

Targeted Therapy for Metastatic HR+/HER2-Breast Cancer: CDK4/6 and PI3K Inhibitors

Hope S. Rugo, MD Professor of Medicine Director, Breast Oncology and Clinical Trials Education University of California San Francisco Comprehensive Cancer Center

Cyclin-Dependent Kinase 4/6 Inhibitors^{1,2}

- Growth of HR+ BC is dependent on cyclin D1, a transcriptional target of ER¹
- Cyclin D1 activates CDK4/6 causing G1-S phase transition and cell cycle entry¹
- Endocrine-resistant cell lines are dependent on cyclin D1 and CDK4/61
- CDK4/6i prevent CDK4/6-mediated phosphorylation of Rb¹ •

BC=breast cancer; CDK4/6=cyclin-dependent kinase 4 and 6; CDK4/6i=cyclin-dependent kinase 4 and 6 inhibitors; ER=endoplasmic reticulum; HER2=human epidermal growth factor receptor 2; HR+=hormone receptor-positive;

Rb=retinoblastoma. 1. Created from Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015;14(2):130-146; 2. Extracted from Finn RS, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 2009;11(5):R77.

CDK4/6i: Phase III First-Line Studies in HR+ MBC

	Paloma-2 Finn et al, NEJM 2016; Rugo et al BCRT 2019	Monaleesa-2 Hortobagyi et al, NEJM 2016; Ann Oncol 2018; Slamon JCO 2018	Monarch-3 Goetz et al,JCO 2017; Johnston et al, NPJ Breast 2019	Monaleesa-7 Tripathy et al Lancet Oncol 2018; Im et al, NEJM 2019
Study design	Letrozole/Pla vs Let/Palbociclib (1:2)	Letrozole/Pla vs Let/Ribociclib (1:1)	Letrozole/Pla vs Let/Abemaciclib (1:2)	AI or TAM/Pla vs AI or Tam+OS/Ribociclib (1:1)
Eligibility	Postmenopausal First line	Postmenopausal First line	Postmenopausal First line	Pre/perimenopausal One prior chemo allowed (14%)
No. of pts	666 No progression on Als	668 No progression on Als	493 No progression on Als	672 DFI <u><</u> 12 mo: 30% 60% no prior E rx
PFS	14.5 vs 27.6 mo HR 0.56 (0.46-0.69) p<0.000001	16.0 vs 25.3 mo HR 0.556 (0.43-0.72); p=0.00000329 (HR 0.577 with fulvestrant in ML- 3)	14.8 vs 28.2 mo HR 0.54 (0.418-0.698) P=0.00002	13.0 vs 23.8 mo. HR 0.55 (0.44-0.69) P<0.0001 PFS2 sign longer
OS	Not enough events at median FU of 38 months No pre-planned interim OS analysis	Not enough events in ML2 ML3 reported	Not enough events	Yes Median FU 34.6 mo Pre-planned interim analysis

		No. Pts		HR (95% CI)
DALONAA 21.2	Visceral disease ^{1*}	324	⊢ ◆──┤	0.62 (0.47–0.81)
	Liver involvement ^{2†}	121		0.62 (0.41–0.95)
		No. Pts		HR (95% CI)
MONALEESA-2 ³	Visceral metastases [‡]	393	⊢ ◆───┤	0.535 (0.385–0.742)
		No. Pts		HR (95% CI)
MONARCH-3 ^{4,5}	Metastatic site Visceral4§	262	⊢_ ♦	0.57 (0.41–0.79)
	Liver metastases ^{5¶}			
	Yes	78		0.47 (0.25–0.87)
	No	415		0.57 (0.41–0.78)
			0.25 0.5 1 2	_
			Favours CDK4/6i Arm Favours	Placebo Arm

Efficacy in Patients with Visceral Metastases: 1L RCTs

Cross-trial comparisons need to be taken with caution. *Median ITT population follow-up: 37.6 months; [†]Median ITT population follow-up: 23.0 months; [‡]Median ITT population follow-up: 26.7 months (final analysis); [¶]Median follow-up was 17.8 months. ITT=intent to treat; Pts=patients; RCT=randomised controlled trial; 1L=first-line. **1.** Rugo HS, et al. Breast Cancer Res Treat. 2019;174:719–729; **2.** Turner NC, et al. Ann Oncol. 2018;29:669–680; **3.** Hortobagyi G, et al. Breast Cancer Research 2018;20:123; **4.** Johnston S, et al. NPJ Breast Cancer. 2019 Jan 17;5:5; **5.** Goetz MP, et al. J Clin Oncol 2017;35:3638–3646.

CDK 4/6i: Comparison of Trials in Patients with Progression on Prior NSAI. Prior Therapy Matters!

	PALOMA 3 Turner et al, NEJM 2015, NEJM 2018	MONARCH 2 Sledge et al, JCO 2017 JAMA Oncol, 2019	MONALEESA 3 Slamon et al, JCO 2018 NEJM 2020
Study design	Fulv/pla vs fulv/ palbociclib	Fulv/pla vs fulv/ abemaciclib	Fulv/pla vs fulv/ ribociclib
Patient #	521	699	726; 345 (2 nd line)
PFS (mo) p value (HR)	4.6 vs 11.2 P<.000001 (HR 0.497)	9.3 vs 16.9 P<.0001 (HR 0.536)	2 nd line: 9.1 vs 14.6 (HR 0.571) 1 st line: 19.6 vs 33.6 (HR 0.55)
Time from randomization to chemotherapy	8.8 vs 17.6 mo (HR 0.583)	22.1 vs 50.2 mo (HR 0.625)	29.5 vs NR mo (HR 0.696) PFS 2: 29.4 vs 39.8 mo (HR 0.670)
Prior chemotherapy for metastatic disease	31-36%	None	None
Prior endocrine Rx	Any number of lines	1	0 or 1
OS	28 vs 34.9 mo HR 0.791 (0.626-0.999) P=0.0246 (NS)	37.3 vs 46.7 mo HR 0.757 (0.606-0.945) P=0.0137	ITT: HR 0.72 (0.57–0.92), p=0.00455 2 nd line 32.5 vs 40.2 mo, HR 0.73 (0.53-1.00)

PFS Data of Fulvestrant + CDK 4/6 inhibitor Phase III Trials

Courtesy/adapted from Loible, ESMO 2019

1. Slamon D et al JCO 2018;36:2465-72; 2. Sledge GW et al JCO 2017;35:2875-84; 3. Turner N et al. NEJM 2016

OS Benefit from CDK4/6i with Fulvestrant: Decreasing Benefit with Increasing Line of Therapy

	N	Prior chemotherapy	Lines of endocrine therapy	OS (placebo vs CDK4/6i)
Paloma 3	521	Yes (~33%)	Any number	28 vs 34.2 mo HR 0.791
Endocrine sensitive (79%)	410			29.7 vs 39.7 mo HR 0.721
Monaleesa 3 (2 nd line/early relapse)	346	No	1	32.5 vs 40.2 mo HR 0.73
Monarch 2	669	No	1	37.3 vs 46.7 mo HR 0.757

Overall Survival PALOMA-3

Absolute improvement in median OS in the palbociclib arm vs the placebo arm was 6.9 months.

•

The prespecified significance threshold was 1-sided 0.0235 which was adjusted for two interim OS analyses

Patients With Sensitivity to Prior ET

Patients Without Sensitivity to Prior ET

Turner NC, et al. N Engl J Med. 2018;379(20):1926-1936.

OS in Patients <u>Without</u> and <u>With</u> Prior CT in ABC (Overall Population)

ABC=advanced breast cancer; CI=confidence interval; CT=chemotherapy; FUL=fulvestrant; HR=hazard ratio; ITT=intent-to-treat; OS=overall survival; PAL=palbociclib; PBO=placebo.

Slamon D et al. ESMO 2019; N Engl J Med. 2020;382(6):514-524

Sledge G et al. ESMO 2019; JAMA Oncology 2019 [Epub ahead of print]

Is There an Optimal Endocrine Partner in Combination with CDK4/6i? The Parsifal Trial

Llombart-Cussac et al, ASCO 2020

PARSIFAL: PFS ITT Analysis

- Trial initially designed with a superiority design (HR 0.70) with N=486
- If superiority was not achieved, design changed to a non-inferiority analysis with a non-inferiority margin of 1.21

Toxicity in 1 st line	Palbociclib	Ribociclib	Abemaciclib
Dosing schedule	3 wks on, one wk off	3 wks on, one wk off	Continuous
<u>></u> Gr 3 neutropenia	66%	59.6%	21.1%
Febrile neutropenia	1.6%	1.5%	<1%
<u>></u> Gr 3 diarrhea (all grade)	1% (26%)	1.2% (35%)	9.5 (81%)
Gr2/3 QTc prolongation	-	3/0.3 († with TAM)	-
Sr 3 AST/ALT increase	-	5.7/9.3% All grade ML3 13.7%	3.8/7%
Dose reduction/discontin due to AEs	36% / 9.7%	51% / 7.4%	43.4% / 19.6%
Alopecia	33%	33%	27%
Increased creatinine	-	-	98% (nl fcn)
VTE/PE	0.9 vs 1.4%	NR	4.9 vs 0.6%

ctDNA mutation landscape at end of treatment in PALOMA3

RB1 mutations acquired in 4.8% (6/125) patients on palbociclib and fulvestrant

PRESENTED AT: 2020ASCO ANNUAL MEETING AND UP presented by: PRESENTED BY: O'Leary et al

O'Leary et al Cancer Discov 2018

MONARCH3 paired ctDNA analysis

RB1 mutations selected in 6% of abemaciclb group, and 0% placebo p = 0.008

ESR1 alterations less frequently selected with abema vs placebo (17% vs 31%, p = 0.038)

PRESENTED AT: 2020ASCO ANNUAL MEETING #ASCO20 Solds are the property of the author, permission required for neuron. PRESENTED BY:

Goetz et al ASCO 2020

CDK4/6i after CDK4/6i: Is There Efficacy?

- 4 institution collaboration
 - 58 patients treated with abema post ribo or palbo
 - 20 sequential CDK4/6i; 38 non-sequential CDK4/6i
 - 27 (46.6%) with clinical benefit

- Ongoing MAINTAIN trial²
 - HR+ mBC
 - Disease progression on an AI and CDK4/6i
- Ongoing PALMIRA trial³
 - HR+/HER2- ABC
 - Disease progression on LET/FUL and palbociclib after obtaining clinical benefit

^{1.} Wander S, Spring L, Niemierko A, Kambadakone A, Kim LSL, Xi J, et al. A multicenter analysis of abemaciclib after progression on palbociclib in patients with hormone-receptor postive (HR+)/HER2- metastatic breast cancer. ASCO 2019. Abstract 1057; 2. Clinicaltrials.gov. NCT02632045. https://clinicaltrials.gov/ct2/show/NCT02632045; 3. Clinicaltrials.gov. NCT03809988.

https://clinicaltrials.gov/ct2/show/NCT03809988.

Gain-of-Function PI3K Mutations

- PI3K pathway hyperactivation due to *PIK3CA* mutations contributes to endocrine resistance
- PIK3CA is one of the most frequently mutated genes in BC, occurring in approximately 40% of HR+, HER2–ABCs
- The presence of a *PIK3CA* mutation is a negative prognostic factor in HR+, HER2–ABC

SOLAR-1: Primary Endpoint of Locally Assessed PFS in the *PIK3CA*-mutant Cohort with Alpelisib, an Alpha Specific PI3K Inhibitor

Data cut-off:	ALP + FUL	PBO + FUL	
Jun 12, 2018	(n = 169)	(n = 172)	
Number of PFS events, n (%)	103 (60.9)	129 (75.0)	
Progression	99 (58.6)	120 (69.8)	
Death	4 (2.4)	9 (5.2)	
Censored	66 (39.1)	43 (25.0)	
Median PFS (95% CI)	11.0 (7.5-14.5)	5.7 (3.7-7.4)	
HR (95% CI)	0.65 (0.50-0.85)		
One-sided P value	ided P value 0.00065		

Similar results when PI3K mutation determined in plasma using ctDNA

CI, confidence interval; HR, hazard ratio; PFS, progression-free survival. At final PFS analysis, superiority was declared if one-sided, stratified log-rank test *P* value was ≤ 0.0199 (Haybittle–Peto boundary). • Mutation status determined from tissue biopsy.

Only 6% had prior exposure to a CDK4/6i

Locally Assessed PFS by Tissue or Plasma ctDNA Mutation Status

Andre et al, NEJM 2019; Juric et al, SABCS 2018

SOLAR-1: Overall Survival

SOLAR-1: OS in Patients in PIK3CA-mutant Cohorta

Post hoc exploratory analysis, PIK3CA-mutant cohort

AL ESMO

INGTESS TTC, time to chemotherapy. "Time to chemotherapy is defined as time from randomisation for first chemotherapy, censored at last contact date or deat

SOLAR-1: OS in Patients With Lung and/or Liver Metastases

Andre et al, ESMO 2020

BYLieve Cohort A: Primary Endpoint and PFS Results (prior AI + CDK4/6i as last treatment)

The primary endpoint for the prior CDKi + AI cohort was met (lower bound of 95% CI was > 30%), with 50.4% of patients alive without disease progression at <u>6 months</u>

• In SOLAR-1, 44.4% of patients in the *PIK3CA*-mutant cohort with prior CDKi treated with alpelisib plus fulvestrant were alive without disease progression at 6 months

AI, aromatase inhibitor; CDKi, cyclin-dependent kinase inhibitor; CI, confidence interval; PFS, progression-free survival; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha.

Rugo HS et al. ASCO 2020 Abstract 1006

PFS Effect of Alpelisib Over Standard Treatments in Real-World Setting^a

Analysis Method (In Patients With <i>PIK3CA</i> Mutation)	BYLieve Prior CDKi +AI (Cohort A) Alpelisib + Fulvestrant median-PFS (mo) (95% Cl), n	Flatiron/FMI Standard Treatment median-rwPFS (mo) (95% CI), n
Unadjusted results	7.3 (5.6-8.3), n=120	3.6 (3.1-6.1), n=95
Weighting by odds	7.3 (5.6-8.3), n=120	3.7 (3.1-6.1), n=116
Propensity score matching	8.0 (5.6-8.6), n=76	3.5 (3.0-5.4), n=76
Exact matching	6.5 (5.3-8.3), n=61	3.4 (2.9-3.9), n=61

Matched analysis comparing BYLieve with RWE standard treatment in post-CDK4/6i setting further supports use of alpelisib + fulvestrant

^aPFS comparison is based on PFS per RECIST v1.1 in BYLieve and real-world PFS in Flatiron/FMI.

Rugo HS et al. ASCO 2020 Abstract 1006

Time Course of Adverse Events in SOLAR-1

- The most common grade ≥3 AEs in the ALP arm were hyperglycemia, rash, and diarrhea
- In the ALP arm, hyperglycemia and/or rash were typically experienced in the first few weeks of treatment with ALP + FUL, whereas GI toxicities could occur at any time during study therapy
- Median time to onset and median time to improvement by ≥1 grade are shown in the table below

Probability of First Occurrence of Grade 3 AESI Events

Median time
to onset,
daysMedian time to
improvement by
≥1 grade, daysHyperglycemia156Rash1311Diarrhea13918

Time to Onset and Time to Improvement of AESIs

AE, adverse event; AESI, adverse event of special interest; ALP, alpelisib; FUL, fulvestrant; GI, gastrointestinal; PBO, placebo.

- ^a Based on laboratory values rather than single preferred term.
- ^b Based on grouped terms.
- ° Of the grade \geq 3 gastrointestinal (GI) toxicities, 76% of them were grade \geq 3 diarrhea.

Rugo HS et al, Annals Onc 2020

Understanding and Modifying Toxicity

- Understanding timelines and (to some degree) mechanism helps develop effective prophylactic and management strategies
 - EX: steroid mouthwash for everolimus stomatitis has essentially eliminated this toxicity
 - For alpelisib, antihistamine prophylaxis markedly reduces rash

Rugo HS et al, Ann Oncol 2020

Results: Treatment Exposure

- For patients with *PIK3CA* mutations in the ALP arm, the median duration of exposure was 5.5 months for ALP and 8.2 months for FUL
 - Median dose intensity was 248 mg/day
- PFS benefit with ALP versus PBO was maintained in patients requiring lower doses of ALP for AE management

PFS by Median Dose Intensity in the PIK3CA-mutant Cohort

AE, adverse event; ALP, alpelisib; FUL, fulvestrant; PBO, placebo, PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PFS, progression-free survival

Rugo et al, Ann Oncol 2020

Efficacy of Everolimus in Al-Pretreated HR-Positive Advanced BC

Study	Phase	N	Study Arms	Population	Median PFS, Mos	HR	P Value
PrE0102 ^[1]	П	131	Everolimus + FULV vs placebo + FULV	Overall	10.3 vs 5.1	0.61	.02
TAMRAD ^[2]	П	111	Everolimus + TAM vs TAM	Overall	8.6 vs 4.5 [‡]	0.54	.002
BOLERO-2 ^[3-5] *n = 302. ⁺ n = 550	III). ‡ТТР.	724	Everolimus + EXE vs placebo + EXE	 Overall^[3] <i>PIK3CA</i>mut tumor*^[4] <i>PIK3CA</i>mut ctDNA^{†[5]} 	 7.8 vs 3.2 6.7 vs 2.8 6.9 vs 2.7 	 0.45 0.51 0.37 	 <.0001 Not reporte d Not reporte

1. Kornblum. J Clin Oncol. 2018;36:1556. 2. Bachelot. J Clin Oncol. 2012;30:2718. 3. Yardley. Adv Ther. 2013;30:870. 4. Hortobagyi. J Clin Oncol. 2016;34:419. 5. Moynahan. Br J Cancer. 2017;116:726.

FAKTION: Capivasertib + Fulvestrant for AI-Resistant ER+/HER2-Metastatic Breast Cancer

- Randomized phase II study of capivasertib + FULV vs placebo + FULV (N = 140)
 - Relapse or progression on an AI
 - Capivasertib (AZD5363): selective, oral AKT inhibitor
- Capivasertib + FULV improved PFS in endocrine-resistant MBC vs placebo + FULV, meeting the primary endpoint of PFS
 - Trend toward improvement in OS
- Ongoing Phase III CAPitello291 Trial
- IPATunit150: ipatasertib with palbociclib and fulvestrant

Outcome	CAP + FULV (n = 69)	PBO + FULV (n = 71)	
Median PFS, mos	10.3	4.8	
	HR: 0.57 (95% CI: 0.39-0.84) 2-sided <i>P</i> = .0035		
Median OS, mos	26.0	20.0	
	HR: 0.59 (95% Cl: 0.34-1.05) 2-sided <i>P</i> = .071		

- Similar benefit was observed in patients with PI3K/AKT/PTEN-activated and nonactivated tumors
- 39% of patients in the capivasertib + FULV arm required dose reductions, primarily due to diarrhea and rash, and 12% discontinued due to toxicity

New Generation SERDS

SERDs inhibit the dimerization of ER¹

Antagonism of ER activity by competitive binding, resulting in ER down-regulation²

FUL is approved for use in patients with progression on prior antiestrogen therapy²

In the phase 3 FALCON study, benefit with first-line FUL vs AI in ET-naive patients was limited to patients without visceral disease³

•FUL is limited by method of administration (intramuscular injection)⁴

Novel oral SERDs are currently being investigated for postmenopausal women with HR+ ABC^{4,5}

SERDs may have a role in treating tumors with *ESR1* mutations

ABC, advanced breast cancer; AI, aromatase inhibitor; ER, estrogen receptor; ET, endocrine therapy; FUL, fulvestrant; HR+, hormone receptor-positive; PMW, postmenopausal women; SERD, selective estrogen receptor down-regulator/degrader; SERM, Selective estrogen receptor modulators.

1. Fox EM, et al. Front Oncol. 2012;2:145; 2. Faslodex [package insert]. Wilmington, DE: AstraZeneca; 2010; 3. Robertson JFR, et al. Lancet. 2016 Nov 28 [Epub ahead of print]. 4. Garner F, et al. Anticancer Drugs. 2015;26(9):948-956; 5. Hamilton, E, et al. SABCS 2016. Abstract P6-12-03 [poster].

Oral SERD in ER+ MBC: Current Development Status

Company	Drug name	Current Development Status
Genentech	GDC-0810 GDC-927	Development Discontinued
Novartis	LSZ102	Development Discontinued
Radius Health	Elacestrant (RAD-1901)	Phase 3
Genentech	GDC-9545	Phase 2/3
Sanofi	SAR439859	Phase 2/3
G1 Therapeutics	G1T48	Phase 1 completed
Astra Zeneca	AZD9833	Phase 1/2

Need to be careful with cross-study comparisons -

Differences in prior lines of Rx, endocrine sensitivity, tumor biology

Slide credit: Aditya Bardia

Expanding New Directions

- Immunotherapy combinations
 - Beware enhanced toxicity (JPCE with; Rugo et al, AACR (abema/pembro/AI) and ASCO 2020 (abema/pembro)
- Triplet therapy to prevent/delay resistance
 - Toxicity has limited combinations with CDK4/6 and PIK3CA inhibitors
 - Suggestion of benefit in TRINITI trial with low dose everolimus
 - Future potential with AKTi in combination

Figure 1: Preclinical experience combining CDK4/6 inhibitors and immunotherapy

Goel et al, Nature 2017

HR+HER2- ABC: Remarkable Progress Leads to Changing Paradigms

