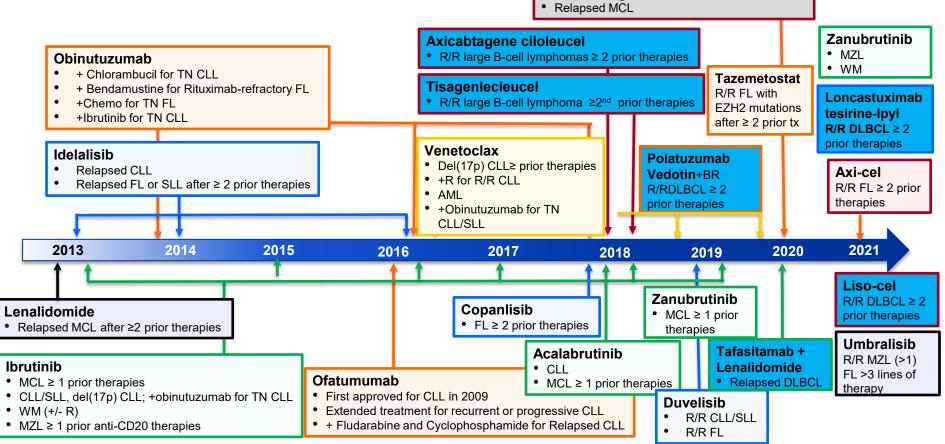


"DLBCL and Hodgkin's Disease: Novel Approaches"

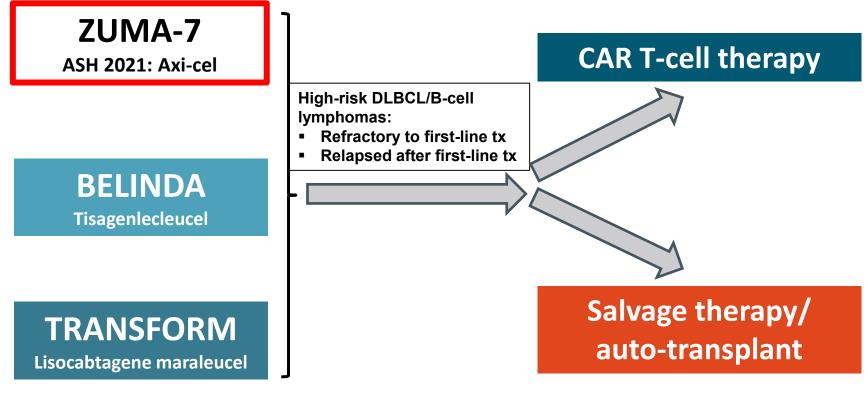
Eduardo M. Sotomayor, MD


Director, TGH Cancer Institute Professor, Morsani College of Medicine University of South Florida

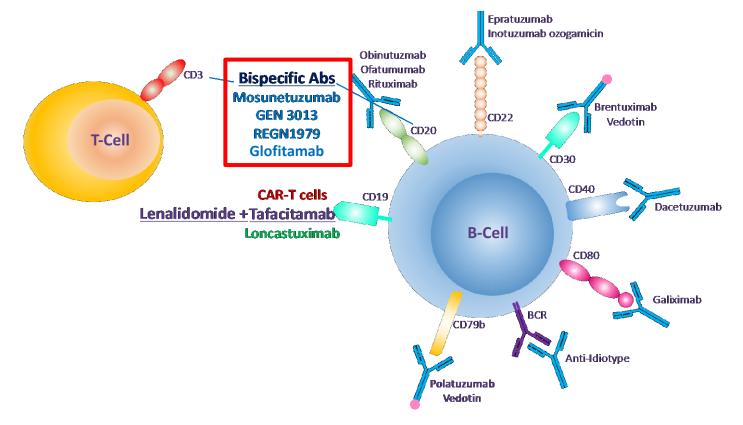
DLBCL: After many years of marginal progress.....a plethora of new treatments

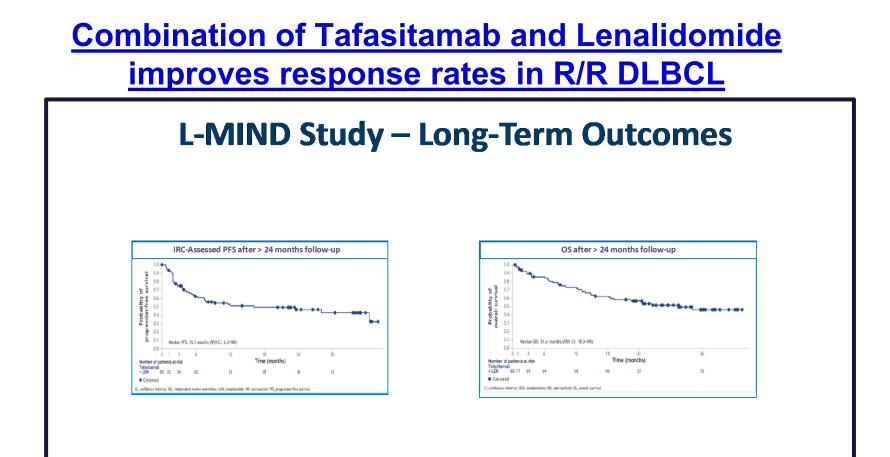
- <u>2000</u>: Rituximab added to CHOP chemotherapy (RCHOP) for frontline treatment of DLBCL ...new standard of care
- Several attempts to improve frontline treatment of DLBCL beyond R-CHOP (novel anti-CD20 antibodies or targeted therapy in combination with CHOP).....Failed
- DA-EPOCH used in some subtypes (HIV-associated DLBCL, PMLBC)
- Checkpoint blockade: Modest activity in relapsed/refractory DLBCL, but...new encouraging data in frontline setting (Neoadjuvant?)
- THE LAST FIVE YEARS:.... CAR T-cells, POLA, TAFA, LONCA

Timeline of Newer Agents for DLBCL

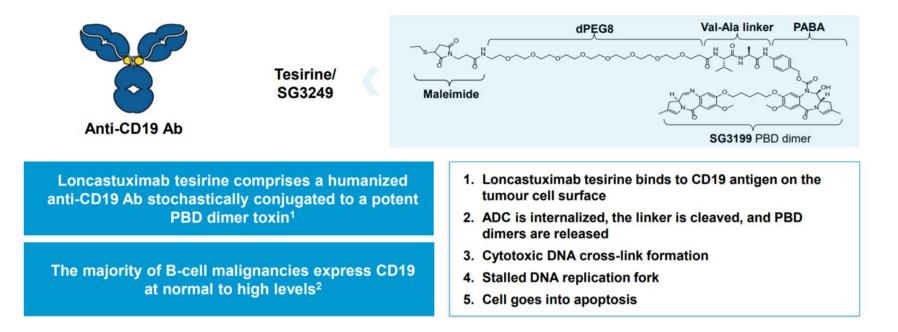

Brexucabtagene autoleucel

DLBCL: After many years of marginal progress.....a plethora of new treatments


- CD19 CAR T-cells have shown significant efficacy in patients with relapsed/refractory CD19 positive DLBCL and other B-cell lymphomas.
 - Three platforms are FDA-approved (Axi-cel, Tisa-cel and Liso-cel)
 - <u>ASH 2021</u>: Challenging ASCT in relapsed DLBCL? Role in frontline therapy for high risk patients?
- **CD19** is an enticing target for novel approaches:
 - Tafasitamab, anti-CD19 antibody (+/- Lenalidomide)
 - Loncastuximab Tesirine (Anti-CD19 Antibody-Drug Conjugate)
- **CD20** is....again an enticing target for bi-specific antibodies:
 - Several bi-specific directed T-cell engager (BITE) targeting CD20 and CD3 (CD20 x CD3)....


ASH 2021: Will CD19 CAR T-cell Replace Autologous transplant for DLBCL?

NCT03391466. NCT03570892. NCT03575351.


ASH 2021....the saga continues: Bispecific Antibodies

Salles et al. Lancet Oncol 2020

Loncastuximab Tesirine (ADCT-402)

Figures from Radford, et al. Hematol Oncol. 2019;37(52):93-95. doi.org/10.1002/hon.60_2629

Loncastuximab Tesirine Shows Significant Activity in R/R Diffuse Large B-cell Lymphoma

Overall Response Rate: By Clinical Characteristics

Characteristic	Subgroup	All ≥120 µg/kg, % (responders/total)	Characteristic	Subgroup	All ≥120 µg/kg, % (responders/tota
Age group	<65 Years	33.3 (23/69)	Number of prior therapies Response to first-line therapy	≤3 lines	43.8 (35/80)
	65–74 Years	52.8 (19/36)		>3 lines	42.6 (20/47)
	≥75 Years	59.1 (13/22)			
Bulky disease	Absent	46.8 (51/109)		Relapsed	53.1 (43/81)
	Present	22.2 (4/18)		Refractory	23.1 (6/26)
Double/Triple hit	Absent	47.6 (50/105)	Response to most recent therapy	Relapsed	59.1 (26/44)
	Present	22.7 (5/22)		Refractory	35.1 (26/74)
Transformed	No	39.6 (38/96)	Overall		0011 (20114)
	Yes	54.8 (17/31)			43.3 (55/127)

The most common grade ≥3 TEAEs (≥10%): Gammaglutamyltransferase increase (20.2%)

Decreased neutrophils (38%)

Decreased platelets (27.1%)

Anemia (11.6%)

Figures from Radford, et al. Hematol Oncol. 2019;37(52):93-95. doi.org/10.1002/hon.60_2629

Polatuzumab Vedotin

- Humanized anti-CD79b mAb conjugated to MMAE
 - CD79b is a B-cell-specific surface antigen expressed in NHL

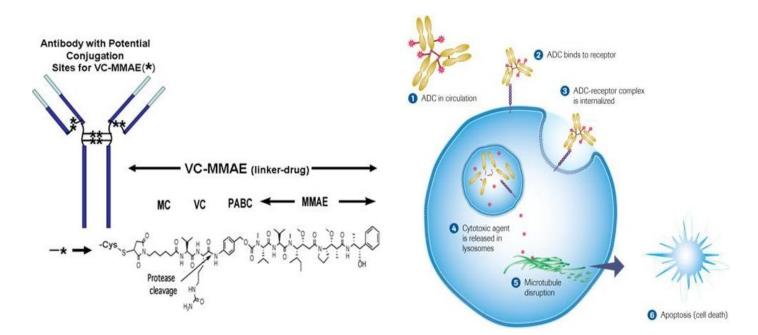
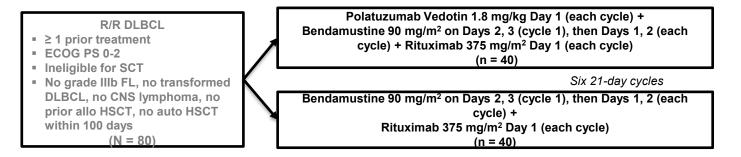
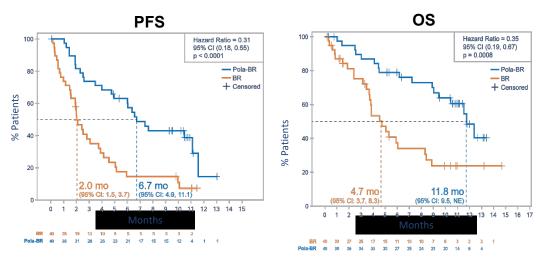
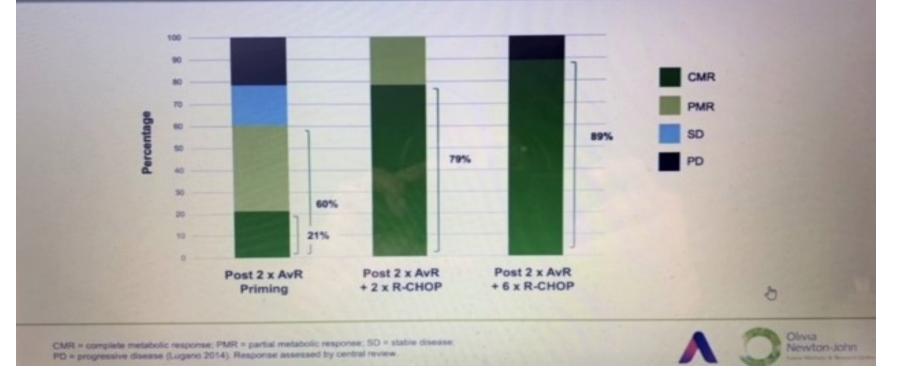




Figure from: Morschhauser, et al. J Clin Oncol. 2014;32(15_suppl):8519. Doman, et al. Blood. 2009;114:2721-2729. Polson, et al. Blood. 2007;110:616-623. Sehn, et al. ASH 2017;Abstract 2821.

Polatuzumab Vedotin+Bendamustine/Rituximab for R/R DLBCL (Phase II)

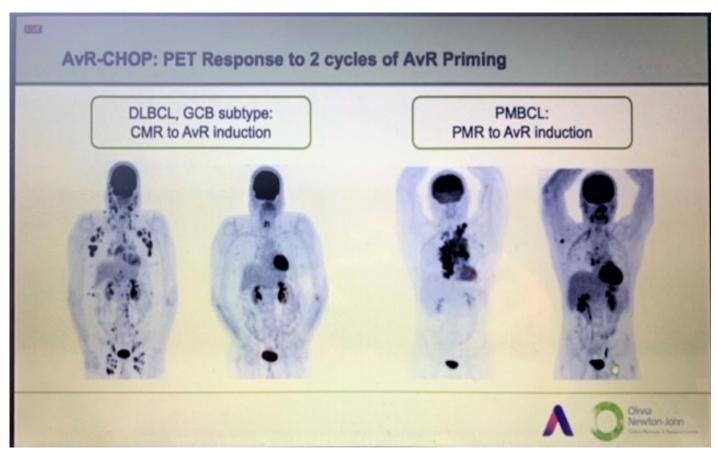
- CR by IRC 40% vs 15% (P = .012)
- PV addition associated with improved DoR, EFS, PFS, and OS
- OS benefit with PV + BR was consistent across subgroups

Sehn LH, et al. J Clin Oncol. 2020;38(2):155-165. doi: 10.1200/JCO.19.00172


"Repurposing" checkpoint blockade in DLBCL

Checkpoint Blockade in B-cell NHL

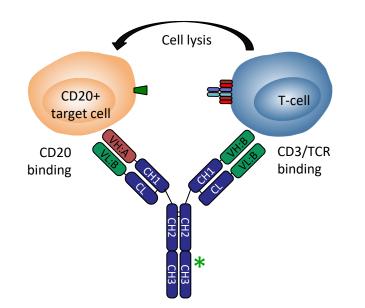
- Unlike the success in Hodgkin's lymphoma, clinical trials with checkpoint blockade antibodies in relapsed/refractory B-cell NHL have been disappointed so far:
 - Despite malignant B-cells being surrounded by an "army" of T-cells
 - Role of the immunosuppressive Tumor Microenvironment (TME). TME is prognostic and potentially predictive of outcomes in DLBCL¹
- Perhaps frontline checkpoint inhibition, given when host immunity is relatively intact, might improve outcomes in DLBCL
 - Indeed, it has been shown in the neoadjuvant setting for several solid malignancies...including responses in subtypes not known to be sensitive to checkpoint blockade
- Avelumab (Av) is an anti-PDL1 antibody with ADCC activity & is synergistic with rituximab *in vitro*.
- <u>Hypothesis</u>: Sequential treatment with Avelumab "priming" followed by R-CHOP might augment chemotherapy efficacy in DLBCL²
- 1. Ansell et al. JCO 2019; 2. Hawkes, E. et al, ASH 2020


AvR-CHOP: Single-arm Phase II Study

AvR-CHOP: Response Rates

Hawkes, E. et al, ASH 2020

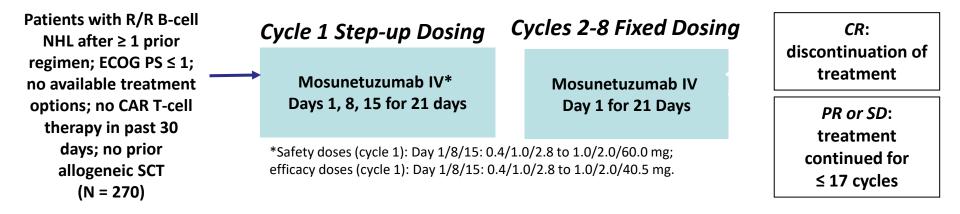
AvR-CHOP: Single-arm Phase II Study



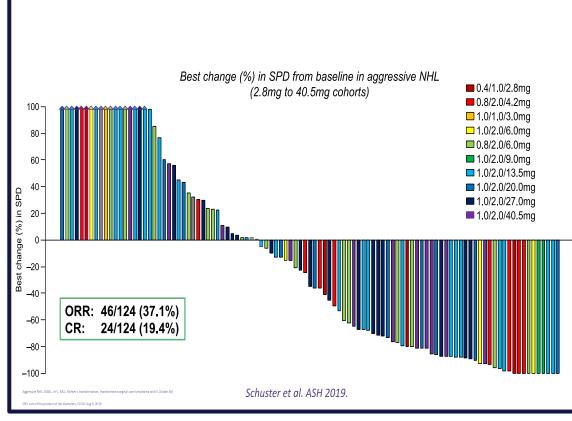
Hawkes, E. et al, ASH 2020

AvR-CHOP: Conclusions

- ORR of 60% with a CR of 21% to AvR priming suggest potential synergy of avelumab + rituximab and superior efficacy of PDL1 inhibition in the frontline setting as compared to prior studies in the R/R setting
- Sequential AvR priming followed by R-CHOP and Av maintenance is feasible with a manageable toxicity profile and a high CR of 89%
- Immune-related AE were generally mild to moderate in severity; only one pt. discontinued therapy due to an irAR (gr3 hepatitis). No unexpected toxicity or delays to RCHOP occurred
- Further studies of sequential therapy using immune priming strategies prior to R-CHOP in DLBCL should be explored


<u>Mosunetuzumab (GO297) a Human anti-CD20 x anti-</u> CD3 Monoclonal Bispecific Antibody

Cross-linking results in targeted activation of local T-cells and T-cell-mediated killing of CD20+ B-cells (independently of TCR-mediated recognition)


Mosunetuzumab in R/R B-cell NHL: Study Design

Open-label phase I/Ib study

Primary objectives: safety, tolerability, maximum tolerated dose, best objective response

Mosunetuzumab in R/R B-cell NHL: Study Design

- Greater efficacy observed with higher exposure to mosunetuzumab
 - Measured by occupancy of CD20 receptors
 - Patients achieving CR with continuing remission up to 16 m off treatment: n = 17 (70.8%)

٠

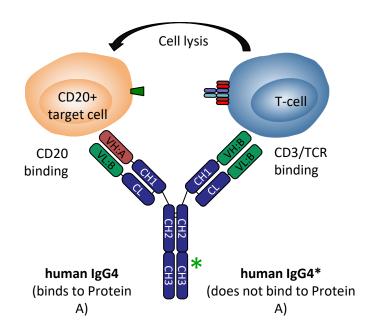
 – ≥ 16 mos after treatment cessation

S. Schuster et al. ASH 2019. Abstr 6.

Response Rates Among Patients With Prior CAR T-Cell Therapy and Retreated Patients

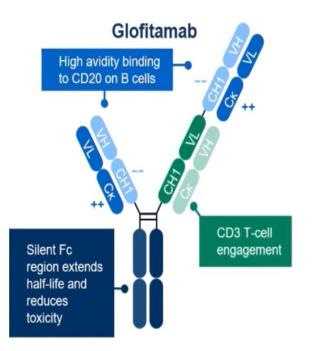
Response, n (%)	Patients With Prior CAR T-Cell Therapy
Total population with prior CAR T-cell therapy (n = 18) ORR CR	7 (38.9) 4 (22.2)
DLBCL (n = 9) • ORR • CR	2 (22.2) 2 (22.2)
trFL (n = 5) ▪ ORR ▪ CR	1 (20) 0
FL (n = 4) • ORR • CR	4 (100) 2 (50)

Response, n (%)	Retreated Patients (n = 4)	
ORRCR	3 (75) 1 (25)	


 No CRS events occurred during retreatment

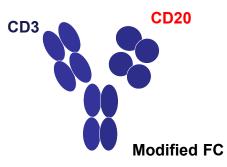
S. Schuster et al. ASH 2019. Abstr 6.

Mosunetuzumab in previously untreated elderly patients with DLBCL (ASH 2020)


- Elderly patients with DLBCL unfit for conventional treatment (>80 y/o)
- Stepping up dose (D1/D8/D15)
- Optional pretreatment with prednisone+ vincristine
- ORR: 63%; CR: 45%. Durable responses
- CRS mostly grade 1 and limited to first administration
- Might represent a "Chemo-free" option for elderly patients (versus mini-R-CHOP?)

Odronextamab (REGN1979): Human anti-CD20 x anti-CD3 Monoclonal Bispecific Antibody

- Bispecific, hinge-stabilized mAb based on an IgG4 isotype with reduced effector function
- Monovalent for each target
- Amino acid substitution introduces asymmetric protein A binding allowing selective isolation and purification


Glofitamab

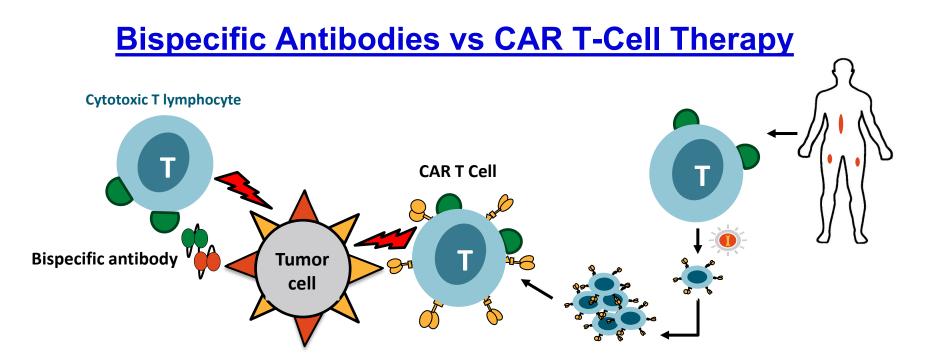
- Glofitamab is a BiAbs with unique IgG full length antibody with 2:1 configuration.
- Superior pre-clinical activity over classical 1:1 BiAbs
- Obinutuzumab pretreatment allowed for rapid escalation and mitigating the risk of CRS

Epcoritamab (formerly GEN3013)

- Duobody:
 - Fully humanized IgG1 antibody
 - IgG1 Fc modified to minimize Fcdependent effector function

- Epcoritamab investigational,
 <u>subcutaneously administered</u>
 bispecific antibody targeting CD3 x
 CD20^[2]
 - Binds CD3-positive T-cells to malignant CD20-positive B-cells to induce T-cell activation and T-cell–mediated killing of target B-cells

Bi-Specific Antibodies in B-cell lymphomas: Efficacy


	CD20/CD3			
Ab type	Glofitamab	Mosunetuzumab	Odronextamab	Epcoritamab
Ν	98	131	136	58
Histology	FL,DLBCL,TFL other	aNHL: 124 iNHL: 67	DLBCL, FL, WM, MCL, MZL	DLBCL, FL, MCL, MZL, SLL
Prior Therapies	3 (1-13)	3 (1-14)	3 (1-11)	3 (1-18)
ORR	aNHL: 60.7% iNHL: 66.7%	aNHL: 37.1% iNHL: 62.7%	DLBCL (> 80 mg): 55% FL (> 5mg): 90%	aNHL > 48 mg sc: 91% iNHL: 90%
	aNHL: 53.6% DLBCL: 54.2%	aNHL: 19% iNHL: 43%	DLBCL: 55% FL: 70%	aNHL: 55% iNHL:n50%

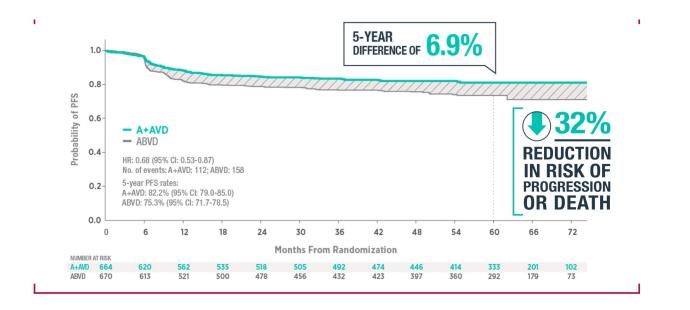
ORR, overall response rate; CR, complete response; TFL, transformed follicular lymphoma 1. Hutchings M, et al. ASH 2018. Abstract #226. 2. Budde LE, et al. ASH 2018. Abstract #399. 3. Banerji R, et al. ASH 2018. Abstract #1690. 4. Coyle L, et al. ASH 2018. Abstract #400.

Bi-Specific ABs currently studied in DLBCL: Safety

	CD20/CD3				CD19/CD3
Antibody	Glofitamab	Mosunetuzumab	Odronextamab	Epcoritamab	Blinatumomab
N	64 (> 600 ug)	131	136	58	76
CRS any CRS <u>></u> 3	63.5% 3.8%	28.9% 1.1%	61% 7.3%	59% 0	2% 2%
NT any NT <u>></u> 3	43.3% NR	49% 1.1%	NR 3.6%%	6.9% 3.4%	56% 24%

CRS, cytokine release syndrome; NT, neurotoxicity; 1.Hutchings M, et al. ASH 2018. Abstract #226. 2. Budde LE, et al. ASH 2018. Abstract #399. 3. Banerji R, et al. ASH 2018. Abstract #1690. 4. Coyle L, et al. ASH 2018. Abstract #400.

Characteristic	Bispecific Antibodies	CAR T-Cell Therapy
Preparation	"Off the shelf"	In vitro manufacturing (3-4 wks)
Dosing	Repetitive	Single (following lymphodepleting CT)
CRS incidence	Less	Greater


Hodgkin's Disease : Novel Approaches

- The management of classic Hodgkin lymphoma (HL) has changed significantly since the approval of brentuximab vedotin (BV) and the checkpoint inhibitors nivolumab and pembrolizumab.
- Frontline setting
 - BV + AVD has been incorporated as frontline treatment for patients with stage III/IV disease (Echelon-1 Trial)

First relapse:

- Second-line therapy ("salvage") followed by consolidation with autologous stem cell transplant (ASCT) remains the standard of care
- **BV** is now routinely incorporated into salvage therapy
- Studies are evaluating checkpoint inhibitors in the salvage setting as well.

A + AVD: PFS at 5 Years

Hodgkin's Disease: Novel Approaches

- <u>Second relapse/refractory disease</u>
 - Progression after ASCT remains a challenge.
 - Checkpoint inhibitors or BV provide prolonged disease control.....but patients will eventually progress
 - Combinations of BV + checkpoint inhibitors:
 - Phase I/II trial of nivolumab plus BV in relapsed or refractory HL: ORR of 82%: CR: 61%¹
 - Phase I trial of the triple combination of ipilimumab, nivolumab, and BV: ORR: 95% and CR : 79% in 19 evaluable patients who were treated with at least three cycles²

- 1. Herrera AF. et al. Blood. 2018;131:1183-1194
- 2. Diefenbach C. et al. a Blood. 2018;132:679.

Hodgkin's Disease: Novel Approaches

- <u>Second relapse/refractory disease</u>
 - Allogeneic stem cell transplant remains a consideration.
 - <u>Other Options</u>: Single-agent chemotherapy or noncytotoxic agents (panobinostat, everolimus and lenalidomide)
 - CD30-directed CAR T-cell therapy is promising.
 - **Bi-specifics** are being evaluated in clinical trials

CD30-directed CAR T-cell Therapy for Hodgkin's Disease

- Grover et al¹
 - 18 patients, 16 of whom had HL, with a median of 8 prior therapies.
 - Most patients received lymphodepletion with bendamustine/ fludarabine.
 - Fourteen patients had evidence of disease at the time of CAR–T cell infusion
 - ORR: 50%; CR: 43%.
- Ramos et al²
 - 37 patients with relapsed/refractory HL
 - Lymphodepletion with fludarabine/cyclophosphamide.
 - ORR: 62, CRR: 51% .
 - 1 year PFS: 36%, longer with Flu lymphodepletion
 - CRS:24%, all grade 1. No neurotoxicity. No Toci/steroids
- 1. Grover NS. et al. Blood. 2018;132:681.

Anti-CD30 sc

aG1 CH2CH3 linker

CD28 transmembrane 1

intracytoplasmic domain

CD3 d

2. Ramos CA. et al. Blood. 2020.

CANCER INSTITUTE

THANK YOU !

esotomayor@tgh.org