

T-CELL LYMPHOMAS NEW THERAPEUTIC APPROACHES

JASMINE ZAIN, M.D.
DIRECTOR, T-CELL LYMPHOMA PROGRAM
CITY OF HOPE NATIONAL MEDICAL CENTER

DISCLOSURE

- Consultancy- Seagen, Verastem, Kiyowa Kirin, Mundi Pharma, Curio, Legend Biotech, Ono Pharmaceuticals
- Speakers Bureau- Seagen, Kiyowa Kirin

WHO CLASSIFICATION OF MATURE T-CELL AND NK/T CELL LYMPHOMAS 2016

T-cell prolymphocytic leukemia

T-cell large granular lymphocytic leukemia

Chronic lymphoproliferative disorder of NK cells

Aggressive NK-cell leukemia

EBV-positive T-cell lymphoproliferative diseases of childhood

Chronic active EBV infection, cutaneous

Chronic active EBV infection, systemic

Hydroa vacciniforme-like lymphoma

Severe mosquito bite hypersensitivity

Systemic EBV-positive T-cell lymphoma of childhood

Adult T-cell leukemia/lymphoma

Extranodal NK/T-cell lymphoma, nasal type

Enteropathy-associated T-cell lymphoma

Monomorphic epitheliotropic intestinal T-cell lymphoma*

Indolent T-cell lymphoproliferative disorder of the gastrointestinal tract*

Hepatosplenic T-cell lymphoma

Subcutaneous panniculitis-like T-cell lymphoma

Mycosis fungoides

Sézary syndrome

Primary cutaneous CD30-positive T-cell lymphoproliferative disorders

Lymphomatoid papulosis

Primary cutaneous anaplastic large cell lymphoma

Primary cutaneous gamma-delta T-cell lymphoma

Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma

Primary cutaneous acral CD8-positive T-cell lymphoma*

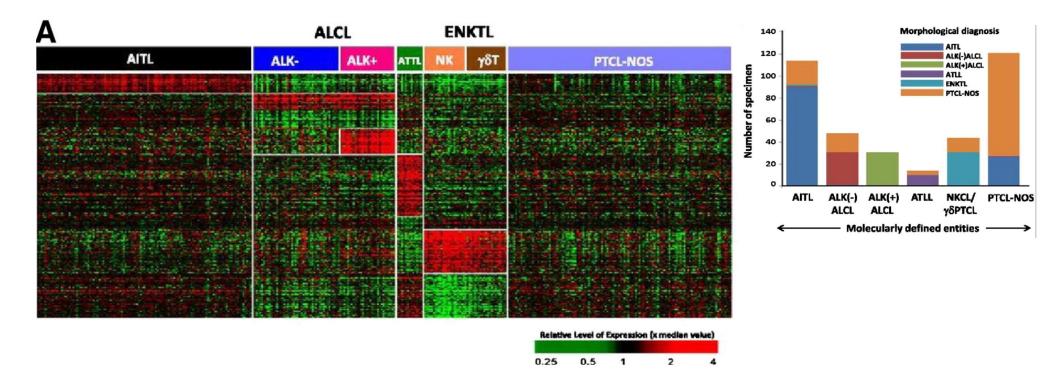
Primary cutaneous CD4-positive small/medium T-cell lymphoproliferative disorder*

Peripheral T-cell lymphoma, NOS

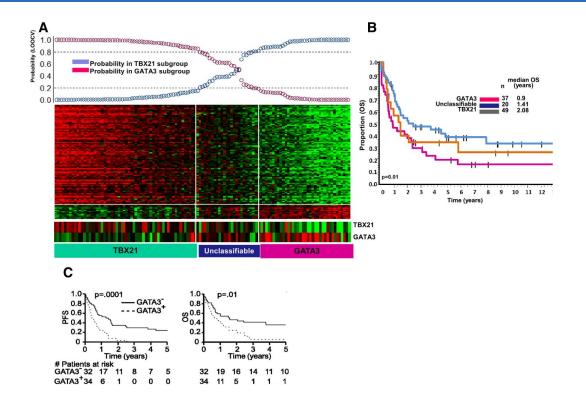
Angioimmunoblastic T-cell lymphoma

Follicular T-cell lymphoma*

Anaplastic large cell lymphoma, ALK-positive


Anaplastic large cell lymphoma, ALK-negative

Breast implant-associated anaplastic large cell lymphoma*


- GEP- led to molecularly defined groups of PTCL
- CNV
- NGS
- Integration of data

Pathogenesis
Prognostic markers
Therapeutic targets

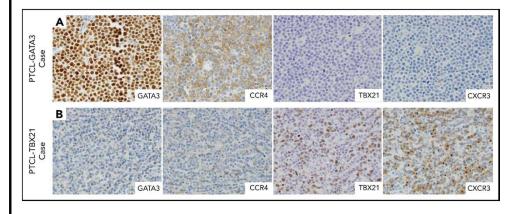
MOLECULARLY DEFINED ENTITIES IN PTCL

MOLECULARLY DEFINED SUBGROUPS OF PTCL-NOS

CLINICAL EVALUATION OF MOLECULARLY DEFINED **SUBSETS OF PTCL-NOS**

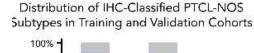
PTCL-GATA 3

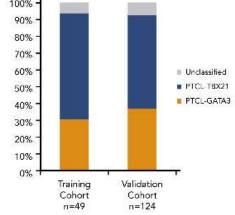
High expression of GATA 3 and its target genes 33% of PTCL-nos GATA 3 is the master regulator of TH2 cell differentiation, regulates IL4, IL5 and IL13 Associated with PI3K-


mTOR activation

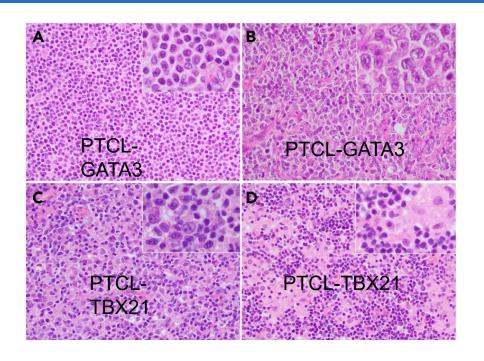
PTCL-TBX21

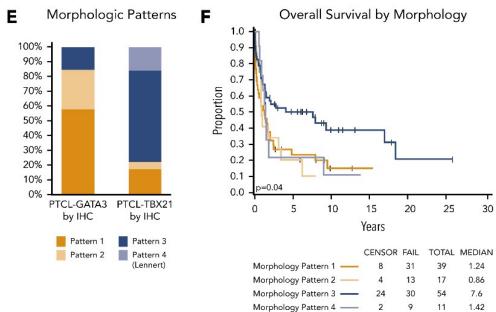
High expression of TBX21 and its target genes 49% of PTCL Master regulator of TH1 and cytotoxic T cell differentiation Regulates expression of Interferon gamma and granzyme B NF-kB activation


IHC algorithm

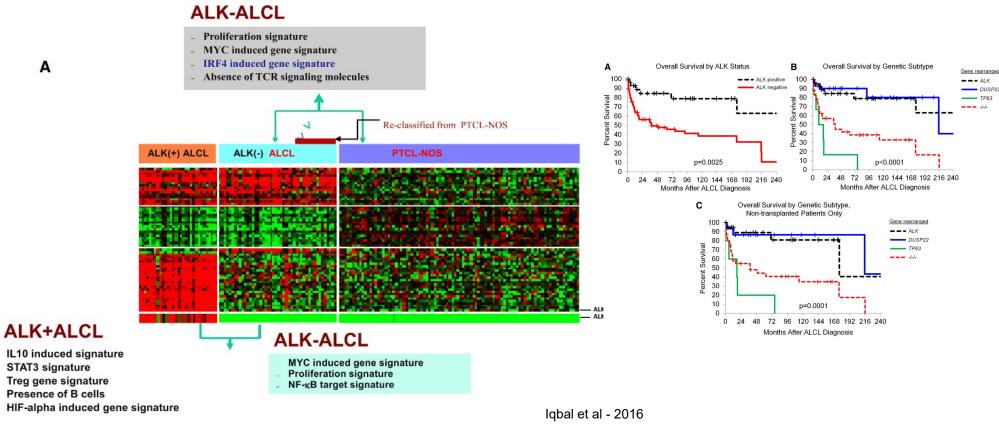

PTCL-GATA 3--- GATA3, CCR4 PTCL-TBX21 ---- TBX21 ad nCXCR3

An IHC Algorithm to Subclassify PTCL-NOS **GEP/Fresh Frozen** PTCL-TBX21 PTCL-GATA3 Unclassified PTCL-TBX21 → PTCL-GATA3 TBX21 → CXCR3 → GATA3 → IHC/FFPE PTCL-GATA3 Case PTCL-TBX21 Case Training Cohort Validation Cohort PTCL-TBX21 PTCL-GATA3 0.9 0.9 0.8 Proportion 0.8 - 0.7 - 0.5 - 0.5 - 0.3 - 0 0.7 Droportion 0.7 0.6 0.5 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 1011 1213 1415 1617 1819 10 15 20 Years Years


REPRODUCING THE MOLECULAR SUBCLASSIFICATION OF PERIPHERAL T-CELL LYMPHOMA-NOS BY IMMUNOHISTOCHEMISTRY

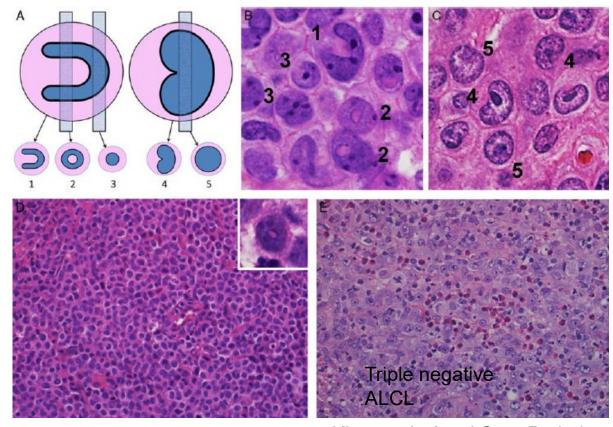


Amador et al: Blood 2019


DISTINCT MORPHOLOGICAL FEATURES IN PTCL-NOS CLASSIFIED BY IHC ALGORITHIM

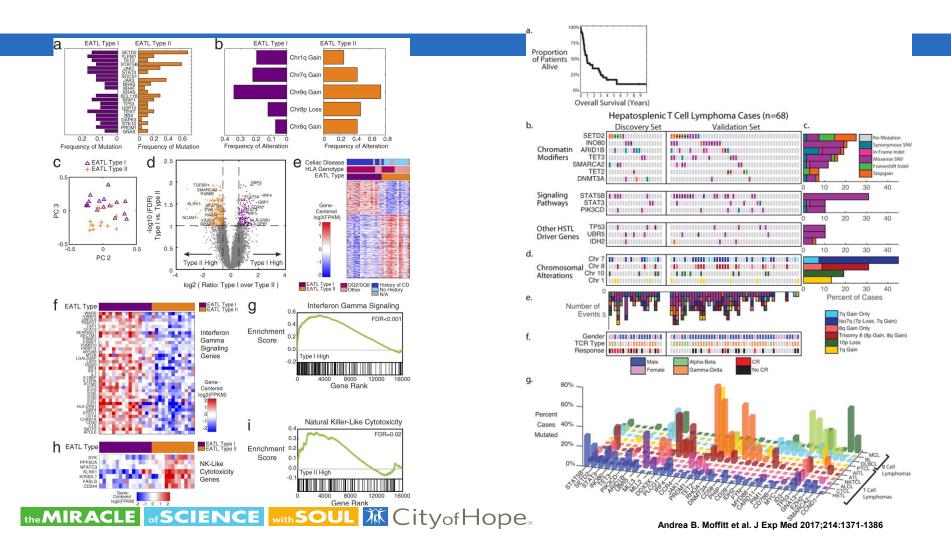
(Lennert)

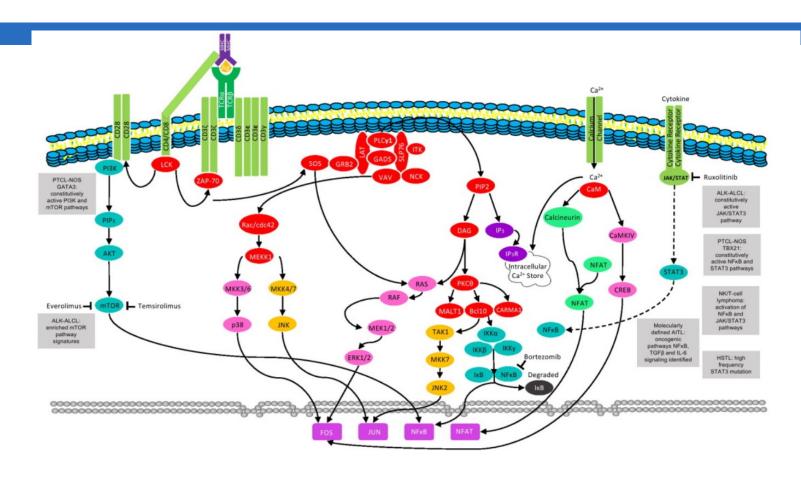
SPECIFIC GENE EXPRESSION SIGNATURES OF **ALCL SUBTYPES**



Edgardo R. Parrilla Castellar et al. Blood 2017

MORPHOLOGIC FEATURES OF DUSP-22 REARRANGED ALK-VE ALCL

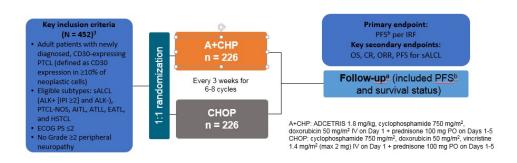

- 30% of alk-ve ALCL are DUSP22 rearranged
- DUSP22
 rearranged
 cases were
 more likely to
 have doughnut
 cells, less likely
 to be
 pleomorphic
 and had sheet
 like growth of
 cells

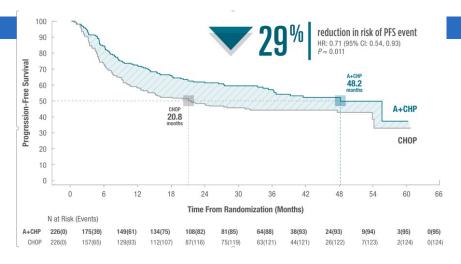


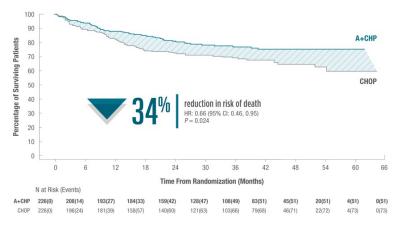
King et al : Am J Surg Pathology 2017

GENETIC LANDSCAPE OF DIFFERENT SUBTYPES OF PTCL

POTENTIAL THERAPEUTIC TARGETS FOR PTCL


BRENTUXIMAB + CHP FOR CD30 + PTCL


Echelon -2 Frontline treatment with A+CHP vs CHOP for newly diagnosed, CD30-expressing PTCLs demonstrated a 29% reduction in risk of PFS event (HR: 0.71; 95% CI: 0.54-0.93; P = 0.011)


A+CHP more than doubled median PFS vs CHOP (48.2 vs 20.8 months, respectively)

34% reduction in risk of death with A+CHP (HR: 0.66; 95% CI: 0.46-0.95; P = 0.024)¹. Median OS was not reached in either arm

A+CHP has a comparable safety to CHOP

Horwitz et al: Lancet 2019

EXPLORATORY ANALYSIS – IMPACT OF STEM CELL TRANSPLANT IN **ECHELON-2**

- ECHELON 2- role of consolidative transplant was not studied explicitly
- In patients treated with A+CHP only 50/226 (22%) underwent transplant
- alk-ALCL 76/113 were in CR on the A+CHP arm and 27/76 (36%) received transplant
- Median PFS for patients with SCT was not reached vs 55.6 months without transplant
- Non- ALCL patients 38/64 (59%) on the A=CHP arm were in CR and 11/38 (29%) had SCT
- Median PFS in SCT was not reached and was 33.2 months in non SCT patients
- Standard PFS and multivariate proportional hazards regression analysis favored transplant
- Transplant was done less frequently in Asian countries

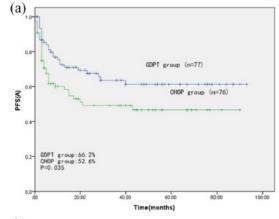
		<u>sALCL</u> =76	Non-s/ N=			bined 114
	SCT (n=27)	No SCT (n=49)	SCT (n=11)	No SCT (n=27)	SCT ^a (n=38)	No SCT (n=76)
Estimated PFS at 3 years, %	80.4	56.9	70.1	46.7	76.1	53.3
(95% CI)	(59.1, 91.4)	(40.6, 70.3)	(32.3, 89.5)	(26.7, 64.4)	(56.9, 87.6)	(40.7, 64.3)
Univariate, HR (95% CI) Multivariate, HR (95% CI) adjusting for:	0.49 (0.	19, 1.27)	0.36 (0.1	0, 1.26)	0.38 (0.	18, 0.82)
Ageb	0.54 (0.3	20, 1.45)	0.32 (0.0	9, 1.15)	0.39 (0.	18, 0.86)
Region ^c	0.47 (0.	18,1.22)	0.37 (0.1	0, 1.33)	0.38 (0.	18, 0.82)
$Age^b + Region^c$	0.52 (0.	19, 1.41)	0.32 (0.0	9, 1.19)	0.39 (0.	18, 0.86)
Median follow-upd, mos	29.9	41.6	49.8	42.6	35.9	41.6
(95% CI)	(24.2, 36.1)	(29.8, 42.0)	(21.2, 54.0)	(29.5, 53.9)	(24.5, 41.9)	(33.2, 42.1)

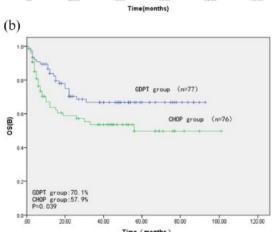
Table presents HR of PFS for pts who achieved CR on A+CHP, SCT vs no SCT; HR<1 favors SCT; all HRs were stratified for baseline IPI score (0-1; 2-3; 4-5).

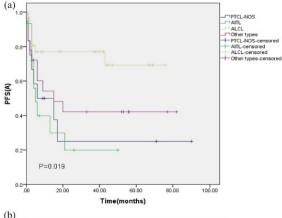
PFS was measured from randomization to progressive disease, death, or receipt of subsequent systemic chemotherapy to treat residual or progressive PTCL as determined by the investigator, whichever came first. Consolidative SCT was not considered an event.

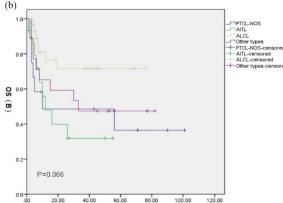
- Includes 2 allogeneic SCTs
- <65; ≥65 yr
- Non-Asia (rest of world); Asia (Taiwan, Japan, and South Korea)
- Median follow-up is calculated for PFS using the Kaplan-Meier method of switching the PFS event and censored status.

Savage et al ;ASH 2019






GDPT vs CHOP in the upfront treatment of PTCL


Subgroups	Response	es (%)				
	GDPT		СНОР		p value	9
CR	ORR	CR	ORR	CR	ORR	
PTCL-NOS	9 (47.4)	15 (78.9)	0 (0.0)	3 (25.0)	0.015	0.003
AITL	4 (18.2)	12 (54.5)	3 (20)	5 (33.3)	0.003	0.204
ALCL	10 (55.6)	12 (66.7)	16 (51.6)	23 (74.2)	0.790	0.574
Other types	10 (55.6)	12 (66.7)	2 (11.1)	7 (38.9)	0.005	0.095
p value	0.046	0.437	< 0.001	0.005		

		Number of patients		
Group and gene	Response	Low expression	High expression	p value
GDPT group (n = 42)				
ERCC1	CR+PR	7	11	0.856
	SD+PD	10	14	
RRM1	CR+PR	8	10	0.650
	SD+PD	9	15	
CHOP group (n=39)				
TOP2A	CR+PR	8	11	0.648
	SD+PD	7	13	
TUBB3	CR+PR	13	5	0.708
	SD+PD	14	7	

WHAT WE KNOW SO FAR

- CHOP based therapies remain the back bone of upfront therapy (CR 31-67%)
- For CD30+ lymphomas and ALCL- ----- BV+CHP based on randomized data and shown to impact survival
- Role of Etoposide if the upfront regimen continues to be debated. Best data is by Schimdt, et al. <60, normal LDH, improved OS. CHOEP followed by high dose ASCT has been used by several groups.
 Metanalysis by Deng et al did not show a difference between CHOP and CHOPE (Onco targets 2019)
- CHOP+Romdepsin (Ro-CHOP) Initial results ORR 78% including 66% CR. Randomized phase 3 ongoing.
- CHOP+Pralatrexate ORR 89%, CR 67%
- CHOP+Belinostat ORR 86%, CR 67%, PR 19%
- CHOEP+Revlimid ORR 88% and CR 38%. Len maintenance arm
- CHEP+BV Ongoing. Possible EPCH+BV?
- Chidamide + CHOP, Chidmaide + CHOEP (ORR 68%, CR 43%)
- GDPT vs CHOP,- 42% vs 27% longer PFS and OS
- Mogamulizumab combinations EPOCH, mLSG15

APPROVED AGENTS FOR THE TREATMENT OF RR PTCL

AGENT	HISTOLOGY	ORR/CR	ORR/CR	DURATION
PRALATREXATE 2009	PTCL- all subtypes	29%/11%	PTCL- nos 32% sALCL- 35% AITL- 8% other – 38%	DOR = 10.1 months (,1-22.1)
ROMIDEPSIN 2009	PTCL- all subtypes	25%/15%	PTCL- nos—29/14 AITL- 30/19 Alk-ve ALCL -24/19	DOR 28 months (1-48) Median OS= 11.3 months Time to CR =3.7months
BELINOSTAT 2014	PTCL- all subtypes	26%/11%	PTCL-nos-23% AITL-46%/18% ALCL- 15% ENKTCL-50%	DOR= 13.6 months (4.5-29.4)
BRENTUXIMAB VEDOTIN 2011	sALCL	86%/59%	Highest responses in ALCL- other subtypes much less	DOR = 13.2 (5.7-26.3) OS- 70% at 1 yr. 64% at 4 yrs
MOGAMULIZUMAB 2012	ATLL	50/31	Approved for CTCL in the US, ATLL and CCR4 expressing PTCL in Japan	Median PFS 5.2 months
CHIDAMIDE 2014	PTCL	28/14	Approved in China	Median PFS 2.1 month, OS 21.4 months 17

RECENT UPDATES REGARDING SINGLE AGENT PRALATREXATE FOR R/R PTCL

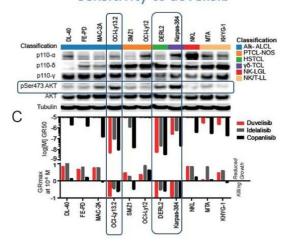
	PROPEL ¹	Maruyama 2017 ²	Admojo 2018 ³	Hong 2019 ⁴
Patients (n)	109	20	31	71
Median lines of prior therapy	3	3	3	2
CR	10%	10%	6.5%	20%
ORR	29%	44%	32%	52%
ORR (2 nd line use)	35%	-	75%	76%
ORR (by subtypes)				
PTCL-NOS AITL ALCL	32% 8% 35%	50% 44% 50%	50% 38% 0%	50% 55% 83%

^{1.} O'Connor O., Shustov A., et al. J Clin Onc 2011; 29:1182-89

^{2.} Maruyama et al. Cancer Science. 2017, 108(10): 2061-2068.

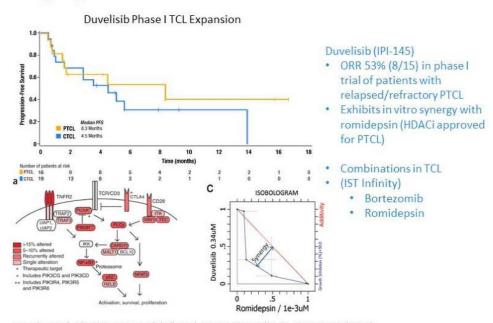
^{3.} Admojo. Presentation at Blood 2018.

^{4.} Hong et al. Targeted Oncology 2019.

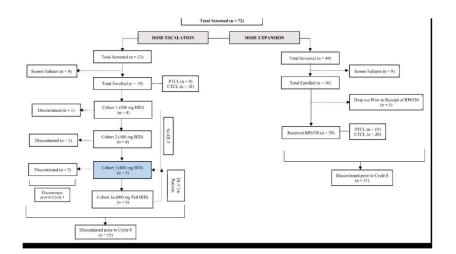

USE OF LEUCOVORIN

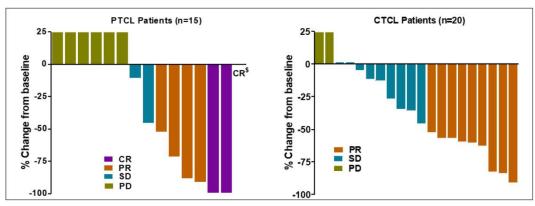
- In PROPEL mucositis was most common side effect grade 2 and above 52% of patients
- PDX followed by Leucovorin 50mg IV 24 hrs later Geskin et al 2014
- Leucovorin reduced incidence of mucositis retrospective study Foss et al 2016
 - **Prospective study** Pralatrexate (SD + Vit supplements) followed by Leucovorin 25mg tid for 2 days (24 hrs later) Shustov et al ASH 2018
 - Mucositis was reported in 4 patients no grade 3 or higher

The preemptive use of Leucovorin alongwith Vit B12 and Folate supplements to prevent mucositis is now in the NCCN guidelines


TARGETING PI3 KINASE

Constitutive activity of pAKT TCL cell lines predicts sensitivity to duvelisib


Using cell line data to predict response to PI3 kinase inhibitors


Targeting PI3K in PTCL

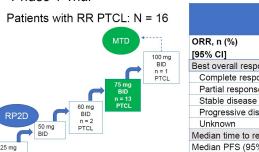
Horwitz et al, ASH 2014; Ungewickell et al., Nature Genetics 47, 1056-1060 (2015)

TENALISIB

^{\$}Non-measurable disease; positive bone marrow became negative (CR)

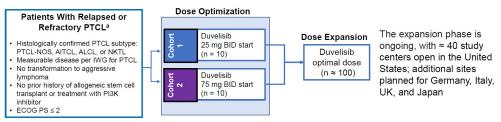
Significant TEAEs	Dose Expansion (N = 19) n (%), E	Dose Escalation $(N = 39)$ n (%), E	Total $(N = 58)$ n (%), E
Alanine aminotransferase increased	5 (26.3%), 5	6 (15.4%), 7	11 (19.0%), 12
Aspartate aminotransferase increased	4 (21.1%), 4	7 (17.9%), 8	11 (19.0%), 12
Anemia	2 (10.5%), 2	3 (7.7%), 6	5 (8.6%), 8
Neutropenia	2 (10.5%), 2	2 (5.1%), 2	4 (6.9%), 4
Hyponatremia	2 (10.5%), 2	2 (5.1%), 2	4 (6.9%), 4
Thrombocytopenia	1 (5.3%), 1	2 (5.1%), 2	3 (5.2%), 3
Fatigue	1 (5.3%), 1	2 (5.1%), 3	3 (5.2%), 4

n = Number of patients with at least one event; E = Count of events. TEAEs = Treatment emergent adverse events.



DUVELISIB

Duvelisib Monotherapy: Clinical Activity in PTCL


Phase 1 Trial^{1,2}

	Duvelisib 75 mg BID (n = 13)	All PTCL (N = 16)
ORR, n (%)	7 (54)	8 (50)
[95% CI]	[25.1-80.8]	[24.7-75.3]
Best overall response, n (%)		
Complete response	2 (15)	3 (19)
Partial response	5 (38)	5 (31)
Stable disease	1 (8)	1 (6)
Progressive disease	5 (38)	6 (37)
Unknown	0	1 (6)
Median time to response (range), mo	1.9	1.9 (1.6-3.5)
Median PFS (95% CI), mo	8.3	8.3 (1.4-NR)
Median OS (95% CI), mo	16.2	8.4 (4.3-NR)

- · Response to duvelisib was observed across a spectrum of PTCL subtypes
 - > 3 CRs in EATL, AITCL, and PTCL-NOS
 - > 5 PRs in AITCL, ALCL, PTCL-NOS, and SPTCL (n = 2)

	Patient Hematologic M		Patients With TCL ²
	Duvelisib 25 mg BID (n = 66)	Duvelisib 75 mg BID (n = 124)	Duvelisib ^a (n = 35)
All grades, n (%)			
ALT or AST increased	23 (35)	59 (48)	20 (57)
Diarrhea	33 (50)	49 (39)	11 (31)
Neutropenia	21 (32)	23 (18)	7 (20)
Colitis	6 (9)	7 (6)	4 (11)
Grade ≥ 3, n (%)			
ALT or AST increased	12 (18)	29 (23)	14 (40)
Diarrhea	10 (15)	12 (10)	0
Neutropenia	17 (26)	18 (14)	6 (17)
Colitis	5 (8)	4 (3)	2 (6)

Primary objectives: identify the optimal dose of duvelisib and examine its efficacy, safety, and tolerability at the optimal dose

- · Primary endpoint
 - IRC-assessed ORR
- · Secondary endpoints
 - Safety, DOR, PFS, DCR (ie, CR + PR + SD ≥ 8 weeks), and OS
- · Exploratory endpoints
 - PK and PD biomarkers

Duvelisib in Patients with Relapsed/Refractory Peripheral T-Cell Lymphoma from the Phase 2 Primo Trial: Dose Optimization Efficacy Update and Expansion Phase Initial Results

25 patients dosed in the dose expansion phase ORR 49%, CR 30% and median DOR 12.2 months

]Hope

Pro et al: ASH 2020

TARGETING THE JAK/STAT PATHWAY

Final Results of a Phase II Biomarker-Driven Study of Ruxolitinib in Relapsed and Refractory T-Cell Lymphoma

- JAK/STAT pathway genes were evaluated by NGS
- IHC was used to assess STAT3
- Enrollment based on mutational status and STAT 3 expression
- Tissue samples collected at baseline, on treatment and end of treatment
- ORR was 23%
- Responders had low pS6 expression in pretreatment biopsies

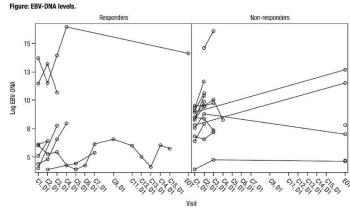
Moskowitz et al -ASH 2019

Characteristics	Total (n=53)	Cohort 1 (n=18)	Cohort 2 (n=14)	Cohort 3 (n=21)
Median age	62(19-88)	69 (44-78)	69 (44-78)	57 (19-76)
Male, n (%)	27 (51%)	9 (50%)	7 (50%)	11 (52%)
Histology, n (%)				
Peripheral T-cell Lymphoma	46 (87)	18 (100)	12 (86)	16 (76)
PTCL, NOS	12 (23)	2 (11)	5 (36)	5 (24)
AITL/PTCL-TFH	9 (17)	2(11)	5 (36)	2 (9.5)
T-PLL	8 (15)	7 (39)	1(6)	
T-LGL	5 (9)	2(11)		3 (14)
ALCL	4 (8)	2(11)		2 (9.5)
ATLL	3 (6)			3 (14)
HSTCL	2 (4)	2 (11)		
G/D-TCL	1(2)			1(5)
SPTCL	1(2)		1(6)	
MEITL	1(2)	1(6)		
Cutaneous T-cell Lymphoma	7 (13)		2 (14)	5 (24)

Response by cohort	n=48 (evaluable)	Cohort 1 (n=18)	Cohort 2 (n=13)	Cohort 3 (n=17)
Complete response	3 (6%)	1 (6%)	2 (15%)	0
Partial Response	8 (17%)	4 (22%)	2 (15%)	2 (12%)
Stable disease > 6 months	6 (13%)	3 (17%)	2 (15%)	1 (6%)
Overall response rate (95% CI)	23% (12 to 37)	88% (10 to 55)	31% (9 to 61)	12% (1 to 36)
Clinical benefit rate (95% CI)	35% (22 to 51)	44% (22 to 69)	46% (19 to 75)	18% (4 to 43)

Response by histology	n=48 (evaluable)	Overall response rate	Clinical benefit rate
PTCL, NOS	11	18%	18%
AITL/PTCL-TFH	9	33%	44%
T-PLL	8	25%	50%
CTCL	5	20%	20%
T-LGL	4	25%	75%
ALCL	3	33%	33%
ATLL	3	0%	0%
HSTCL	2	50%	50%
G/D-TCL	1	0%	0%
SPTCL	1	0%	100%
MEITL	1	0%	0%

Abbreviations: AITL (angioimmunoblastic T cell lymphoma); ALCL (anaplastic large cell lymphoma); ATLL (adult T cell lymphoma lymphoma/leukemia); CTCL (cutaneous T cell lymphoma); G/D TCL (primary cutaneous gamma/delta T-cell lymphoma); HSTCL (hepatosplenic T cell lymphoma); LGL (large granular lymphocyte leukemia); MEITL (monomorphic epitheoliotropic intestinal T cell lymphoma); MF (mycosis fungoides); PTCL-NOS (peripheral T cell lymphoma, not otherwise specified); PTCL-TFH (peripheral T cell lymphoma with T-follicular helper phenotype); SFTCL (subcutaneous otherwise specified); PTCL-TFH (peripheral T cell lymphoma with T-follicular helper phenotype); SFTCL (subcutaneous otherwise specified); PTCL-TFH (peripheral T cell lymphoma with T-follicular helper phenotype); SFTCL (subcutaneous otherwise specified); PTCL-TFH (peripheral T cell lymphoma); MFTCL-TFH (per



CD38 directed therapies for NK/T cell LYMPHOMA

- CD38 expression can be seen in NK/T cell lymphomas and may have prognostic significance- Wang et al 2015
- Daratumumab targets CD38 and induces ADCC
- 32 pts
- Median fu of 16.7 months- ORR 25%
- Median DOR 55 days
- Median PFS 53 days
- Response was no associated with CD38 expression
- EBV DNA reduction was seen more commonly in responders

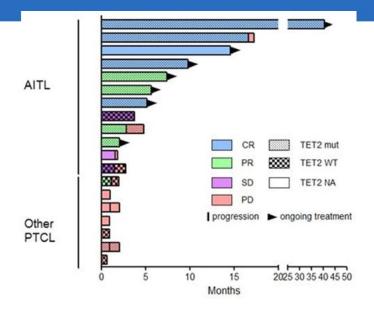
	DARA (n = 32)
ORR, n (%; 95% CI)	8 (25.0; 95% CI, 11.5-43.4)
Clinical benefit rate (CR + PR + SD), n (%; 95% CI)	13 (40.6; 95% CI, 23.7-59.4)
CR, n (%)	0
PR, n (%)	8 (25.0)
SD, n (%)	5 (15.6)
PD, n (%)	14 (43.8)
NE, n (%)	5 (15.6)

n (%)	DARA (n = 32)
Pyrexia	22 (69)
Headache	8 (25)
Chills	8 (25)
Increased alanine aminotransferase	8 (25)
Increased aspartate aminotransferase	8 (25)
Anemia	8 (25)
Thrombocytopenia	8 (25)
Fatigue	7 (22)
Leukopenia	7 (22)
Neutropenia	7 (22)

ARA, daratumumab; ORR, objective response rate; CI, confidence interval; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. E. not evaluable: TEAE. treatment-emergent adverse event.C. cycle: D: day: EDT, end of treatment.

the MIRACLE of SCIENCE with SOUL M Cityof Hope.

Huang et al: ASH 2019

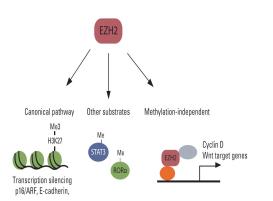

UPDATES IN EPIGENETIC THERAPY

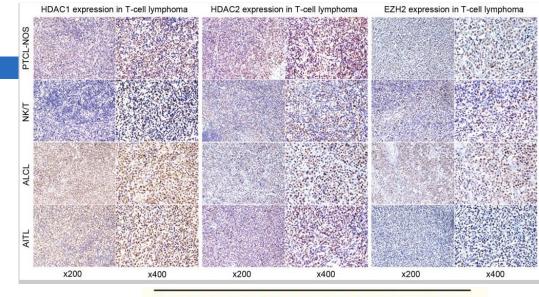
Common epigenetic mutations in PTCL

	AITL	PTCL with TFH	PTCL-nos	Alk+ALCL	ALK-ve ALCL	ATLL
RHOAG17V	70%		25%			Present
TET2	33-82%		20-49%		50%	
IDH2 – R172	13-32%		7%			
DNMT3	23-38%		36		16	

	AITL	Other PTCL*	p	
	12	7		
Median age, y	71 [39 - 85]	59 [32 - 83]	0,09	
Male/Female	7/5	5/2	0,65	
IPI at diagnosis		20		
- 1-2	3	1		
- 3	3	2	1	
- 4-5	6	4		
PIT at diagnosis				
- <3	3	3	0,62	
- 3-4	9	4		
Ann Arbor stage III-IV	12	7	1	
LDH level > ULN	9	7	0,26	
PS≥2	6	6	0,17	
Previous ASCT	2	1	1	
Median number of previous therapy	2	3	0,12	
TET2 mutation	8/10 (80%)	1/4 (25%)	0,09	
ORR	9 (75%)	1 (15%)	0,0198	
CR	5 (41%)	0 (0%)	0,106	

* ATIL: 3 patients, EATL: 1 patient, PTCL-NOS: 2 patients, transformed MF: 1 patient




Results of 5-Azacytidine (5-AZA) treatment in 19 R/R PTCL patients-Median number of cycles was 3 Sustained responses seen in AITL with TET2 mutations

Richard Delarue et al. Blood 2016;128:4164

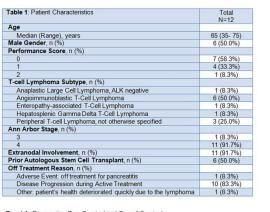
EZH2 TARGETING

EZH2 participates in histone methylation and transcriptional repression Part of the PRC2 complex

A 100	12.			В 100	74				С	100				
- 08 -	Jan L		Low expression of EZH2 High expression (EZH2)	80 on	Ι,	4		Low expressi of HDAC1		80 - 1		_	Low expres	2
Percent survival	7	٦	of EZH2	40		ATAR		High express of HDAC1	sion	60 - 40 -	7	~~~	High expres	
20 -	P=0.012	كممم	<u>ر</u> ـ	20) - F	P=0.353	ليكي	٦,	7	20 - _{P<0}	.001	~~~		٦
0 +	20	40	60	— 80	+	20	40	60	80	0 +	20	40	60	80
150	1 77.5 7	OS (months)		200			OS (months		00	o		OS (months)		00

Neoplasm	EZH2	HDAC1	HDAC2
PTCL	53/82	50/82	47/82
PTCL-NOS	29/43	24/43	25/43
AICL	6/10	5/10	6/10
NK/TCL	7/14	8/14	8/14
ALCL	11/15	13/15	8/15

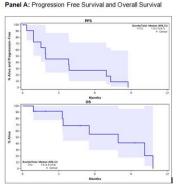
High expression of EZH2 and HDAC2 associated with poor survival


Zhang et al: Oncol letter 2019

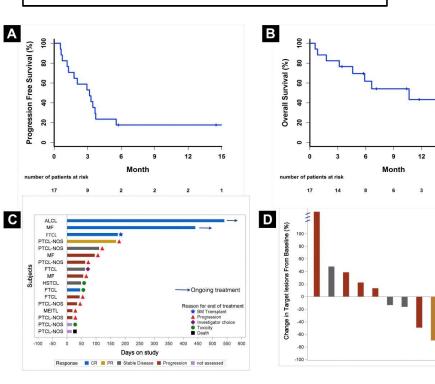
DOUBLETS AND TRIPLETS -TARGETED AGENTS

COMBINATION	N	RESULTS	MAIN TOXICITY/DLT
PRALATREXATE + ROMIDEPSIN-2018	14	ORR 71%, PFS 4.4 months	Mucositis, thrombocytopenia
DUVELISIB+ROMI-2017	29	ORR 50%- median TTR 51 days	
DUVELISIB + BORETEZOMIB- 2017		ORR 53%- median TTR 52 days	
ALISERTIB + ROMIDEPSIN-2017	3	ORR 25%	Hematologic, fatigue, infection
CHIDAMIDE+THALIDOMIDE+CYCLOPHOSPHAMIE- 2017	12	ORR 83%,CR41%, PR33%	Neutorpenia, thrombocytopenia
ROMIDEPSIN+ AZACITIDINE- 2019	31	ORR73%, CR55 %	Neutropenia, thrombocytopenia
LENALIDOMIDE+VORINOSTAT- 2014	8	ORR 25%, PFS 2.2 months , OS 6.7 months	hematologic
ROMIDEPSIN PLUS LENALIDOMIDE- 2017	21	ORR in PTCL 50%. Median EFS 15.5 weeks, Median OS not reached	Neutropenia, thrombocytopenia
ROMIDEPSIN+LENALIDOMIDE+CARFLIZOMAB- 2017	16	ORR 45%, CR 36%, PR 9%- median EFS 13.6 months	Hematologic, DVT, infection
PANOBINOSTAT + BORETEZOMIB-2015	23	ORR 43% median DOR 5.6 months	Thrombocytopenia, diarrhea, neuropathy
DURVALUMAB + ROMIDEPSIN+ 5 AZA	Ongoing		
DURVALUMAB + PRALATREXATE	Ongoing		

IMMUNE CHECK POINT INHIBITORS- NOT A BIG HIT AS SINGLE **AGENTS**


NIVOLUMAB

Hyper progression seen in 4 patients


ORR- - 33%

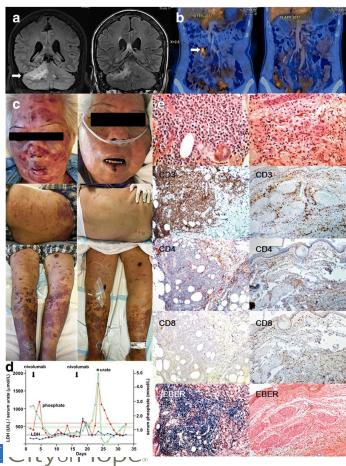
Median PFS 1.9 months

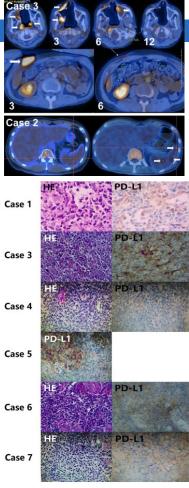
Bennani et al -ASH 2019

PEMBROLIZUMAB

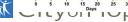
N=18, ORR 33%, 4/13- CR, median PFS Barta et al- Clin lymphoma leukemia 2019 28

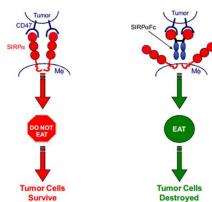
3.2 months, median OS 10.6 months





MAJOR TURNING POINT IN NK/T-CELL LYMPHOMAS


- High expression of PD1 seen in NK/T-cell lymphomas driven by EBV
- High response rates to PD1 blockade in RR disease-Disappearance of EBV from responding tumors
- Treatment was safe even in post allogenic transplant patients



IMMUNE CHECKPOINT INHIBITORS COMBINATION WITH CHEMOTHERAPY OR OTHER AGENTS FOR PTCL

- Pembrolizumab + Romidepsin- ongoing ORR 44% in 15 evaluable patients, 2 patients had hyperprogression – Iyer et al: ASH 2019
- Pembrolizumab + Pralatrexate- phase 1 started at COH. 3 patients enrolled 1 CR, no POD
- Nivolumab+EPOCH- upfront therapy- just started
- Pembrolizumab Plus Copanlisib
- Ongoing trials for NK T cell lymphoma with single agent PD1 inhibitors

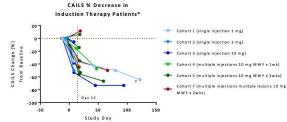
ENROLLING MACROPHAGES IN THE FIGHT AGAINST LYMPHOMA

Blocking the CD47 "Do Not Eat" Signal with SIRPαFc

Destroyed

The CD47 stop signal is blocked by

SIRPaFc, allowing macrophages to


phagocytose tumor cells

CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma

Ranjana Advani, M.D., Ian Flinn, M.D., Ph.D., Leslie Popplewell, M.D., Andres Forero, M.D., Nancy L. Bartlett, M.D., Nilanjan Ghosh, M.D., Ph.D., Justin Kline, M.D., Mark Roschewski, M.D., Ann LaCasce, M.D., Graham P. Collins, M.D., Thu Tran, B.S., Judith Lynn, M.B.A., et al.

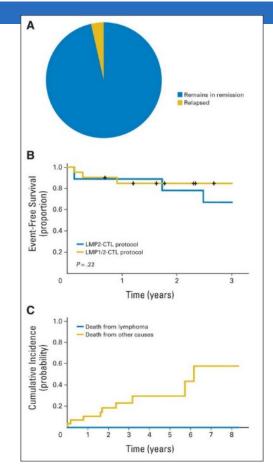
SIRPaFc:

- Binds to CD47 with nanomolar affinity
- Disrupts the interaction of CD47 with cell surface SIRPa
- Enables macrophage-mediated killing of tumor cells in vitro
- · Exhibits potent in vivo anti-leukemic activity in AML xenograft models
- . Is in pre-clinical development as a therapy for AML

- * Patients received maximally 2 weeks of study treatment (induction phase)
- † Response assessments beyond day 14 are provided if patients have not progressed or continued onto another therapy # The first patient treated obtained a CR of the injected lesion that is ongoing after 52+ weeks

Intratumoral injection

CD47 on tumor cells delivers a stop signal to macrophages to suppress phagocytosis


Novel approaches

- Phase II Study to Assess AFM13 in Patients With R/R CD30-positive T-cell Lymphoma or Transformed Mycosis Fungoides (REDIRECT)- CD30/CD16A
- ADC-301- a Novel Pyrrolobenzodiazepine-Based CD25-Targeting Antibody Drug Conjugate, in a Phase 1 Study of Relapsed/Refractory Non-Hodgkin Lymphoma Shows Activity in T-Cell Lymphoma- ORR 50% in the phase 1 study
- CAR-T cell allo CAR-T targeting CD 70 first patient has been treated
- CAR-T targeting CD 30 trials in progress


TARGETING EBV FOR THE TREATMENT OF NK/T CELL LYMPHOMAS

- Autologous Cytotoxic T cells targeting EBV viral latent proteins
- Expansion of LMP- cytotoxic TL using autologous dendritic cells
- 50 patients received these cells including 11 NK/T
- 39 (9/11) achieved and maintained remission
- Phase II study is ongoing

Bollard et al: J Clin Oncol 2013

Thank You

