# Other Immunotherapy Targets and Agents (Advanced PD-L1)

## Jonathan Riess, MD Associate Professor UC Davis Comprehensive Cancer Center USA



020 World Conference n Lung Cancer Singapore

## DISCLOSURES

| Commercial Interest       | Relationship(s)                                                 |
|---------------------------|-----------------------------------------------------------------|
| Advisory Board            | Daichi-Sankyo, Blueprint, EMD Serano                            |
| Consulting                | Novartis, Boehringer Ingelheim                                  |
| Research (to institution) | AstraZeneca, Merck, Spectrum, Novartis, Revolution<br>Medicines |
|                           |                                                                 |



2020 World Conference on Lung Cancer Singapore

## CD47 Agonist Peptide PKHB1 Induced Cell Death in NSCLC via Triggering Endoplasmic Reticulum Stress

Jiani Ye

Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.



20 World Conference Lung Cancer Singapore

## Background

CD47, a transmembrane glycoprotein highly expressed on the surface of tumor cells, and inhibiting its binding to macrophage SIRP $\alpha$  promotes phagocytosis of tumor cells and engagement of the adaptive immune response<sup>[1]</sup>.

**TSP-1**, a natural ligand of CD47, its binding to CD47 can alter a variety of processes, including cell adhesion, growth, differentiation, and survival<sup>[2]</sup>.

**4N1K (KRFYVVMWKK)**, a functional decapeptide derived from the C-terminus globular domain of TSP-1<sup>[3]</sup>.



ides Induce Selective Death in Tumor Cells: Design, Synthesis, and Structure-Activity Relationship Studies. J Med Chem, 2016. 59(18): p. 8412-21

2020 World Conference on Lung Cancer Singapore

(A) qPCR on CD47 mRNA level in indicated NSCLC cell lines

(B) Flow cytometry analysis of the expression of CD47 protein in indicated NSCLC cell lines

(C) PKHB1 inhibited the NSCLC cells viability in dosedependent manner (2h)



PKHB1 induced cell apoptosis in NSCLC cell lines (2h)



(A) PKHB1 provoked apoptosis in NSCLC cells through triggering endoplasmic reticulum stress

А

(B) PKHB1 exerted antitumor effects in the PC9 xenograft nude mouse model





В

26

- Control

2020 World Conference on Lung Cancer Singapore



## Conclusion

CD47 agonist peptide PKHB1 induced cell death in NSCLC via triggering endoplasmic reticulum stress, and may be a promising peptide-based therapeutic target for NSCLC.





#### Blocking CD47-SIRPa signaling with an anti-CD47 monoclonal antibody enhances macrophage-mediated phagocytosis of Cancer cells



Takimoto et al. Annals of Oncology 2019.



#### Table 1. Agents targeting CD47 in clinical development

| Class                                       | Anti-CD47 mo     | noclonal ant | ibodies       |                     | SIRPa fusion protei                        | ns                                         |                                                              |
|---------------------------------------------|------------------|--------------|---------------|---------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------------------|
| Compound                                    | Hu5F9-G4         | CC-90002     | Ti-061        | SRF231              | TTI-621                                    | TTI-622                                    | ALX148                                                       |
| Molecule                                    | lgG4 mAb         | lgG4 mAb     | lgG4 mAb      | lgG4 mAb            | Wild-type SIRP <b>a</b> -IgG1<br>Fc fusion | Wild-type SIRP <b>a</b> -IgG4<br>Fc fusion | High-affinity SIRP <b>a</b> -IgG1<br>fusion with inactive Fc |
| Clinical development<br>start date          | August 2014      | March 2015   | March 2017    | March 2018          | January 2016                               | May 2018                                   | February 2017                                                |
| Study phase<br>Number of<br>clinical trials | Phase II<br>6    | Phase I<br>2 | Phase I<br>1  | Phase I<br>1        | Phase I<br>2                               | Phase I<br>1                               | Phase I<br>1                                                 |
| Sponsor                                     | Forty Seven Inc. | Celgene      | Arch Oncology | Surface<br>Oncology | Trillium<br>Therapeutics                   | Trillium<br>Therapeutics                   | ALX Oncology                                                 |

Takimoto et al. Annals of Oncology 2019.



2020 World Conference on Lung Cancer Singapore



## PARP1 inhibitors enhanced IFNγ-induced PD-L1 expression in LKB1-mutant lung cancer

### **Presenter: Xue Bai**

Xue Bai, Zeqin Guo, Lili Long, Yanpei Zhang, Zhongyi Dong

**Department of radiotherapy, Nanfang Hospital.** 

## Guangzhou, China



20 World Conference Lung Cancer Singapore

## Background

## LKB1

- is a tumor suppressor encodes a serine/threonine kinase which coordinates cell growth, polarity, motility, and metabolism.
- exhibits a distinct T cell-excluded tumor immune microenvironment.
- negatively impacts PDL1 expression on tumor cells







**Results** Figure 2 LKB1 increased IFNγ-induced pSTAT1 by decreasing the catalytic activity of PARP1



Figure 3 PARP1 knockdown or inhibitors decreased poly(ADP-ribosyl)ation of STAT1 and enhanced its phosphorylated level in an IFNγ-dependent manner



Figure 4 PARP1 inhibitors combined with PD1 immunotherapy induced a "hot" tumor microenvironment







|        | Parameter                                           | ABTL0812+<br>P/C<br>n=22 | Historical<br>data*, n=281 |
|--------|-----------------------------------------------------|--------------------------|----------------------------|
|        | ORR, % (n)                                          | 54.5 (12)                | 31.7 (89)                  |
|        | SD, % (n)                                           | 27.3 (6)                 | 44.1 (124)                 |
|        | PD, % (n)                                           | 18.2 (4)                 | 13.9 (39)                  |
|        | DOR, median (95% CI)                                | 4.9 (1.4-14.5)           | 4.9                        |
| *Paz-A | Chemo cycles, median<br>(95% CI)<br>res. NE IM 2018 | 4.0 (2.8-4.5)            | N.R.                       |

**Progression Free Survival** 







2020 World Conference on Lung Cancer Singapore



#### PARPi in Combination with IO in NSCLC and LKB1/STK11 mutation

Skoulidis F et al, Cancer Discovery, 2018

| Trial          | Phase | Population     | PARPi       | Combo            |
|----------------|-------|----------------|-------------|------------------|
|                |       |                |             | platinum-        |
| NCT02944396    | 1/2   | 1st line NSCLC | veliparib   | double/nivolumab |
| Javelin Parp   |       | Solid          |             |                  |
| Medley         | 1/2   | Tumors/NSCLC   | talazoparib | avelumab         |
| NCT03308942    |       | 2 NSCLC        | niraparib   | PD-1             |
| S1900C/Lung MA | λP    | 2 NSCLC        | talazoparib | avelumab         |



Model for STING pathway activation in response to DDR targeting in SCLC

Sen et al. Cancer Discovery 2019



2020 World Conference on Lung Cancer Singapore

## TAKE HOME MESSAGE

- CD47-SIRP-alpha antibodies have potential acitivity in cancer including in lung cancer
- PARPi may potential immunotherapy in LKB1 mutant NSCLC via increase in IFN-alpha (currently being studies in mSWOG Lung MAP substudy with PD-L1+ PARPi combination
- PARPi may potentiate IO in SCLC via STING pathway activation in response to DDR targeting in SCLC



20 World Conference Lung Cancer Singapore