELN Recommendations)

| Risk Status  | Cytogenetics                                                                                                                                                                                                                                                                  | Molecular Abnormalities                                                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Favorable    | t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i><br>inv(16)(p13.1q22) or t(16;16)(p13.1;q22);<br><i>CBFB-MYH11</i>                                                                                                                                                                    | Mutated <i>NPM1</i> without <i>FLT3</i> -ITD or<br>with <i>FLT3</i> -ITD <sup>Iow</sup> or<br>Biallelic mutated <i>CEBPA</i>                              |
| Intermediate | t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i><br>Cytogenetic abnormalities not classified as<br>favorable or adverse                                                                                                                                                               | Mutated NPM1 and FLT3-ITD <sup>high</sup><br>Wild-type NPM1 without FLT3-ITD<br>or with FLT3-ITD <sup>low</sup> (without<br>adverse-risk genetic lesions) |
| Adverse      | t(6;9)(p23;q34.1); <i>DEK-NUP214</i><br>t(v;11q23.3); <i>KMT2A</i> rearranged<br>t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i><br>inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2);<br><i>GATA2,MECOM(EVI1)</i><br>-5 or del(5q); -7; -17/abn(17p)<br>Complex karyotype, monosomal karyotype | Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD <sup>high</sup><br>Mutated <i>RUNX1</i><br>Mutated <i>ASXL1</i><br>Mutated <i>TP53</i>                         |

Döhner H, et al. Blood. 2017;129:424-447.

## Upfront Treatment of De Novo AML in patients eligible for Intensive chemotherapy

#### Who is eligible?

- 1. Non P53 MT AML
- 2. Absence of comorbidities
- 3. Not frail

| Good risk AML                  | FLt-3 MT AML                         | Intermediate/poor risk                         |
|--------------------------------|--------------------------------------|------------------------------------------------|
| Induction: 3+7+GO              | Induction: 3+7 + Midostaurin         | Induction: 3+7                                 |
| Consolidation: HiDAC/IDAC+/-GO | Consolidation : Allo-SCT             | Consolidation: allo SCT                        |
|                                | Maintenance post allo SCT: Sorafenib | Maintenance: oral azacitidine if no transplant |

## Upfront Treatment of De Novo AML in patients eligible for Intensive chemotherapy

#### Who is eligible?

- 1. Non P53 MT AML
- 2. Absence of comorbidities
- 3. Not frail

| Good risk AML                  | FLt-3 MT AML                         | Intermediate/poor risk                         |
|--------------------------------|--------------------------------------|------------------------------------------------|
| Induction: 3+7+GO              | Induction: 3+7 + Midostaurin         | Induction: 3+7                                 |
| Consolidation: HiDAC/IDAC+/-GO | Consolidation : Allo-SCT             | Consolidation: allo SCT                        |
|                                | Maintenance post allo SCT: Sorafenib | Maintenance: oral azacitidine if no transplant |

#### Gemtuzumab Ozogamicin: MOA

- Monoclonal anti-CD33 antibody linked to calicheamicin-y1<sup>1</sup>
- Internalized and cleaved in lysosomes to release free calicheamicin moiety<sup>2</sup>
- Calicheamicin moiety enters nucleus and interacts with DNA causing double-strand breaks initiating apoptosis<sup>1-3</sup>



1. Zein N, et al. *Science*. 1988;240:1198-1201; 2. Naito K, et al. *Leukemia*. 2000; 14:1436-1443; 3. Elmroth K, et al. *DNA Repair (Amst)*. 2003;2:363-374.

## Gemtuzumab Ozogamicin in AML: Phase III Results

| Study <sup>1</sup>                  | Ν    | Treatment                                                        | <b>Results of GO vs Comparator</b>                                                                                       |
|-------------------------------------|------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| MRC/NCRI<br>AML15 <sup>2</sup>      | 1113 | GO (3 mg/m²) + either ADE, DA,<br>or FLAG-IDA                    | <ul> <li>Improved 5-yr OS for favorable-risk group</li> <li>No difference in ORR, TRM, relapse, survival</li> </ul>      |
| ALFA 0701 <sup>3</sup>              | 280  | GO (3 mg/m <sup>2</sup> ) + DA                                   | <ul><li>Improved 2-yr EFS, RFS, OS</li><li>No difference in ORR or mortality</li></ul>                                   |
| GOELAMS AML<br>2006 IR <sup>4</sup> | 238  | GO (6 mg/m <sup>2</sup> ) + DA induction<br>and MA consolidation | <ul> <li>Improved EFS in pts who did not have allogeneic HCT</li> <li>No difference in OS, ORR, TRM, 3-yr EFS</li> </ul> |
| MRC/NCRI AML<br>16 <sup>5</sup>     | 1115 | GO (3 mg/m²) + either DA or<br>DCLo                              | <ul> <li>Reduced 3-yr relapse risk, and superior DFS and OS</li> <li>No difference in TRM</li> </ul>                     |
| SWOG S0106 <sup>6</sup>             | 595  | GO (6 mg/m²) + DA                                                | <ul><li>Increased TRM</li><li>No difference in ORR, DFS, or OS</li></ul>                                                 |

1. Cowan AJ, et al. Front Biosci (Landmark Ed.) 2013;18:1311-1334; 2. Burnett AK, et al.

J Clin Oncol. 2011;29:369-377; 3. Castaigne S, et al. Lancet. 2012;379:1508-1516; 4. Delaunay J, et al. ASH 2011. Abstract 79; 5.

Burnett AK, et al. J Clin Oncol. 2012;30:3924-3931; 6. Petersdorf S, et al. Blood. 2013;121:4854-4860.

#### Addition of Gemtuzumab Ozogamicin to Induction Therapy: Meta-analysis of 5 Randomized Trials



Hills RK, et al. Lancet Oncol. 2014;15:986-996.

Fludarabine, Cytarabine, G-CSF and Gemtuzumab Ozogamicin (FLAG-GO) Regimen Results in Better Molecular Response and Relapse-Free Survival in Core Binding Factor Acute Myeloid Leukemia Than FLAG and Idarubicin (FLAG-Ida)



Gautam M. Borthakur, Blood, 2019,

## Upfront Treatment of De Novo AML in patients eligible for Intensive chemotherapy

#### Who is eligible?

- 1. Non P53 MT AML
- 2. Absence of comorbidities
- 3. Not frail

| Good risk AML                  | FLt-3 MT AML                         | Intermediate/poor risk                         |
|--------------------------------|--------------------------------------|------------------------------------------------|
| Induction: 3+7+GO              | Induction: 3+7 + Midostaurin         | Induction: 3+7                                 |
| Consolidation: HiDAC/IDAC+/-GO | Consolidation : Allo-SCT             | Consolidation: allo SCT                        |
|                                | Maintenance post allo SCT: Sorafenib | Maintenance: oral azacitidine if no transplant |







#### Primary Endpoint: Overall Survival

not censored for transplantation

<sup>a</sup> Documented AML (no APL).

<sup>b</sup> Hydroxyurea therapy allowed ≤5 days prior to start of study treatment.

° Patients eligible for HSCT therapy no longer receive the study drug following the HSCT.

#### **RATIFY: Patient Characteristics**

| Table 1. Baseline Characteristics of the Patients.                     |                         |                                 |                             |             |  |
|------------------------------------------------------------------------|-------------------------|---------------------------------|-----------------------------|-------------|--|
| Characteristic                                                         | All Patients<br>(N=717) | Midostaurin<br>Group<br>(N=360) | Placebo<br>Group<br>(N=357) | P<br>Value* |  |
| Age at trial entry — yr                                                |                         |                                 |                             | 0.22        |  |
| Median                                                                 | 47.9                    | 47.1                            | 48.6                        |             |  |
| Range                                                                  | 18.0-60.9               | 19.0-59.8                       | 18.0-60.9                   |             |  |
| Female sex — no. (%)                                                   | 398 (55.5)              | 186 (51.7)                      | 212 (59.4)                  | 0.04        |  |
| Race — no./total no. (%)†                                              |                         |                                 |                             | 0.74        |  |
| White                                                                  | 275/309 (89.0)          | 147/165 (89.1)                  | 128/144 (88.9)              |             |  |
| Other                                                                  | 34/309 (11.0)           | 18/165 (10.9)                   | 16/144 (11.1)               |             |  |
| Subtype of <i>FLT3</i> mutation — no. (%)‡                             |                         |                                 |                             | 1.00        |  |
| ТКD                                                                    | 162 (22.6)              | 81 (22.5)                       | 81 (22.7)                   |             |  |
| ITD with low allelic ratio                                             | 341 (47.6)              | 171 (47.5)                      | 170 (47.6)                  |             |  |
| ITD with high allelic ratio                                            | 214 (29.8)              | 108 (30.0)                      | 106 (29.7)                  |             |  |
| Modified European LeukemiaNet classifica-<br>tion — no./total no. (%)∬ |                         |                                 |                             | 0.15        |  |
| Favorable                                                              | 29/547 (5.3)            | 16/269 (5.9)                    | 13/278 (4.7)                |             |  |
| Normal                                                                 | 375/547 (68.6)          | 172/269 (63.9)                  | 203/278 (73.0)              |             |  |
| Intermediate II                                                        | 104/547 (19.0)          | 59/269 (21.9)                   | 45/278 (16.2)               |             |  |
| Adverse                                                                | 39/547 (7.1)            | 22/269 (8.2)                    | 17/278 (6.1)                |             |  |

#### **RATIFY: Complete Response Rates**

| Table 3. Summary of Complete Remission.*                   |                                   |                             |             |
|------------------------------------------------------------|-----------------------------------|-----------------------------|-------------|
| Variable                                                   | Midostaurin<br>Group<br>(N = 360) | Placebo<br>Group<br>(N=357) | P<br>Value† |
| Protocol-specified complete remission — no. (%)            | 212 (59)                          | 191 (54)                    | 0.15        |
| Kaplan–Meier estimate of time to complete remission — days |                                   |                             |             |
| Median                                                     | 35                                | 35                          |             |
| Range                                                      | 20–60                             | 20–60                       |             |

Complete remission was defined as the presence of less than 5% blasts in the marrow or extramedullary leukemia, an absolute neutrophil count of more than 1000 per microliter, a platelet count of more than 100,000 per microliter, and the absence of blasts in the peripheral blood; in addition, per protocol, complete remission had to occur by day 60.
 P value is two-sided and was calculated with the use of Fisher's exact test.

### RATIFY: Overall Survival 23% reduced risk of death in the midostaurin arm



## Upfront intensive therapy + TKI for newly diagnosed AML



Stone R et al NEJM 377(5): 454, 2017; Wang E et al ASH 2017; Altman J et al AJH 93(2): 213, 2018; Pratz K et al ASH 2018

#### Phase II trial of crenolanib in newly diagnosed FLT3<sup>mut</sup> AML



#### SORMAIN: TKI maintenance following alloSCT



Burchert A et al J Clin Oncol 38(26): 2993, 2020

## Upfront Treatment of De Novo AML in patients eligible for Intensive chemotherapy

#### Who is eligible?

- 1. Non P53 MT AML
- 2. Absence of comorbidities
- 3. Not frail

| Good risk AML                  | FLt-3 MT AML                         | Intermediate/poor risk                         |
|--------------------------------|--------------------------------------|------------------------------------------------|
| Induction: 3+7+GO              | Induction: 3+7 + Midostaurin         | Induction: 3+7                                 |
| Consolidation: HiDAC/IDAC+/-GO | Consolidation : Allo-SCT             | Consolidation: allo SCT                        |
|                                | Maintenance post allo SCT: Sorafenib | Maintenance: oral azacitidine if no transplant |

# Phase III QUAZAR AML-001: CC-486 as Maintenance Therapy in First-Remission AML—Study Design

Multicenter, randomized, placebo-controlled, double-blind, phase III study



- Primary endpoint: overall survival
- Key secondary endpoints: relapse-free survival, health-related QoL, and safety

Wei. ASH 2019. Abstr LBA\_3.

## **QUAZAR AML-001: Baseline Characteristics**

| Characteristic                                                                                                                                                          | CC-486<br>n = 238                   | Placebo<br>n = 234                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|
| Median age, yrs (range)<br>■ ≥ 65 yrs, n (%)                                                                                                                            | 68 (55-86)<br>172 (72)              | 68 (55-82)<br>166 (71)                  |
| Male, n (%)                                                                                                                                                             | 118 (50)                            | 127 (54)                                |
| ECOG PS score, n (%)<br>• 0<br>• 1<br>• 2<br>• 3                                                                                                                        | 116 (49)<br>101 (42)<br>21 (9)<br>0 | 111 (47)<br>106 (45)<br>15 (6)<br>2 (1) |
| De novo AML, n (%)                                                                                                                                                      | 213 (89)                            | 216 (92)                                |
| <ul> <li>WHO classification, n (%)</li> <li>Not otherwise specified</li> <li>Myelodysplasia-related<br/>changes</li> <li>Recurrent genetic<br/>abnormalities</li> </ul> | 148 (62)<br>49 (21)<br>39 (16)      | 145 (62)<br>42 (18)<br>46 (20)          |

| –486 P     | lacebo                                                                                                                                              |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| = 238 n    | 1 = 234                                                                                                                                             |
| 3 (85) 2   | 03 (87)                                                                                                                                             |
| 5 (15) 3   | 31 (13)                                                                                                                                             |
| 7 (79) 1   | 97 (84)                                                                                                                                             |
| 1 (21) 3   | 37 (16)                                                                                                                                             |
| 6 (78) 11  | 92 (82)                                                                                                                                             |
| 0 (46) 1   | 02 (44)                                                                                                                                             |
| 0 (29) 7   | 77 (33)                                                                                                                                             |
| 5 (3)      | 13 (6)                                                                                                                                              |
| 3 (43)   1 | 16 (50)                                                                                                                                             |
| 3 (56)   1 | 11 (47)                                                                                                                                             |
|            | 486 P<br>= 238 n<br>3 (85) 2<br>5 (15) 3<br>7 (79) 1<br>L (21) 3<br>6 (78) 1<br>0 (46) 1<br>0 (46) 1<br>0 (29) 7<br>5 (3) 7<br>3 (43) 1<br>3 (56) 1 |

\*Central assessment by flow cytometry with a positive threshold of  $\geq$  0.1% using "different-from-normal" method.

Wei. ASH 2019. Abstr LBA\_3.

## **QUAZAR AML-001: Survival**

| Outcome                                    | CC-486<br>n = 238 | Placebo<br>n = 234 |  |
|--------------------------------------------|-------------------|--------------------|--|
| Median OS, mos (95% CI)                    | 24.7 (18.7-30.5)  | 14.8 (11.7-17.6)   |  |
| <ul> <li>Stratified P value</li> </ul>     |                   | 0009               |  |
| <ul> <li>Stratified HR (95% CI)</li> </ul> | 0.69 (0.55-0.86)  |                    |  |
| 1-yr survival rate, % (95% CI)             | 73 (67-78)        | 56 (49-62)         |  |
| 2-yr survival rate, % (95% CI)             | 51 (44-57)        | 37 (31-43)         |  |
| Relapse-free survival, mos (95% Cl)        | 10.2 (7.9-12.9)   | 4.8 (4.6-6.4)      |  |
| <ul> <li>Stratified P value</li> </ul>     |                   | 0001               |  |
| <ul> <li>Stratified HR (95% CI)</li> </ul> | 0.65 (            | 0.52-0.81)         |  |

- Median follow up: 41.2 months
- 1-yr relapse rate was 53% (95% CI: 46-59) in CC-486 arm vs 71% (95% CI: 65-77) in placebo arm

Wei. ASH 2019. Abstr LBA\_3.

# Upfront Treatment of De Novo AML in patients not eligible for Intensive chemotherapy

# Who is ineligible? 1. P53 MT AML 2. Age > 75 3. Major comorbidities 4. frail

Intermediate/poor risk

Azacitidine + Venetoclax

FLt-3 MT AML

Azacitidine + Venetoclax

Or

Azactidine+Flt-3 inhibitor

P53 MT AML Clinical trials APR-246 Magrolimab

# Upfront Treatment of De Novo AML in patients not eligible for Intensive chemotherapy

# Who is ineligible? 1. P53 MT AML 2. Age > 75 3. Major comorbidities 4. frail

Intermediate/poor risk

Azacitidine + Venetoclax

FLt-3 MT AML

Azacitidine + Venetoclax

Or

Azactidine+Flt-3 inhibitor

P53 MT AML Clinical trials APR-246 Magrolimab

#### Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia



AML: Acute myeloid leukemia; CHF: Congestive heart failure; CNS: Central nervous system; CR: Complete remission; CRi: CR+ incomplete marrow remission; CRi: CR+ incomplete hematologic recovery; DCLO: diffusion lung capacity for carbon monoxide; ECOG: Eastern Cooperative Oncology Group; FEV1 : Forced expiratory volume; HMA: Hypomethylating agent; NCCN: National Comprehensive Cancer Network 4

#### CD DiNardo et al. N Engl J Med 2020;383:617-629.

## Composite Response Rate (CR+CRi)



Aza: Azacitidine; Pbg: Placebo; Ven: Venetoclax; CR: Complete remission; CRi: CR with incomplete-count recovery; CR was defined as absolute neutrophil count >10<sup>3</sup>/μL, platelets >10<sup>5</sup>/μL, red cell transfusion independence (TI), and bone marrow with <5% blasts; CRi was defined as all criteria for CR, except for neutropenia ≤10<sup>3</sup>/μL or thrombocytopenia ≤10<sup>5</sup>/μL. CR + CRi rate was compared using Cochran-Mantel-Haenszel (CMH) test stratified by age (18 – < 75, ≥ 75) and cytogenetic risk (intermediate, poor). CD DiNardo et al. N Engl J Med 2020;383:617-629.

## Summary of Adverse Events (cont.)

|                                         | Aza+Ven  | Aza+Pbo  |
|-----------------------------------------|----------|----------|
| Serious AEs in ≥5% of patients, n (%)   | N = 283  | N = 144  |
| All serious AEs                         | 235 (83) | 105 (73) |
| Febrile neutropenia                     | 84 (30)  | 15 (10)  |
| Anemia                                  | 14 (5)   | 6 (4)    |
| Neutropenia                             | 13 (5)   | 3 (2)    |
| Atrial fibrillation                     | 13 (5)   | 2 (1)    |
| Pneumonia                               | 47 (17)  | 32 (22)  |
| Sepsis                                  | 16 (6)   | 12 (8)   |
| Any AE leading to:                      |          |          |
| Dose discontinuation                    | 69 (24)  | 29 (20)  |
| Dose interruption*                      | 204 (72) | 82 (57)  |
| Dose reduction <sup>+</sup>             | 7 (3)    | 6 (4)    |
| Deaths, n (%)                           |          |          |
| ≤30 days after first dose of study drug | 21 (7)   | 9 (6)    |
| ≤60 days after first dose of study drug | 43 (15)  | 24 (17)  |
| Other, n (%)                            |          |          |
| Tumor lysis syndrome++                  | 3 (1)    | 0        |

\*Dose interruptions commonly due to neutropenia (19%/10%), febrile neutropenia (20%/4%), and thrombocytopenia (10%/4%); interruptions include delays between cycles and reduced duration from 28 to 21 days per cycle for count recovery after marrow leukemia clearance; †Dose reduction for AEs or other medications; †† 3 cases of TLS during ramp up.

CD DiNardo et al. N Engl J Med 2020;383:617-629.

#### **Overall Survival**



Aza: Azacitidine; Pbo: Placebo; Ven: Venetoclax; The distributions were estimated for each treatment arm using Kaplan-Meier methodology and compared using the log-rank test stratified by age (18-<75, >75 years) and cytogenetic risk (intermediate risk, poor risk). The hazard ratio between treatment arms were estimated using the Cox proportional hazards model with the same stratification factors used in the log-rank test.

7

### **Response to Azacitidine + Venetoclax**

|                                | Aza+Ven<br>n/N (%) | Aza+Pbo<br>n/N (%) | RISKDIFF (%) (95% CI) A | za+Ven vs. Aza+Pbo     |
|--------------------------------|--------------------|--------------------|-------------------------|------------------------|
| All Subjects                   | 190/286 (66.4)     | 41/145 (28.3)      | <b>⊢</b> ∎−1            | 38.16 (29.01, 47.31)   |
| Age (Years)                    |                    |                    |                         |                        |
| < 75                           | 70/112 (62.5)      | 24/58 (41.4)       | i ⊨ i                   | 21.12 (5.60, 36.65)    |
| ≥75                            | 120/174 (69.0)     | 17/87 (19.5)       | F—■1                    | 49.43 (38.62, 60.23)   |
| Type of AML                    |                    |                    |                         |                        |
| De Novo                        | 142/214 (66.4)     | 33/110 (30.0)      | F                       | 36.36 (25.71, 47.00)   |
| Secondary                      | 48/72 (66.7)       | 8/35 (22.9)        | ⊢ <b></b> i             | 43.81 (26.14, 61.48)   |
| Cytogenetic Risk               |                    |                    |                         |                        |
| Intermediate                   | 135/182 (74.2)     | 28/89 (31.5)       | F∎1                     | 42.72 (31.16, 54.27)   |
| Poor                           | 55/104 (52.9)      | 13/56 (23.2)       | <b>⊢</b> i              | 29.67 (15.03, 44.31)   |
| Molecular Marker               |                    |                    |                         |                        |
| FLT3                           | 21/29 (72.4)       | 8/22 (36.4)        | <b>⊢</b> 1              | 36.05 (10.19, 61.91)   |
| IDH1                           | 13/23 (56.5)       | 1/ 11 (9.1)        | F                       | 47.43 (20.99, 73.87)   |
| IDH2                           | 34/40 (85.0)       | 2/ 18 (11.1)       | · · · · ·               | 73.89 (55.63, 92.14)   |
| DH1/2                          | 46/61 (75.4)       | 3/ 28 (10.7)       | ⊢ <b>_</b>              | → 64.70 (48.95, 80.44) |
| TP53                           | 21/38 (55.3)       | 0/ 14              | ·•                      | 55.26 (39.45, 71.07)   |
| NPM1                           | 18/27 (66.7)       | 4/ 17 (23.5)       |                         | 43.14 (16.25, 70.02)   |
| AML with Myelodysplasia        |                    |                    |                         |                        |
| Related Changes                |                    |                    |                         |                        |
| Yes                            | 56/92 (60.9)       | 11/49 (22.4)       | <b>⊢</b>                | 38.42 (23.06, 53.78)   |
| No                             | 134/194 (69.1)     | 30/96 (31.3)       | F−−−■−−−1               | 37.82 (26.50, 49.15)   |
| <b>Bone Marrow Blast Count</b> |                    |                    |                         |                        |
| < 30%                          | 65/85 (76.5)       | 16/41 (39.0)       | F                       | 37.45 (20.00, 54.89)   |
| 30 -< 50%                      | 35/61 (57.4)       | 9/33 (27.3)        | i → → → → →             | 30.10 (10.49, 49.72)   |
| ≥ 50%                          | 90/140 (64.3)      | 16/71 (22.5)       | <b>⊢</b>                | 41.75 (29.20, 54.30)   |
|                                |                    |                    |                         |                        |
|                                |                    |                    |                         |                        |
|                                |                    | Favors Aza         | +Pbo Favors Aza+Ven     |                        |

DiNardo et al, NEJM 2020

#### Subgroup Analysis of Overall Survival.

| Subgroup                        | Azacitidine plus<br>Venetoclax | Azacitidine plus<br>Placebo | Hazard Ratio for Death<br>(95% CI)                              |                  |
|---------------------------------|--------------------------------|-----------------------------|-----------------------------------------------------------------|------------------|
|                                 | no. of events,                 | /total no. (%)              |                                                                 |                  |
| All patients                    | 161/286 (56.3)                 | 109/145 (75.2)              | H                                                               | 0.64 (0.50-0.82) |
| Sex                             |                                |                             |                                                                 |                  |
| Female                          | 61/114 (53.5)                  | 41/58 (70.7)                | <b>⊢</b> ∎→                                                     | 0.68 (0.46-1.02) |
| Male                            | 100/172 (58.1)                 | 68/87 (78.2)                | <b>⊢</b> ∎→1                                                    | 0.62 (0.46-0.85) |
| Age                             |                                |                             |                                                                 |                  |
| <75 yr                          | 66/112 (58.9)                  | 36/58 (62.1)                | <b>⊢_</b> ∎;1                                                   | 0.89 (0.59-1.33) |
| ≥75 yr                          | 95/174 (54.6)                  | 73/87 (83.9)                |                                                                 | 0.54 (0.39-0.73) |
| Geographic region               |                                |                             |                                                                 | -                |
| United States                   | 27/50 (54.0)                   | 21/24 (87.5)                |                                                                 | 0.47 (0.26-0.83) |
| Europe                          | 70/116 (60.3)                  | 46/59 (78.0)                | F                                                               | 0.67 (0.46-0.97) |
| China                           | 9/24 (37.5)                    | 5/13 (38.5)                 | F                                                               | 1.05 (0.35-3.13) |
| Japan                           | 10/24 (41.7)                   | 9/13 (69.2)                 | F                                                               | 0.52 (0.20-1.33) |
| Rest of world                   | 45/72 (62.5)                   | 28/36 (77.8)                | F                                                               | 0.73 (0.45-1.17) |
| Baseline ECOG score             | , , ,                          | - / - ( /                   |                                                                 | ,                |
| Grade <2                        | 89/157 (56.7)                  | 65/81 (80.2)                | F-8-4                                                           | 0.61 (0.44-0.84) |
| Grade ≥2                        | 72/129 (55.8)                  | 44/64 (68.8)                | · · · · · · · · · · · · · · · · · · ·                           | 0.70 (0.48-1.03) |
| Type of AML                     | , , ,                          | / ( /                       |                                                                 | . ,              |
| De novo                         | 120/214 (56.1)                 | 80/110 (72.7)               | <b>⊢−</b> −1                                                    | 0.67 (0.51-0.90) |
| Secondary                       | 41/72 (56.9)                   | 29/35 (82.9)                | F                                                               | 0.56 (0.35-0.91) |
| Cytogenetic risk                |                                |                             |                                                                 |                  |
| Intermediate                    | 84/182 (46.2)                  | 62/89 (69.7)                | F-8-4                                                           | 0.57 (0.41-0.79) |
| Poor                            | 77/104 (74.0)                  | 47/56 (83.9)                | F                                                               | 0.78 (0.54-1.12) |
| Molecular marker                | ,,                             |                             |                                                                 | ,                |
| FLT3                            | 19/29 (65.5)                   | 19/22 (86.4)                | F                                                               | 0.66 (0.35-1.26) |
| IDH1                            | 15/23 (65.2)                   | 11/11 (100.0) <b>—</b>      |                                                                 | 0.28 (0.12-0.65) |
| IDH2                            | 15/40 (37.5)                   | 14/18 (77.8) ⊢              |                                                                 | 0.34 (0.16-0.71) |
| IDH1 or IDH2                    | 29/61 (47.5)                   | 24/28 (85.7)                | F                                                               | 0.34 (0.20-0.60) |
| TP53                            | 34/38 (89.5)                   | 13/14 (92.9)                |                                                                 | 0.76 (0.40-1.45) |
| NPM1                            | 16/27 (59.3)                   | 14/17 (82.4)                |                                                                 | 0.73 (0.36-1.51) |
| AML with myelodysplasia-related | d changes                      | , , ,                       |                                                                 | ,                |
| Yes                             | 56/92 (60.9)                   | 38/49 (77.6)                | F∎                                                              | 0.73 (0.48-1.11) |
| No                              | 105/194 (54.1)                 | 71/96 (74.0)                | H                                                               | 0.62 (0.46-0.83) |
| Bone marrow blast count         | ,()                            |                             |                                                                 | (                |
| <30%                            | 46/85 (54.1)                   | 28/41 (68.3)                | F                                                               | 0.72 (0.45-1.15) |
| 30 to <50%                      | 36/61 (59.0)                   | 26/33 (78.8)                | F                                                               | 0.57 (0.34-0.95) |
| ≥50%                            | 79/140 (56.4)                  | 55/71 (77.5)                | F∎1                                                             | 0.63 (0.45-0.89) |
|                                 |                                | 0.1                         | 1.0                                                             | 10.0             |
|                                 |                                | A<br>Ve                     | zacitidine plus Azacitidine pl<br>enetoclax Better Placebo Bett | us<br>er         |

CD DiNardo et al. N Engl J Med 2020;383:617-629.

#### Subgroup Analysis of Overall Survival.

|          | Subgroup                                                                                                                                                                                                                                                                          | Azacitidine plus<br>Venetoclax                                                                                                                                                                                                                               | Azacitid<br>Plac                                                                                                           | ne plus Hazard F<br>ebo (9 | Ratio for Death<br>95% CI)                                                                                                         |                                                                                                                                                                                                                                                                                                                                                  |               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Mutation | #                                                                                                                                                                                                                                                                                 | CR/CRi %(N)                                                                                                                                                                                                                                                  |                                                                                                                            | Duration of res            | ponse                                                                                                                              | Overall                                                                                                                                                                                                                                                                                                                                          | Survival (mo) |
| FLT3     | 18                                                                                                                                                                                                                                                                                | 72 (13)                                                                                                                                                                                                                                                      |                                                                                                                            | 11(6.5,NR)                 |                                                                                                                                    | NR(8-N                                                                                                                                                                                                                                                                                                                                           | IR)           |
| IDH 1/2  | 35                                                                                                                                                                                                                                                                                | 71(25)                                                                                                                                                                                                                                                       |                                                                                                                            | NR(6.8,NR)                 |                                                                                                                                    | 24.4 (12                                                                                                                                                                                                                                                                                                                                         | 2.3-NR)       |
| NPM1     | 23                                                                                                                                                                                                                                                                                | 91(21)                                                                                                                                                                                                                                                       |                                                                                                                            | NR(6.8, NR)                |                                                                                                                                    | NR (11-                                                                                                                                                                                                                                                                                                                                          | -NR)          |
| TP53     | 36                                                                                                                                                                                                                                                                                | 47(17)                                                                                                                                                                                                                                                       |                                                                                                                            | 5.6(1.2,9.4)               |                                                                                                                                    | 7.2(3.7-                                                                                                                                                                                                                                                                                                                                         | -NR)          |
|          | Secondary<br>Cytogenetic risk<br>Intermediate<br>Poor<br>Molecular marker<br><i>FLT3</i><br><i>IDH1</i><br><i>IDH2</i><br><i>IDH1</i> or <i>IDH2</i><br><i>TP53</i><br><i>NPM1</i><br>AML with myelodysplasi<br>Yes<br>No<br>Bone marrow blast cour<br><30%<br>30 to <50%<br>≥50% | 41/72 (56.9)<br>84/182 (46.2)<br>77/104 (74.0)<br>19/29 (65.5)<br>15/23 (65.2)<br>15/40 (37.5)<br>29/61 (47.5)<br>34/38 (89.5)<br>16/27 (59.3)<br>ia-related changes<br>56/92 (60.9)<br>105/194 (54.1)<br>105<br>194 (54.1)<br>36/61 (59.0)<br>79/140 (56.4) | 29/35<br>62/89<br>47/56<br>19/22<br>11/11<br>14/18<br>24/28<br>13/14<br>14/17<br>38/49<br>71/96<br>28/41<br>26/33<br>55/71 | (82.9)                     | 0.5<br>0.7<br>0.7<br>0.2<br>0.3<br>0.3<br>1<br>1<br>0.7<br>1<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 | 66 (0.35-0.91)         77 (0.41-0.79)         78 (0.54-1.12)         78 (0.54-1.12)         79 (0.41-0.79)         78 (0.54-1.12)         78 (0.54-1.26)         78 (0.12-0.65)         78 (0.12-0.65)         73 (0.20-0.60)         76 (0.40-1.45)         73 (0.48-1.11)         72 (0.45-1.15)         77 (0.34-0.95)         73 (0.45-0.89) |               |

CD DiNardo et al. N Engl J Med 2020;383:617-629.

# Breaking Down the Azacitidine + Venetoclax Outcomes



DiNardo et al, NEJM 2020

#### Monocytic (M5) and RAS Mutations in VEN + AZA



#### Mechanisms of Treatment Failure After Ven + HMA/LDAC: Mutant p53



C. DiNardo, M. Konopleva, A. Wei BLOOD 2020

# Upfront Treatment of De Novo AML in patients not eligible for Intensive chemotherapy

# Who is ineligible? 1. P53 MT AML 2. Age > 75 3. Major comorbidities 4. frail

Intermediate/poor risk

Azacitidine + Venetoclax

FLt-3 MT AML

Azacitidine + Venetoclax

Or

Azactidine+Flt-3 inhibitor

P53 MT AML Clinical trials APR-246 Magrolimab

# Upfront therapy of older/unfit patient with FLT3 mutant AML

| FLT3 TKI           | No pts | ORR                     | Duration of response                            |
|--------------------|--------|-------------------------|-------------------------------------------------|
| Midostaurin + Aza  | 27     | 33%                     | 31 wks (no prior TKI)<br>vs. 16 wks (prior TKI) |
| Sorafenib + Aza    | 27     | 78%                     | 14.5 mos (1.1 to 28.7 mos)                      |
| Sorafenib + Dec    | 6      | 83%<br>(CR16%, CRi 66%) | Not determined                                  |
| Gilteritinib + Aza | 15     | 60%<br>(2CR, 8CRi)      | Not determined                                  |

# Upfront Treatment of De Novo AML in patients not eligible for Intensive chemotherapy

# Who is ineligible? 1. P53 MT AML 2. Age > 75 3. Major comorbidities 4. frail

Intermediate/poor risk

Azacitidine + Venetoclax

FLt-3 MT AML

Azacitidine + Venetoclax

Or

Azactidine+Flt-3 inhibitor

P53 MT AML Clinical trials APR-246 Magrolimab

Forty Seven

#### CD47 is a Major Macrophage Immune Checkpoint and "Do Not Eat Me" Signal in Myeloid Malignancies including MDS and AML



- CD47 is a "do not eat me" signal on cancers that enables macrophage immune evasion
- o Increased CD47 expression predicts worse prognosis in AML patients

CONFIDENTIAL

### Magrolimab + AZA Induces High Response Rates in MDS and AML

| Best Overall Response           | 1L MDS<br>N=33                   | 1L AML<br>N=25 |
|---------------------------------|----------------------------------|----------------|
| ORR                             | 30 (91%)                         | 16 (64%)       |
| CR                              | 14 (42%)                         | 10 (40%)       |
| CRi                             | NA                               | 4 (16%)        |
| PR                              | 1 (3%)                           | 1 (4%)         |
| MLFS/marrow CR                  | 8 (24%)<br>4 with marrow CR + HI | 1 (4%)         |
| Hematologic<br>improvement (HI) | 7 (21%)                          | NA             |
| SD                              | 3 (9%)                           | 8 (32%)        |
| PD                              | 0                                | 1 (4%)         |

Response assessments per 2006 IWG MDS criteria and 2017 AML ELN criteria. Patients with at least 1 posttreatment response assessment are shown; all other patients are on therapy and are too early for first response assessment, except for 2 MDS patients not evaluable (withdrawal of consent) and 3 AML patients (1 AE, 2 early withdrawal).



Four patients not shown due to missing values; <5% blasts imputed as 2.5%. \*Baseline bone marrow blasts ≤5%.

- Magrolimab + AZA induces a 91% ORR (42% CR) in MDS and 64% ORR (56% CR/CRi) in AML
- Responses deepened over time with a 56% 6-month CR rate in MDS patients (assessed in all patients 6 months after initial treatment)
- Median time to response is 1.9 months, more rapid than AZA alone
- Magrolimab + AZA efficacy compares favorably to AZA monotherapy (CR rate 6-17%<sup>1,2</sup>)

1. Azacitidine USPI. 2. Fenaux P, et al. Lancet Oncol. 2009;10(3):223-232.

Sallman et al et al, ASCO 2020 Abstract 7507

## Deep and Durable Responses Are Seen in Magrolimab + AZA Treated Patients

| Parameter                                     | 1L MDS<br>N=33                 | 1L AML<br>N=25                 |
|-----------------------------------------------|--------------------------------|--------------------------------|
| RBC transfusion<br>independence*              | 11/19 (58%)                    | 9/14 (64%)                     |
| Complete cytogenetic<br>response <sup>†</sup> | 9/26 (35%)                     | 6/12 (50%)                     |
| MRD negativity in<br>responders               | 6/30 (20%)                     | 8/16 (50%)                     |
| Median duration of<br>response (months)       | Not reached<br>(0.03+ – 10.4+) | Not reached<br>(0.03+ – 15.1+) |
| Median follow-up<br>(range) (months)          | 5.8 (2.0-15.0)                 | 9.4 (1.9-16.9)                 |

MRD was evaluated by multiparameter flow cytometry; cytogenetic response defined per 2003 and 2006 IWG criteria.

\*Patients shown for those who were RBC transfusion dependent at baseline and achieved RBC transfusion independence at any time on study.

 $\ensuremath{^+\text{Responses}}$  shown for all responding patients with abnormal cytogenetics at baseline.

- Complete cytogenetic responses and MRD negativity is observed in MDS and AML patients
- No median duration of response has been reached for MDS or AML
- 16% of patients (9/58) received an allogeneic stem cell transplant
- Median OS has not been reached in either MDS or AML patients

Sallman et al et al, ASCO 2020 Abstract 7507



**MDS and AML Patients** 

## Magrolimab + AZA Eliminates Disease in AML and MDS Patients With *TP53* Mutation



\*Responding patients with abnormal cytogenetics at baseline.

- Magrolimab + AZA has a high response rate with deep responses in *TP53*-mutant AML and MDS patients
- The estimated 6-month survival is 91% and 100% in AML and MDS patients, respectively
- Median duration and survival has not been reached, which compares favorably to current therapies
  - Venetoclax + AZA in AML: ORR 47%, DOR 5.6 mo, OS 7.2 mo<sup>1</sup>

1. DiNardo CD. et al. Blood. 2019:133(1):7-17.

Sallman et al et al, ASCO 2020 Abstract 7507

# Frontline Combination Therapy with APR-246 + Azacitidine: Study Design and Objectives

- IIT evaluating frontline APR-246 + azacitidine in TP53 MT HMA-naïve MDS, oligoblastic AML (≤ 30% blasts) and MDS-MPN
- Phase 1b Results (Sallman D et al., ASH 2018)
  - RP2D of 4500mg/day days 1-4 (~100mg/kg LBM) + azacitidine (75mg/m<sup>2</sup>)
  - Manageable G1/G2 nausea and transient neurological AEs (dizziness/altered sensation) to APR-246; No DLTs
  - Activation of p53-dependent pathways following monotherapy treatment (1 mCR+partial cytogenetic remission in lead-in phase)
- Phase 2
  - Primary: CR rate
  - Secondary: Safety, ORR, DoR, OS, p53 IHC, and Serial NGS (0.1% VAF sensitivity)



ClinicalTrials.gov NCT03072043; i.v., intravenous; s.c., subcutaneous; RP2D, recommended Phase 2 dose; CR, complete remission; DoR, duration of response; LBM, lean body mass



Sallman. ASH 2019. Abstr 676.

#### **Response to Treatment in Evaluable Patients (n=45)** Cutoff: November 15, 2019



Median duration of follow-up = 10.8 months



Sallman. ASH 2019. Abstr 676.



Figure 1. Comparison of detection limits for methods of MRD assessment. Standard morphological assessment defines CR as <5% blasts. Cytogenetics and targeted NGS have similar detection limits to morphology though can detect if the residual blasts harbor clonal abnormalities. Overexpression PCR (*e.g.*WT1) requires at least a 2-log difference in expression to discriminate from healthy BM. FISH has the sensitivity to detect 0.5% residual disease. MFC and mutation PCR have vastly improved the sensitivity of detection of MRD with detection limits ranging from 0.01% to 0.001%.

#### **MRD** and survival

Meta-analysis of 81 Publications



Short N, et al JAMA Oncology October 2020

# Conclusions

- GO addition to intensive chemotherapy (IC) improves overall survival in Good risk AML and future directions to eliminate anthracycline use.
- Flt-3 inhibitors combinations with IC is standard of care for FLT-3 MT AML.
- Maintenance therapy in AML is standard care now in FLT-3 AML after allo-SCT and for intermediate and poor risk AML after IC if no allo-SCT.
- Azacitidine and venetoclax combination is the new standard of upfront treatment in AML patients not eligible for IC.
  - Exceptions?: TP53, M5, FLT-3?
- Patients with TP53 MT AML should be enrolled on clinical trials.
- MRD assessment and disease status will guide our future tailoring of treatment.