Locally Advanced NSCLC-Radiation Therapy

Sue Yom, MD, PhD, MAS, FASTRO Vice Chair and Jacobs Distinguished Professor University of California, San Francisco

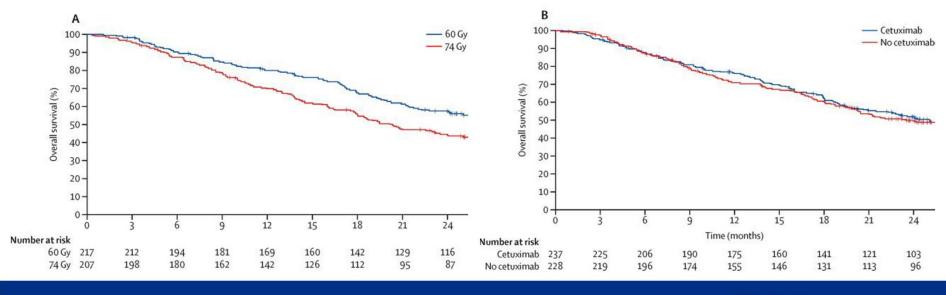
20 World Conference Lung Cancer Singapore

DISCLOSURES

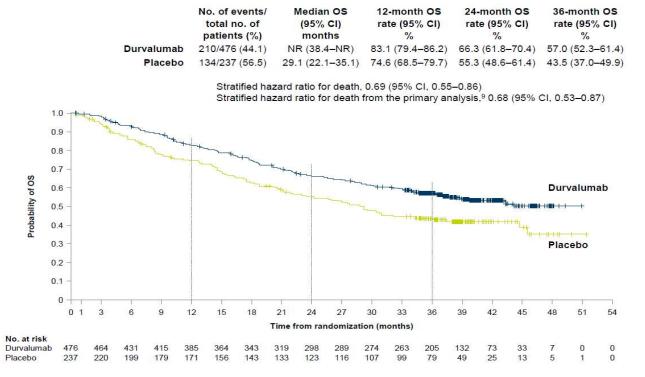
Commercial Interest	Relationship(s)
Bristol Myers Squibb	PI – clinical trial
Merck	PI – clinical trial
BioMimetix	PI – clinical trial
Genentech	PI – clinical trial

2020 World Conference on Lung Cancer Singapore

Local Tumor Control from Selected Modern Trials


Study	Radiation Technology	Grade \ge 3 Radiation Pneumonitis, %	2-Year Tumor Control %
Liao et al ¹	PSPT arm: 3D, 66 or 74 Gy	11	65-66†
	IMRT arm: 66 Gy or 74 Gy	7	69-70†
RTOG 61711	74-Gy arm: 3D-CRT/IMRT	7	61
	60-Gy arm: 3D-CRT/IMRT	4	69
PROCLAIM ¹²	Pemetrexed + cisplatin arm: RT* 60-66 Gy	< 3	63
	Etopside + cisplatin arm: RT* 60-66 Gy	< 3	54
UMCC200712313	PET-guided ART; 3D-CRT; median dose, 83 Gy	7	82

Kong, JCO, 2018


RTOG 0617: 74 Gy vs 60 Gy for NSCLC

- 74 Gy was not superior to 60 Gy
- Addition of cetuximab was not superior to chemoradiation alone

PACIFIC trial: advent of immunotherapy

- Median duration of follow-up was 33.3 mos
- 48.2% of patients have died as of 1/31/19
- 44.1% on Durva arm vs. 56.5% on placebo arm

2020 World Conference on Lung Cancer Singapore

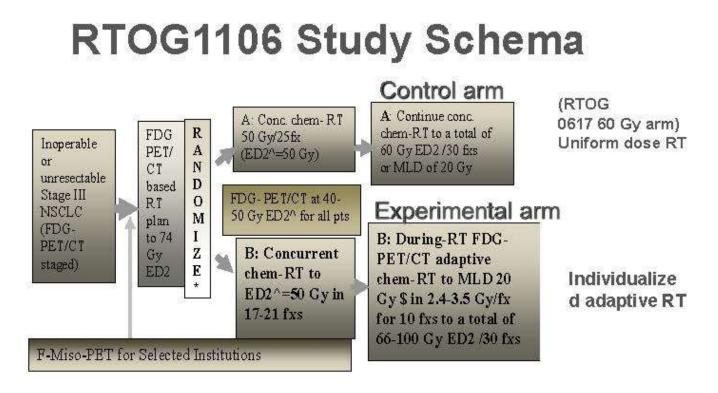
Does radiation dose escalation matter in the wake of PACIFIC?

- At median followup of 25.2 months, intrathoracic progression occurred in 37% of patients in durvalumab arm and 48% of those in placebo arm
- But toxicity is more concerning in patients receiving duvalumab increased risks of pneumonitis and patients have less reserve to tolerate subtle or overt cardiac toxicity
- Needs for more novel forms of dose escalation
- More targeted give the dose to specific high risk subvolumes
- More personalized give the dose to those who can tolerate it better

Why FDG-PET?

- ¹⁸F-FDG uptake correlates with tumor grade, stage, cell proliferation, response to therapy, and prognosis
- Areas of high ¹⁸F-FDG uptake on pretreatment scans → sites of tumor relapse in patients with non-small cell lung cancer
- Ability to identify highly metabolically active subvolumes within gross tumor masses
- Prospective phase II and III studies demonstrated ability to dose escalate with FDG-PET within organ tolerances

Mankoff, JAMA Oncol, 2017; Aerts, Lung Cancer, 2012; Calais, J Nuc Med, 2015; van Elmpt, Radiother Oncol 2012; Wanet Strahlenther Onkol 2017; Moller, Radiother Oncol 2017

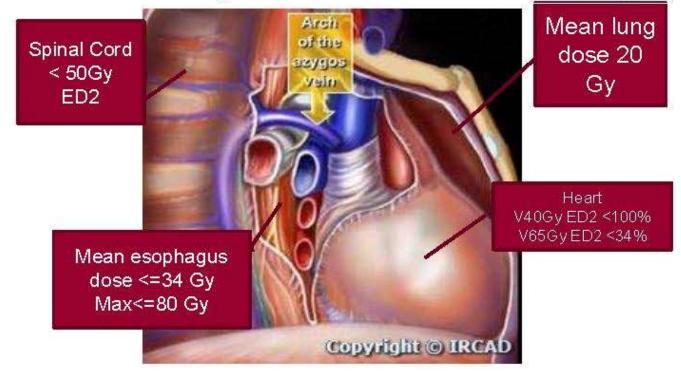


)20 World Conference 1 Lung Cancer Singapore

Results of RTOG 1106/ACRIN-6697: A Randomized Phase II Trial of Individualized Adaptive Radiotherapy Using Mid-Treatment FDG-PET/CT and Modern Technology in Locally Advanced Non-Small Cell Lung Cancer (NSCLC)

Feng-Ming (Spring) Kong, MD, PhD, FACR, FAAWR, FASTRO

*Randomization: 1:2 for control and experimental arms, stratified by GTV (200 cc) and MLD (14 Gy)



Study Statistical Considerations

- The Primary Endpoint: 2 year local-regional control rate based on central review
 - The trial did not define infield tumor control or overall control
- Secondary endpoints:
 - Tumor volume reduction, adaptive RT dose escalation & RT plan compliances
 - Local regional progression free survival
 - Overall survival and treatment toxicity
- Sample size and powers: 132 total, 44 vs 88
 According to preliminary data from U of Michigan, 1 Gy dose escalation ~20% improvement can be achieved from 20 Gy
 Adaptive RT dose escalation. The study was designed for 85%
 power.

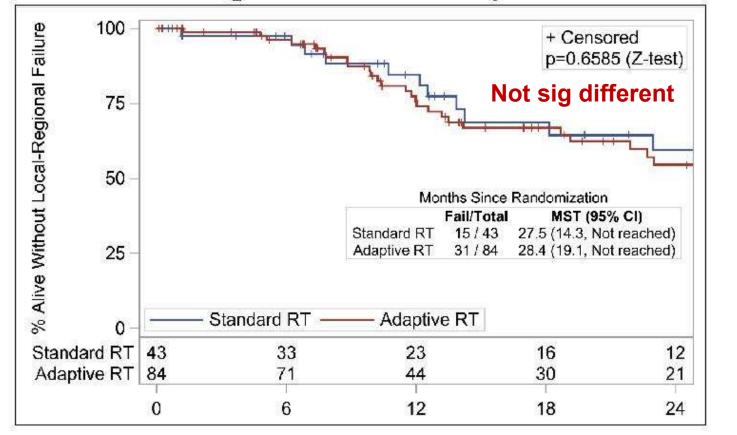
OAR Limits (Similar to RTOG617)

•Lower prescription dose and greater dose heterogeneity were allowed to reach the dose limits of OARs.

Results-1: Patients and Doses

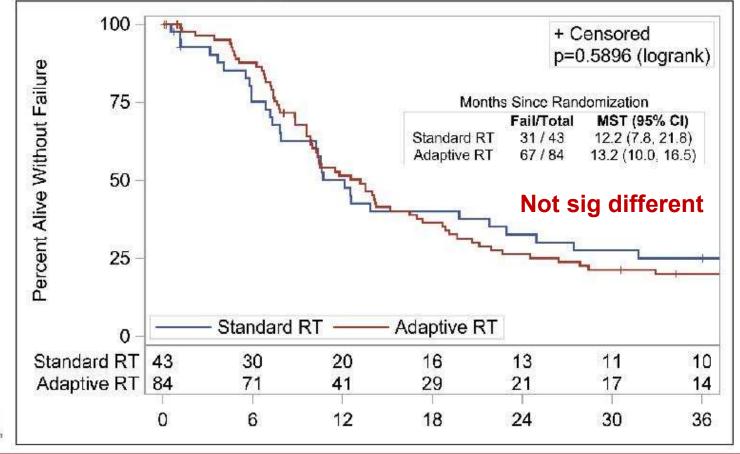
• A total of 138 patients enrolled **Radiation Therapy Delivery Summary** Standard RT Adaptive RT between February 22, 2012 and (n=43)(n=84) March 8, 2017 **Received RT** No 1(2.3%)5 (6.0%) Minimum follow-up 3.6 years Yes 42 (97.7%) 79 (94.0%) **Reason for no RT** (n=1)(n=5)Patient characteristics were balanced Patient withdrawal prior to 1 (100.0%) 3 (60.0%) between two arms beginning protocol treatment Adverse events 0 (0.0%) 1 (20.0%) 7/84 patients did not receive protocol Other (Plan could not be made 0 (0.0%) 1 (20.0%) RT in ART arm (5 no RT, 2 no ART) to meet protocol requirements) Total dose (Gy) (n=79) (n=42)Adaptive RT dose escalation was 11 Median 60 70.95 8 - 60 3.96 - 83.5 Min - Max Gy 67.8 - 76.08 Q1 - Q3 60 - 60

BigART \rightarrow 11 Gy of escalation, did not achieve study goal of 20 Gy

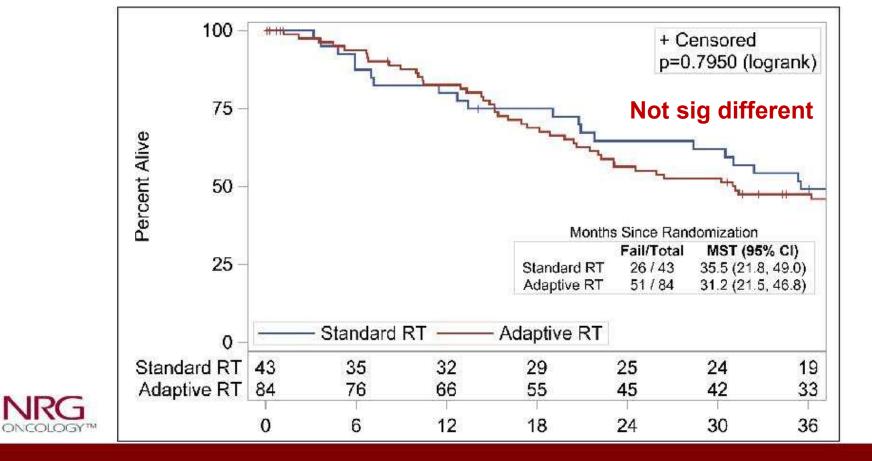

Results-5: Thoracic Adverse Events

ž	Standard RT (n=42)	Adaptive RT (n=80)
Any Grade 2+ Adverse Event	37 (88.1%)	78 (97.5%)
Grade 2+ Esophagitis	13 (31.0%)	34 (42.5%)
Grade 2+ Respiratory, Thoracic, and Mediastinal Disorders	19 (45.2%)	35 (43.8%)
Grade 2+ Cardiac Disorders	2 (4.8%)	4 (5.0%)

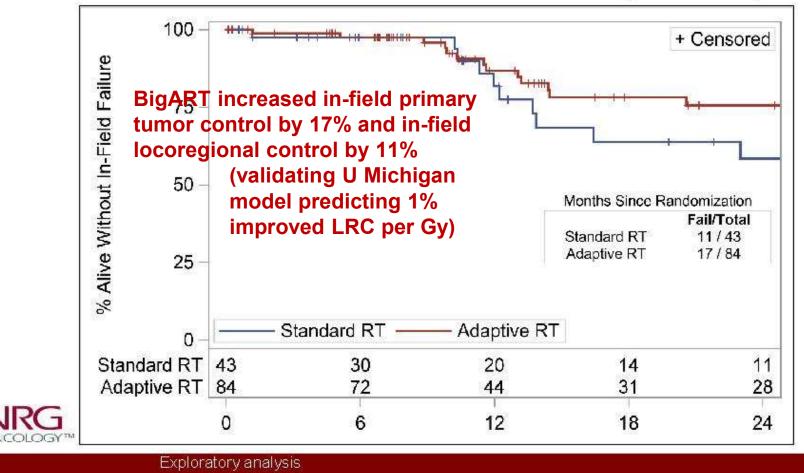
*Adverse events graded per CTCAE v4.0 criteria and reported as possibly, probably, or definitely related to treatment


Results-6: Local-Regional Control (Central Review)

Failure based on central review of imaging


Results-10: Progression Free Survival

NRG


ONCOLOGYT

Results-11: Overall Survival

NRG

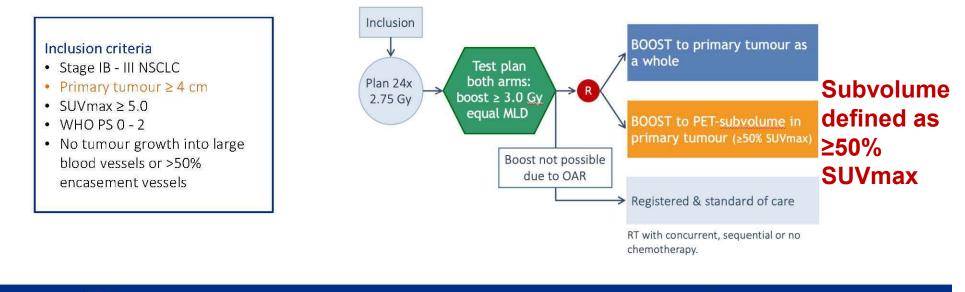
Results-9: In-field Local Tumor Control (Site Reported)

ONCOLOGY

Local, regional and pulmonary failures in the randomised PET-Boost trial for NSCLC patients

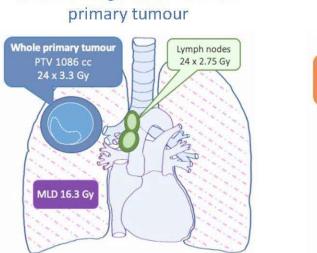
S.A. Cooke The Netherlands Cancer Institute - Antoni van Leeuwenhoek Amsterdam, The Netherlands

D. de Ruysscher, B. Reymen, M. Lambrecht, G. Fredberg Persson, C. Faivre-Finn, E. Dieleman, J. van Diessen, K. Sikorska, F. Lalezari, J-J. Sonke, J. Belderbos.

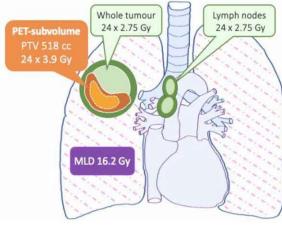


2020 World Conference on Lung Cancer Singapore

PET-Boost Study Design


Design phase 2, randomised, international trial for stage II-III NSCLC patients

<u>Goal</u> improve freedom from local failure (FFLF) rate at 1 year from 70% to 85%


Two isotoxic dose escalation treatment arms

Boost homogeneous to whole

Two plans for one example patient

Boost PET-subvolume within primary tumour

⁺Van Diessen et al. Rad & Onc 2019

PTV

Primary endpoint

Secondary endpoints
Overall survival
Toxicity[†]

• Distant metastasis

• Quality of life

• Freedom from local failure at 1 year

by central review of CT-scans

• Local and regional failures outside

2020 World Conference on Lung Cancer Singapore

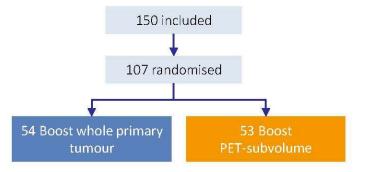
Methods

Trial was open Apr 2010 to Sep 2017:

- 7 European institutes
- Due to slow accrual trial was closed after inclusion of 150 patients

Central review of follow-up CT-imaging by radiologist.

Site of *first* intrathoracic recurrence


- Local recurrence
- Regional recurrences: in-field or out-of-field
- New pulmonary lesions

Phase 2 trial design in which arms are not compared \rightarrow no p-values reported.

2020 World Conference on Lung Cancer Singapore

Patient & Treatment Characteristics

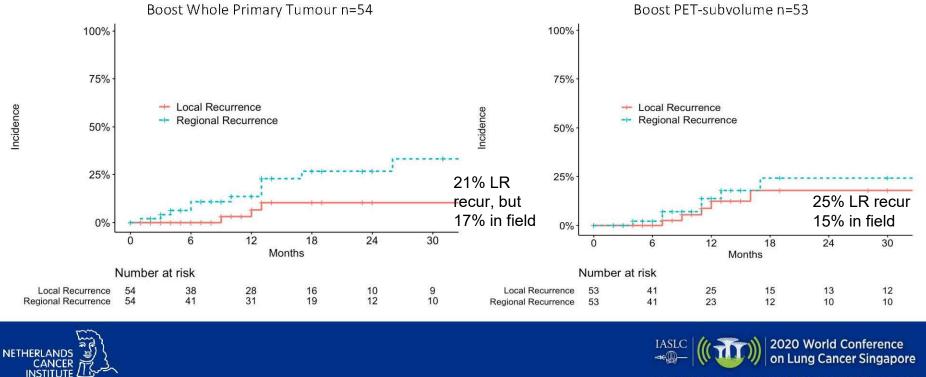
	Boost whole primary tumour (n=54)	Boost PET- subvolume (n=53)	
Male	69 %	58 %	
Age median	66 yrs	69 yrs	
WHO 0-1	91%	96 %	
WHO 2	9%	4 %	
Stage II	9 %	15 %	
Stage IIIA	56 %	62 %	
Stage IIIB	35 %	23 %	
Concurrent chemo	76 %	68 %	
Sequential	7 %	11 %	
None	17 %	21 %	
Non-squamous	65 %	55 %	
Squamous	31 %	45 %	

2020 World Conference on Lung Cancer Singapore

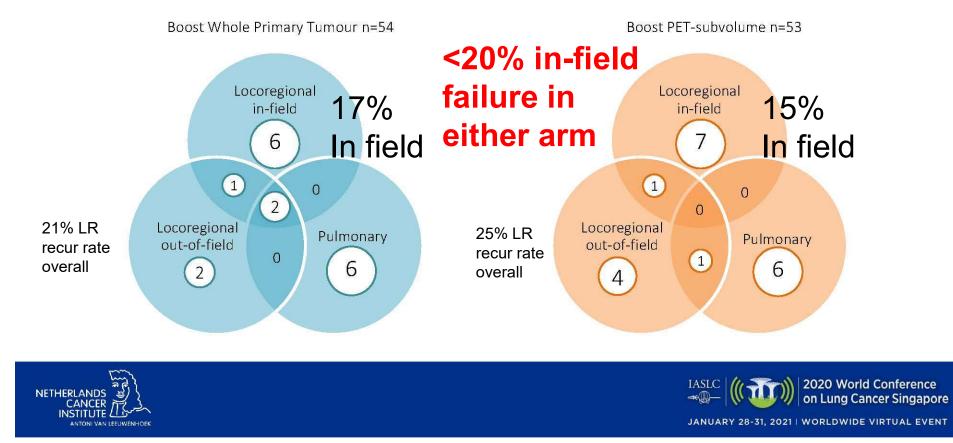
Planning Results

			Boost whole primary tumour (n=54)	Boost PET- subvolume (n=53)
iTV _{prim}	(cm³)	median + IQR	100 (66 -178)	115 (61-180)
GTV _{PET-subvolume}	(cm³)	median + IQR	n.a.	29 (14 - 52)
PTV_total	(cm³)	median + IQR	499 (401-643)	497 (344 – 665)
Dose per fraction		median	3.3 Gy	3.5 Gy
Total physical dose		median	78 Gy	84 Gy
Mean Lung Dose (Gy)	EQD2 (α/β=3 Gy)	mean + SD	16.6 ± 2.8	15.6 ± 3.8
Heart Mean Dose (Gy) Heart Max Dose (Gy)	EQD2 (α/β=3 Gy) EQD2 (α/β=3 Gy)	median + IQR median + IQR	8 (3 – 18) 67 (53-75)	11 (2.4 – 17) 68 (38 – 73)
Oes V36 (Gy)		median + IQR	36 (27 – 47)	36 (19 – 47)

Very high doses were achieved to the primary tumor!



2020 World Conference on Lung Cancer Singapore


Local and Regional Recurrences

Median FU time 12.6 months

ANTONI VAN LEEUWENHOEK

Site of First Intrathoracic Progression

wclc2020.IASLC.com | #WCLC20 CONQUERING THORACIC CANCERS WORLDWIDE

Higher the biological effective dose (BED) better the local-control

When BED 101-125Gy, projected tumor control of 70%-80%

Kong's Study (Abstract #3790)

Adaptive arm BED median (α/β=10)
 = 95.8Gy

Cooke's study (Abstract # 2266)

Boost PET-subvolume BED median (α/β=10)
 = 113.4 Gy

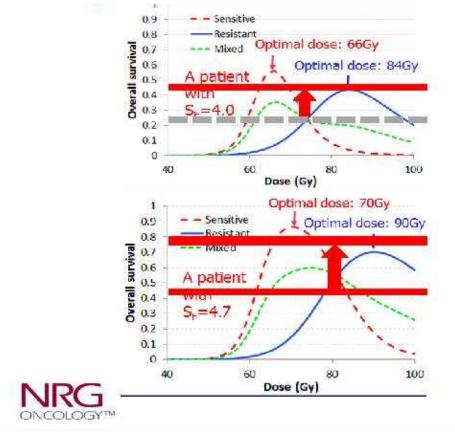
BED-Gy	Projected tumor control: LQ	100	
50-75 Gy	44%-58%	A1 80	
76-100 Gy	58%-70%	Probat	
101-125 Gy	70%-80%		
126-150 Gy	80%-88%	lonuo 40	/
151-175 Gy	86%-92%	0	
176-200 Gy	92%-95%		
200-225 Gy	95%-97%	E	
225-250 Gy	97%-98%	0 +	· · , ·
>250 Gy	$\geq 98\%$	0	50

BED versus tumor control for linear quadratic (LQ) model

Tumor control probability (TCP) as a function of BED for stage | NSCLC

BED (Gy)

1 fraction (SBRT) 3-8 fractions (SBRT)


(for reference - SBRT 50 Gy in 5 fractions = BED 100 Gy)

Mehta N. Practical Radiat Oncol 2012 Brown. JM. Int J Radiat Oncol Biol Phys, 2013

150

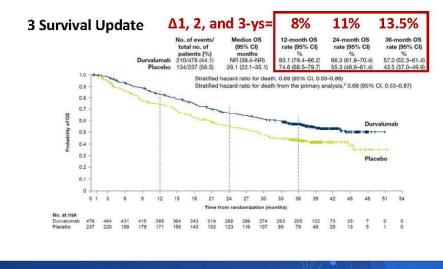
Presented by You Lu, West China Hospital, Sichuan U, China

Future directions: individualized radiosensitivity or other biologically based selection principles?

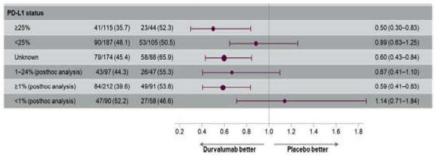
RTOG617 study revealed 2/3 patients had sensitive genotype, will not benefit from RT dose escalation. Dose optimization may improve survival. ~Kong et al ASTRO 2020

ART can increase normal tissue sparing factor (Sp) to improve survival on top of dose optimization in each individual.

Prospective study on ART dose optimization is needed.



wclc2020.IASLC.com | #WCLC20 CONQUERING THORACIC CANCERS WORLDWIDE

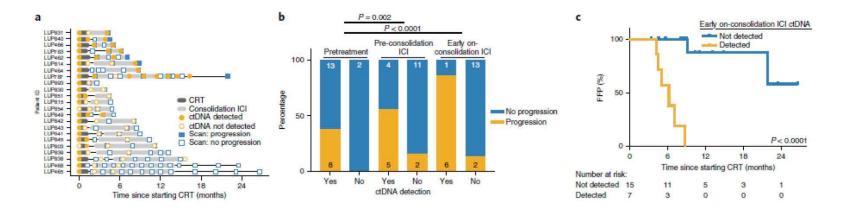

Our aim at increasing the cure rate in LA-NSCLC

Other biological predictive indictors (eg. PD-L1)?

Improved LC & OS by ICI Consolidation in PACIFIC study

PD-L1 status: > 25%

Gray JE, et al. J Thora Oncol. 2020 Antonia SJ, et al, N Engl J Med 2017


Presented by You Lu, West China Hospital, Sichuan U, China

wclc2020.IASLC.com | #WCLC20 CONQUERING THORACIC CANCERS WORLDWIDE

Beyond the high FDG-uptake Region by PET and expression of PD-L1

Circulating tumor DNA dynamics predict benefit from consolidation IO in LA-NSCLC

ctDNA changes during therapy are associated with outcomes in LA-NSCLC patients treated with CRT and consolidation ICI.

Everett J. Moding, et al. Nature Cancer. 2020

Presented by You Lu, West China Hospital, Sichuan U, China

Future directions: more frequent or continuous adaptive replanning of radiation?

- For ¹⁸F-FDG, radiation causes decrease of tracer uptake and tumor SUV_{max} but increases background uptake due to radiation-induced inflammation
- \rightarrow When is best time to adapt? second vs fourth week of treatment?
- Image-guided radiotherapy systems allow increasing automation
- CBCT-Linac systems: daily delineation of target volumes and automated daily dose evaluation
- MRI-Linac systems: daily assessment of functional parameters derived from perfusion, diffusion, and spectroscopy imaging
- PET-Linac systems: clinical use has not yet been fully reported

20 World Conference Lung Cancer Singapore

Future directions: PET tracers targeting hypoxia?

- ¹⁸F-FMISO = most extensively studied PET tracer for imaging hypoxia
- high lipophilicity and slow plasma clearance, low tumor-to-background ratio
- <u>F-MISO results have not yet been reported from RTOG 1106</u>
- Second-generation nitroimidazole derivatives: more hydrophilic, lower lipophilicity, higher tumor-to-background ratio
- ¹⁸F-fluoroazatiomycin arabinoside (¹⁸F-FAZA)
- ¹⁸F-fluoroerythronitroimidazole (¹⁸F-FETNIM)
- ¹⁸F-flortanidazole (¹⁸F-HX4)
- ⁴Cu-ATSM
- bioreductive enzymes reduce Cu (II) to Cu (I) in hypoxic conditions, which dissociates from ATSM and is trapped within the hypoxic cell

- Locoregional relapse is frequent after chemoradiation even when adjuvant immunotherapy is given
- RTOG 1106 and PET-Boost endpoints of LRC not met, but dose escalation does clearly improve in-field control
- Still looking for better selection principles
- Still need to optimize when to adapt and possibly ? which tracer(s) to use

20 World Conference Lung Cancer Singapore