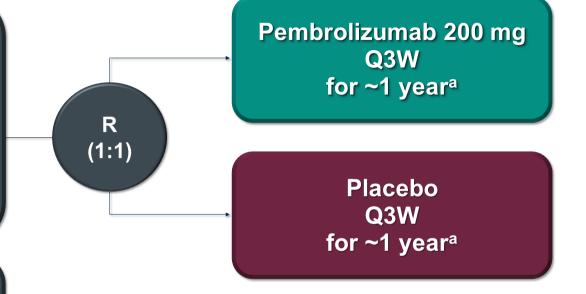
## Updates in Metastatic Renal Cell Carcinoma

Brian I. Rini, MD, FASCO
Chief of Clinical Trials
Vanderbilt-Ingram Cancer Center
Ingram Professor of Medicine
Division of Hematology/Oncology
Vanderbilt University Medical Center

## Pembrolizumab vs Placebo as Post Nephrectomy **Adjuvant Therapy for Patients with Renal Cell** Carcinoma: Randomized, Double-Blind, Phase 3 **KEYNOTE-564 Study**

<u>Toni K. Choueiri<sup>1</sup></u>; Piotr Tomczak<sup>2</sup>; Se Hoon Park<sup>3</sup>; Balaji Venugopal<sup>4</sup>; Thomas Ferguson<sup>5</sup>; Yen-Hwa Chang<sup>6</sup>; Jaroslav Hajek<sup>7</sup>; Stefan Symeonides<sup>8</sup>; Jae Lyun Lee<sup>9</sup>; Naveed Sarwar<sup>10</sup>; Antoine Thiery-Vuillemin<sup>11</sup>; Marine Gross-Goupil<sup>12</sup>; Mauricio Mahave<sup>13</sup>; Naomi Haas<sup>14</sup>; Piotr Sawrycki<sup>15</sup>; Rodolfo F. Perini<sup>16</sup>; Pingye Zhang<sup>16</sup>; Jaqueline Willemann-Rogerio<sup>16</sup>; Kentaro Imai<sup>16</sup>; David Quinn<sup>17</sup>; Thomas Powles<sup>18</sup>; on behalf of the KEYNOTE-564 investigators.

<sup>1</sup>Dana-Farber Cancer Institute, Boston, MA, USA; <sup>2</sup>Poznań University of Medical Sciences, Poznań, Poland; <sup>3</sup>Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; <sup>4</sup>Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, UK; <sup>5</sup>Fiona Stanley Hospital, Perth, Australia; <sup>6</sup>Taipei Veterans General Hospital, Taipei, Taiwan; <sup>7</sup>Fakultni Nemocnice Ostrava, Ostrava, Czech Republic; <sup>8</sup>Edinburgh Cancer Center and University of Edinburgh, Edinburgh, UK; <sup>9</sup>Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; <sup>10</sup>Imperial College Healthcare NHS Trust, London, UK; <sup>11</sup>University Hospital Jean Minjoz, Besançon, France; <sup>12</sup>University Hospital Bordeaux-Hôpital Saint-André, Bordeaux, France; <sup>13</sup>Fundacion Arturo Lopez Perez FALP, Santiago, Chile; <sup>14</sup>Abramson Cancer Center, Philadelphia, PA, USA; <sup>15</sup>Wojewodzki Szpital Zespolony im. L. Rydygiera w Toruniu, Torun, Poland; <sup>16</sup>Merck & Co., Inc., Kenilworth, NJ, USA; <sup>17</sup>USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA; <sup>18</sup>Royal Free Hospital NHS Trust, University College London, London, UK.


## **KEYNOTE-564 Study Design**

#### Key Eligibility Criteria

- Histologically confirmed clear cell renal cell carcinoma
- Nephrectomy ≤12 weeks prior to randomization
- No prior systemic therapy
- ECOG PS 0 or 1
- Tissue sample for PD-L1 assessment

#### **Stratification Factors**

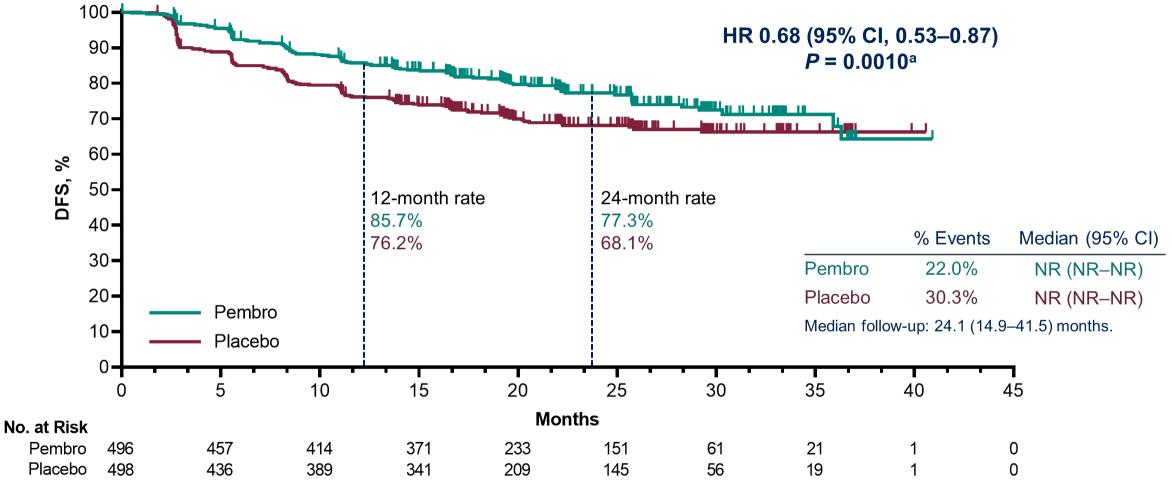
- M0 vs M1 NED
- M0 group further stratified:
  - ECOG PS 0 vs 1
  - US vs non-US



- Primary end point: DFS per investigator
- Key secondary end point: OS
- Other secondary end points: Safety

DFS, disease-free survival; Q3W, every 3 weeks. <sup>a</sup>≤17 cycles of treatment were equivalent to ~1 year.




## **Prespecified Disease Risk Categories**

| Intermediate-High Risk |           | High Risk |           | M1 NED                                 |
|------------------------|-----------|-----------|-----------|----------------------------------------|
| pT2                    | рТ3       | pT4       | Any pT    | NED ofter                              |
| Grade 4 or sarcomatoid | Any grade | Any grade | Any grade | NED after resection of oligometastatic |
| N0                     | N0        | N0        | N+        | sites ≤1 year from                     |
| MO                     | MO        | MO        | MO        | nephrectomy                            |

NED, no evidence of disease.



## DFS by Investigator, ITT Population

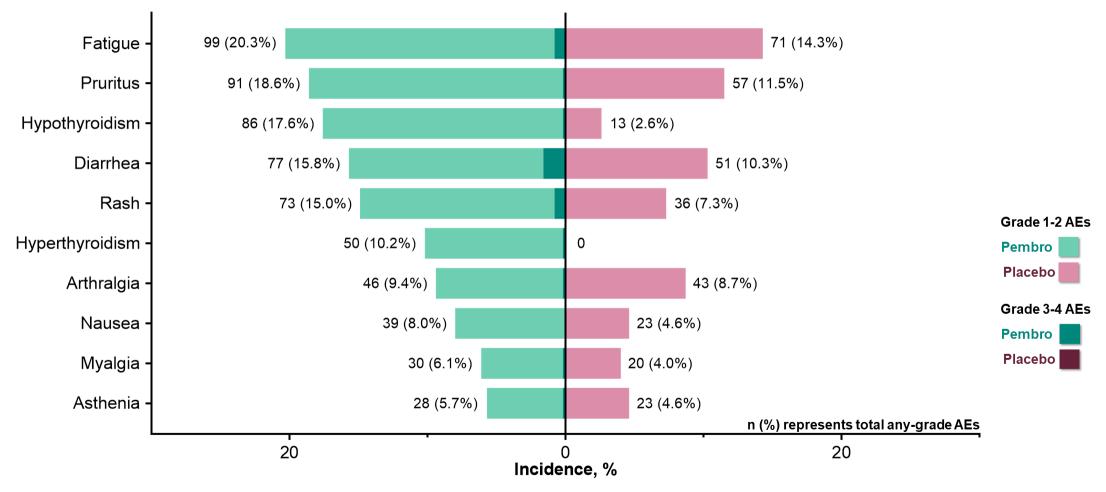


<sup>a</sup>Crossed prespecified p-value boundary for statistical significance of 0.0114.

Presented By: Dr. Toni K. Choueiri

ITT population included all randomized participants. NR, not reached. Data cutoff date: December 14, 2020




## Interim OS Results, ITT Population



Did not cross prespecified p-value boundary for statistical significance of 0.0000093 for 51 events. Final analysis for OS to occur after approximately 200 OS events. ITT population included all randomized participants. NR, not reached. Data cutoff date: December 14, 2020



## Treatment-Related AEs with Incidence ≥5%, **As-Treated Population**

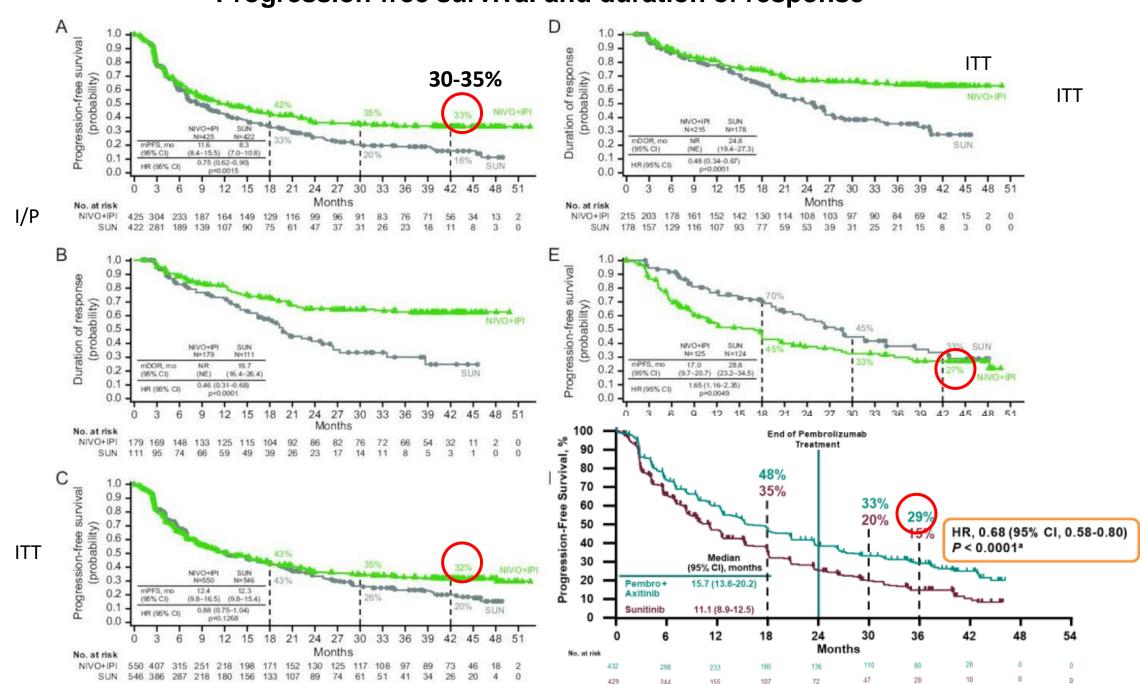


As-treated population included all participants who received ≥1 dose of study treatment. No treatment-related deaths occurred. Data cutoff date: December 14, 2020.



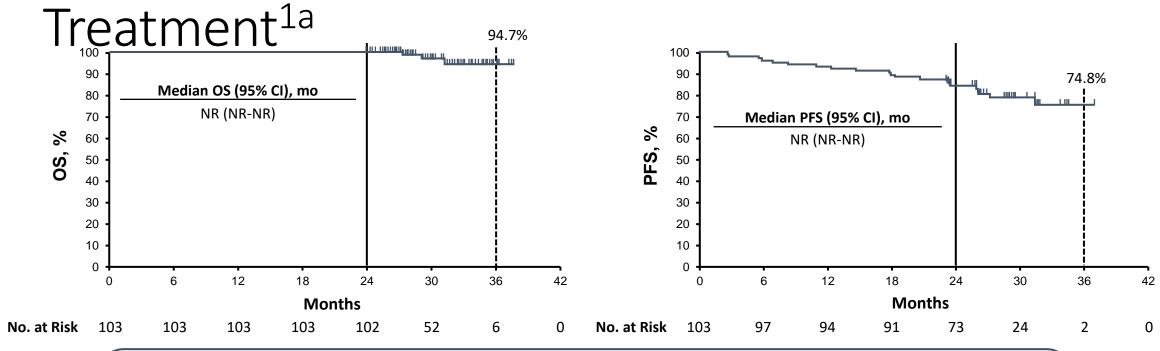
## Front-line mRCC

## First-line IO Combination Trials in mRCC


|                                                    | CheckMate 214 (Ipi/Nivo) <sup>1</sup> | KEYNOTE-426 (Axi/Pembro) <sup>2</sup> | CheckMate 9ER (Cabo/Nivo) <sup>3</sup> | CLEAR (Len/Pembro) <sup>4</sup> |
|----------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------|
|                                                    | (n=550 vs n=546)                      | (n=432 vs n=429)                      | (n=323 vs n=328)                       | (N=355 vs n=357)                |
| mOS, months                                        | NR vs 38.4                            | 45.7 vs 40.1                          | NR vs 29.5                             | NR vs NR                        |
| HR (CI)                                            | <b>0.69</b> (0.59–0.81)               | <b>0.73</b> (0.60-0.88)               | <b>0.66</b> (0.50–0.87)                | <b>0.66</b> (0.49-0.88)         |
| Landmark OS 12 mo                                  | <b>83%</b> vs. 78%                    | <b>90%</b> vs. 79%                    | <b>86%</b> vs. 76%                     | <b>90%</b> vs 79% (est.)        |
| Landmark OS 24 mo                                  | <b>71%</b> vs. 61%                    | <b>74%</b> vs. 66%                    | <b>72%</b> vs 60% (est.)               | <b>79%</b> vs. 70%              |
| mPFS, months                                       | <b>12.2</b> vs 12.3                   | <b>15.7</b> vs 11.1                   | <b>17.0</b> vs 8.3                     | <b>23.9</b> vs 9.2              |
| HR (CI)                                            | 0.89 (0.76–1.05)                      | 0.68 (0.58–0.80)                      | 0.52 (0.43–0.64)                       | 0.39 (0.32-0.49)                |
| ORR, %                                             | <b>39</b> vs 32                       | <b>60</b> vs 40                       | <b>55</b> vs 27                        | <b>71</b> vs 36                 |
| CR, %                                              | <b>11</b> vs 3                        | <b>10</b> vs 4                        | <b>9</b> vs 4                          | <b>16</b> vs 4                  |
| Med f/u, months                                    | 55                                    | 42.8                                  | 23.5                                   | 27                              |
| Prognostic risk, % Favorable Intermediate Poor     | 23                                    | 32                                    | 23                                     | 31                              |
|                                                    | 61                                    | 55                                    | 58                                     | 59                              |
|                                                    | 17                                    | 13                                    | 19                                     | 9                               |
| Prior nephrectomy                                  | 82%                                   | 83%                                   | 69%                                    | 74%                             |
| Subsequent systemic therapies for sunitinib arm, % | Overall (69%)                         | Overall (69%)                         | Overall (40%)                          | Overall (71%)                   |
|                                                    | IO (42%)                              | IO (48%)                              | IO (29%)                               | IO (53%)                        |
| 1. Albiges et al. FSMO Open 2020                   | 0 2. Rini et al. ASCO 2021            |                                       | ini and Allyansinaa (nadaasta http:    |                                 |

Albiges et al. ESMO Open 2020
 Motzer et al. ASCO GU 2021

Rini et al. ASCO 2021
 Motzer et al. ASCO GU 2021.


<sup>@</sup>brian\_rini and @Uromigos (podcasts: https://anchor.fm/the-Uromigos)

#### Progression-free survival and duration of response



2020

## KEYNOTE-426: Outcomes Following 2 Years of



- Of 432 patients randomly assigned to receive pembrolizumab + axitinib, 103 (23.8%) completed 2 years of treatment and did not discontinue because of progression
- In these 103 patients:
  - mOS<sup>b</sup> and PFS<sup>b,c</sup> have not been reached
  - 85% had either CR or PR; 16 CRs were seen at first assessment

## IO/TKI vs. IO/IO

|        | Pros                                                                                                                                                                                                                         | Cons                                                                                                                              |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| IO/TKI | <ul> <li>Consistent effects on OS, PFS and ORR across IMDC risk groups</li> <li>Significant tumor burden reduction reflected in high ORR and long PFS</li> <li>Manageable toxicity</li> <li>QoL maintained vs TKI</li> </ul> | <ul> <li>Long-term durability of response yet to be demonstrated</li> <li>Potential for acute and chronic TKI toxicity</li> </ul> |  |
| 10/10  | OS and ORR advantages over TKI monotherapy                                                                                                                                                                                   | <ul> <li>Sometimes significant initial toxicity</li> </ul>                                                                        |  |
|        | <ul> <li>Durability of response / disease-control</li> </ul>                                                                                                                                                                 | <ul> <li>Lower ORR and shorter PFS</li> </ul>                                                                                     |  |
|        | Treatment-free interval possible                                                                                                                                                                                             | compared with IO/TKI regimens                                                                                                     |  |
|        | QoL improved vs TKI                                                                                                                                                                                                          | <ul> <li>Less effect in favorable risk<br/>patients</li> </ul>                                                                    |  |



#### Abstract #4501

CANTATA: Primary Analysis of a Global, Randomized, Placebo-Controlled, Double-Blind Trial of Telaglenastat (CB-839) + Cabozantinib vs. Placebo + Cabozantinib in Patients With Advanced/Metastatic Renal Cell Carcinoma that Progressed on Immune Checkpoint Inhibitor or Anti-Angiogenic Therapies

<u>Nizar M. Tannir</u><sup>1</sup>, Neeraj Agarwal<sup>2</sup>, Camillo Porta<sup>3</sup>, Nicola J. Lawrence<sup>4</sup>, Robert Motzer<sup>5</sup>, Richard J. Lee<sup>6</sup>, Rohit K. Jain<sup>7</sup>, Nancy Davis<sup>8</sup>, Leonard Appleman<sup>9</sup>, Oscar Goodman, Jr.<sup>10</sup>, Walter M. Stadler<sup>11</sup>, Sunil Gandhi<sup>12</sup>, Daniel M. Geynisman<sup>13</sup>, Roberto Iacovelli<sup>14</sup>, Begona Mellado<sup>15</sup>, Robert Figlin<sup>16</sup>, Thomas Powles<sup>17</sup>, Lalith Akella<sup>18</sup>, Keith Orford<sup>18</sup>, Bernard Escudier<sup>19</sup>

¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; ³University of Pavia, Pavia, Italy; ⁴Auckland District Health Board, New Zealand; ⁵Memorial Sloan Kettering Cancer Center, New York, NY; ⁶Massachussetts General Hospital, Boston, MA; ¬H. Lee Moffitt Cancer & Research Institute, Tampa, FL; ⁰Vanderbilt University Medical Center, Nashville, TN; ⁰University of Pittsburgh Medical Center, Pittsburgh, PA; ¹¹Comprehensive Cancer Centers of Nevada, Las Vegas, NV; ¹¹University of Chicago, Chicago, IL; ¹²Florida Cancer Specialists, Lecanto, FL; ¹³Fox Chase Cancer Center, Philadelphia, PA; ¹⁴Policlinico Universitario A. Gemelli, Rome, Italy; ¹⁵Hospital Clínic, Provincial de Barcelona, Barcelona, Spain; ¹⁶Cedars Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA; ¹¬St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK; ¹⁶Calithera Biosciences, Inc., South San Francisco, CA; ¹⁶Gustave Roussy, Villejuif, France



#### **Altered Tumor Metabolism in Tumor Cells**





## **CANTATA Study Design**

#### **Key Eligibility Criteria**

- Advanced/metastatic clear cell RCC
- KPS ≥ 70%
- 1-2 lines of prior therapy including at least 1 antiangiogenic therapy
   or nivolumab + ipilimumab
- N=444
- Stratification factors:
  - Prior ICI therapy (yes vs. no)
  - IMDC Prognostic Risk Group (favorable vs. intermediate vs. poor)

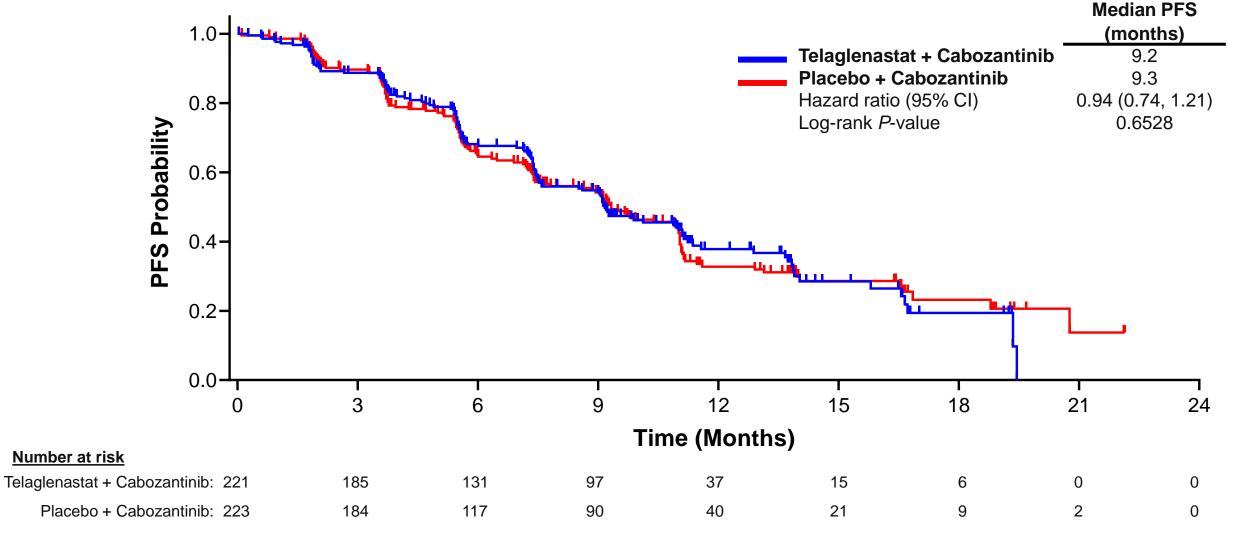
Telaglenastat (800 mg BID PO) Cabozantinib (60 mg QD PO) 1:1 Placebo BID Cabozantinib (60 mg QD PO)

#### **ENDPOINTS**

Primary
IRC-adjudicated PFS
per RECIST v1.1

Follow-Up

Survival


Secondary
Overall Survival
Investigatorassessed PFS

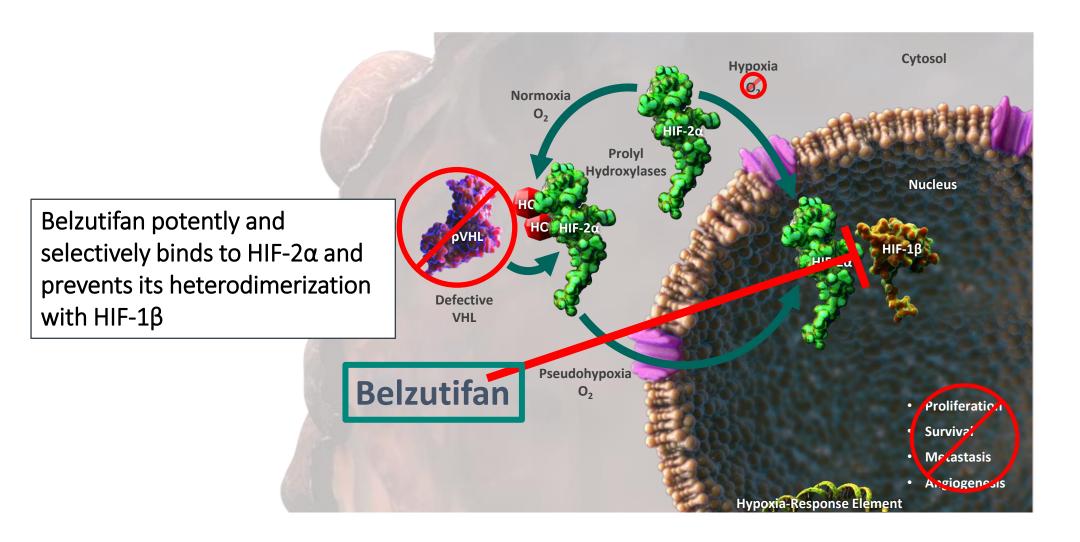
NCT03428217

BID, twice daily; ICI, immune checkpoint inhibitor; IMDC, International Metastatic RCC Database Consortium; IRC, independent review committee; KPS, Karnofsky Performance Status; PFS, progression-free survival; PO, per os; QD, once daily; QOL, quality of life; RCC, renal cell carcinoma; RECIST, Response Evaluation Criteria in Solid Tumors



## IRC-Assessed Progression-Free Survival

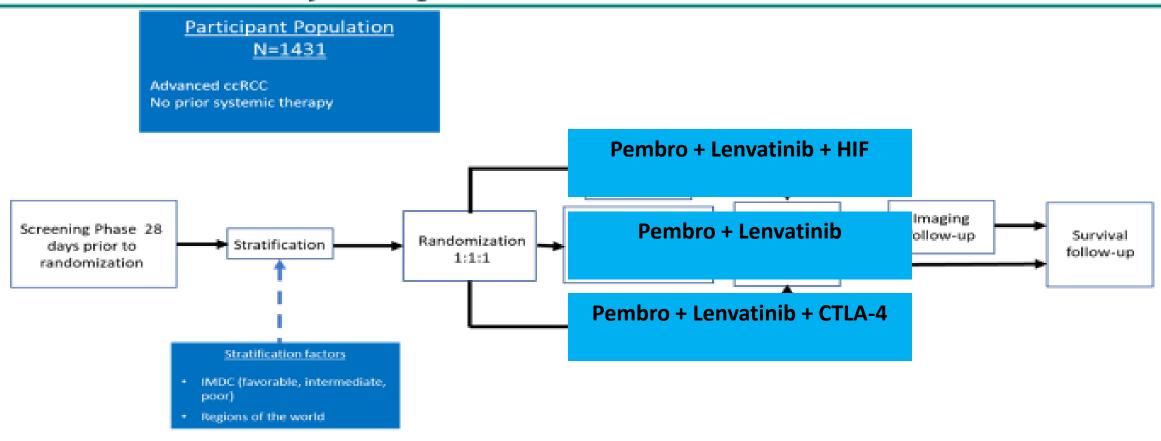



Permission required for reuse.

CI, confidence interval; IRC, independent review committee; PFS, progression-free survival

Presented By: Nizar M Tannir, MD

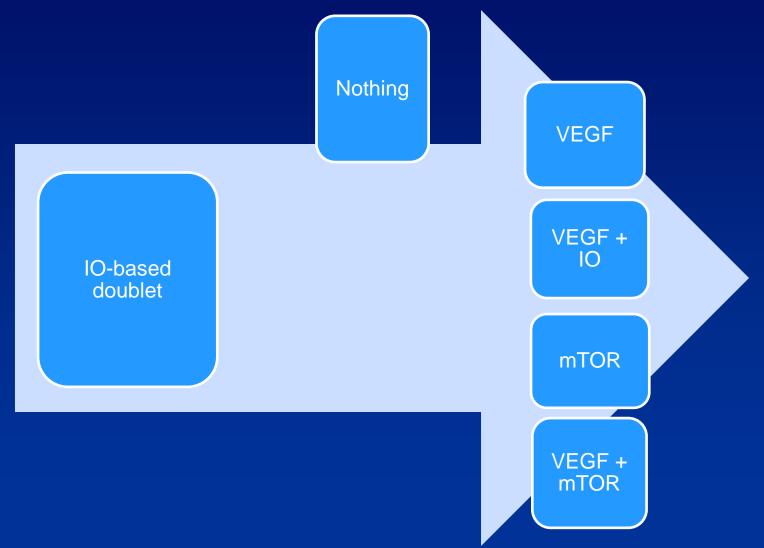



#### PT2977: HIF-2α Inhibitor



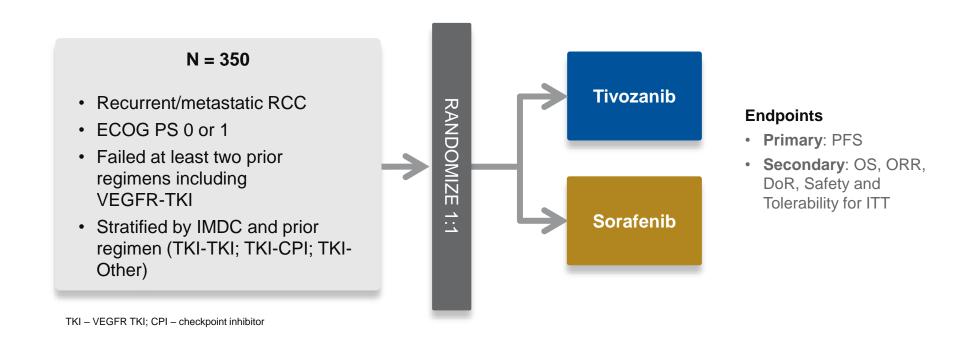
# Best Confirmed Objective Response by RECIST v1.1 per Investigator Assessment (ccRCC cohort)

| Efficacy Parameter,<br>n (%) [95%CI]   | All Patients<br>N = 55 | IMDC Favorable<br>n = 13 | IMDC Intermediate/Poor<br>n = 42 |
|----------------------------------------|------------------------|--------------------------|----------------------------------|
| Objective Response Rate                | 14 (25)<br>[15-39]     | 4 (31)<br>[9-61]         | 10 (24)<br>[12-40]               |
| Complete Response (CR)                 | 0                      | 0                        | 0                                |
| Partial Response (PR)                  | 14 (25)                | 4 (31)                   | 10 (24)                          |
| Stable Disease (SD)                    | 30 (54)                | 8 (62)                   | 22 (52)                          |
| Disease Control Rate<br>(CR + PR + SD) | 44 (80)<br>[67-90]     | 12 (92)<br>[64-100]      | 32 (76)<br>[61-88]               |
| Progressive Disease                    | 8 (15)                 | 1 (8)                    | 7 (17)                           |
| Not Evaluable                          | 3 (5)                  | 0                        | 3 (7)                            |

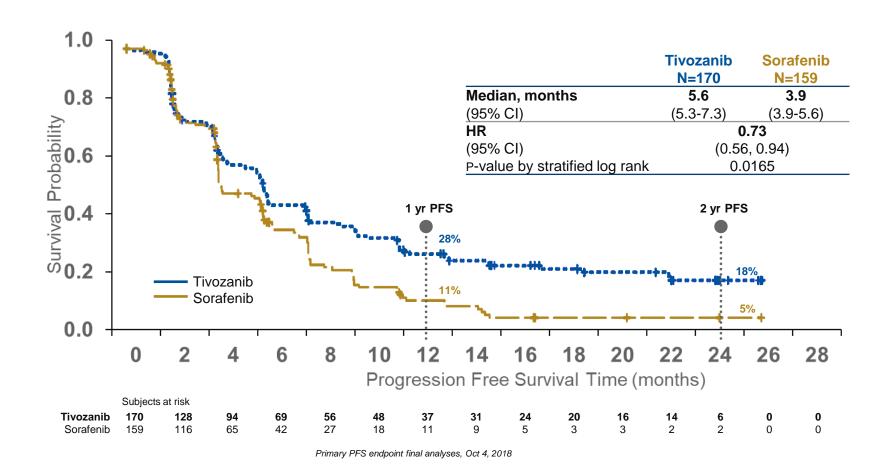

### MK-6482-012 Study Design



- Abbreviations: IMDC = International Metastatic Renal Cell Carcinoma Database Consortium; ccRCC = clear cell renal cell carcinoma.
- a. The treatment arms are the HIF triplet (MK-6482 + pembrolizumab + lenvatinib), the CTLA4 triplet (MK-1308A + lenvatinib), and the doublet (pembrolizumab + lenvatinib). Note: MK-1308A is a coformulation of pembrolizumab and MK-1308
- Global Study- ~225 sites, 33 countries




## **Current Options in Refractory RCC**




#### **TIVO-3: Study Schema**

#### Randomized Trial in Relapsed or Refractory Advanced Renal Cell Carcinoma



#### **TIVO-3: Primary Endpoint of PFS**

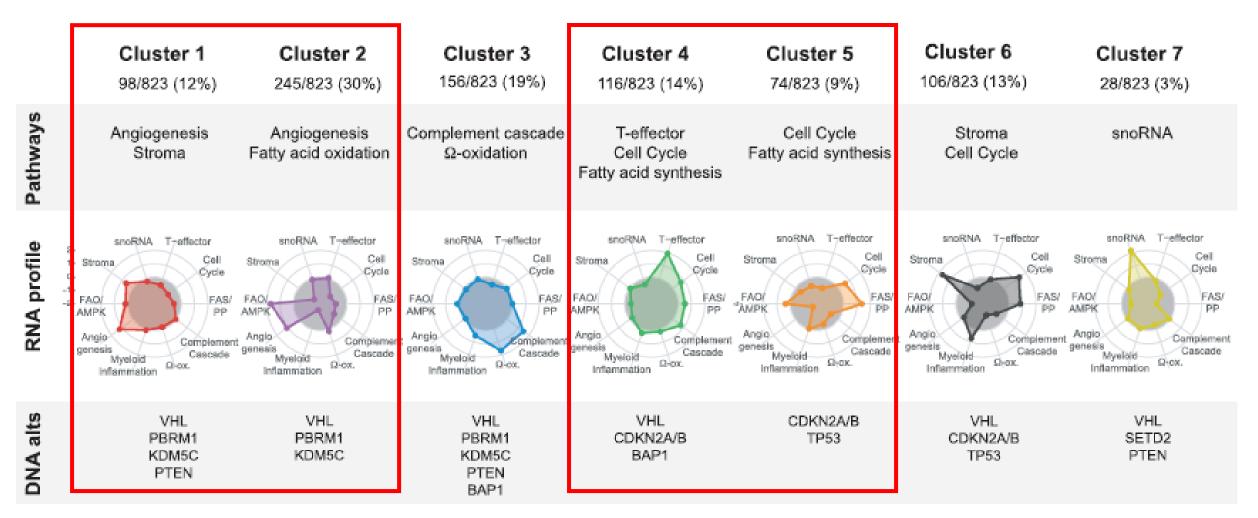


#### **TIVO-3: Dose Modifications**

| Characteristic                                | Tivozanib<br>(N=173)^ | Sorafenib<br>(N=170)^ |
|-----------------------------------------------|-----------------------|-----------------------|
| Mean Number of Cycles Initiated               | 11.9                  | 6.7                   |
| AEs Leading to Dose Reductions (%)            | 25 P=0.014            | 7 39                  |
| AEs Leading to Dose Interruption (%)          | 50 P=0.016            | 4 64                  |
| ADRs Leading to Permanent Discontinuation (%) | 8                     | 15                    |
| Treatment Related SAEs (%)                    | 12                    | 11                    |
| Treatment Related Deaths (%)                  | 0                     | 0                     |
| Deaths within 30 days of Tx (N)               | 15                    | 13                    |
| Exposure Adj Deaths per Month of Tx           | 0.72%                 | 1.11%                 |

#### Lenvatinib + Pembro in IO-refractory RCC

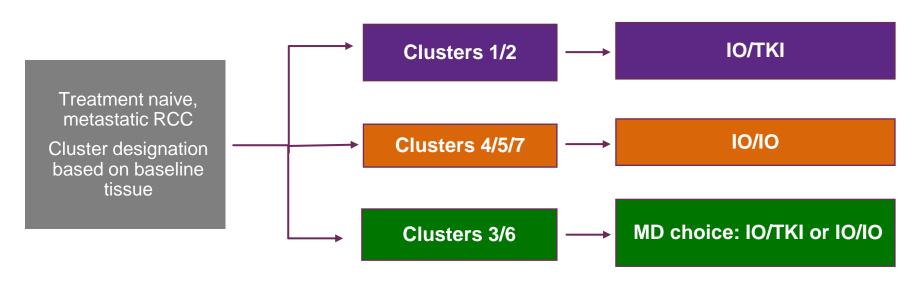
#### **Tumor Response by Investigator Assessment**


| Parameter                  | irRECIST<br>N = 104 | RECIST v1.1 <sup>a</sup><br>N = 104 |
|----------------------------|---------------------|-------------------------------------|
| ORR at week 24, %          | 51                  | _                                   |
| (95% CI)                   | (41–61)             | ų.                                  |
| ORR, %                     | 55                  | 52                                  |
| (95% CI)                   | (45–65)             | (42–62)                             |
| Best objective response, % |                     |                                     |
| Partial response           | 55                  | 52                                  |
| Stable disease             | 36                  | 38                                  |
| Progressive disease        | 5                   | 6                                   |
| Not evaluable              | 5                   | 5                                   |
| Median DOR, months         | 12                  | 12                                  |
| (95% CI)                   | (9–18)              | (9–18)                              |

<sup>&</sup>lt;sup>a</sup> Up to 10 target lesions could be selected (up to 5 per organ).

DOR, duration of response.




## RCC is driven primarily (although not exclusively) driven by angiogenic and inflammatory pathways





#### **Future Trial Concept**

#### **First-Line Treatment**



## Conclusions

- Adjuvant pembrolizumab prolongs DFS in high-risk resected RCC. OS effects uncertain.
- IO-based doublets with an anti-PD1 backbone are transforming the initial management of mRCC with IO +VEGF regimens leading to the highest ORR/longest PFS while IO/IO regimens are notable for durability of response/disease control and potential for disease control off therapy.
  - We are rapidly moving towards triplets
- Single agent VEGF TKI is the standard of care after an IO-based doublet, but early signals suggest IO can be active after failure of prior IO-based regimens, pending randomized, prospective investigation.
- Biologic insights in mRCC reinforces angiogenic and inflammatory pathways but uncover novel drug targets and may provide a path to more personalized therapy.