Cancer Immunotherapy: Primer on Biomarkers and Mechanisms of Action

Peter P. Lee, MD Billy and Audrey Wilder Professor and Chair Dept. of Immuno-Oncology City of Hope Cancer Center

I have no declarations.

Definition of Cancer Immunotherapy

- Treatments that harness patients' immune system for cancer therapy
- Monoclonal antibodies
 - Target cancer cells
 - Modulate immune function: Immune Checkpoint Blockade (ICB)
- Cytokines
- Cancer vaccines (+/- dendritic cells)
- Adoptive cellular therapy (+/- engineered receptors: TCR or chimeric antigen receptor, CAR)

Approved Immunotherapies for Solid Tumors

2010: Sipuleucel-T (dendritic cell vaccine) for prostate cancer

2011: Ipilimumab (anti-CTLA4 Ab) for advanced melanoma

2014: Pembrolizumab and Nivolumab (anti-PD1 Ab) for advanced melanoma

2015: Nivolumab for lung cancer and kidney cancer; Nivo/Ipi combination for melanoma; T-VEC (oncolytic virus) for melanoma

2016 on: multiple other cancer types; MSI tumors

These treatments still only work for subsets of patients and some cancer types – need for biomarkers

Inhibitory Immune Checkpoints

I Mellman et al. Nature 480, 480-489 (2011) doi:10.1038/nature10673

Activating Immune Checkpoints

I Mellman et al. Nature 480, 480-489 (2011) doi:10.1038/nature10673

Cancer Immunotherapy 2020

Immunological Reviews, Volume: 290, Issue: 1, Pages: 6-23, First published: 29 July 2019, DOI: (10.1111/imr.12766)

Barriers to effective anti-tumor T cell immunity

Lizée G et al. Clin Cancer Res 2007;13:5250-5255

GI Microbiome

Biomarkers: Tissue

Table. Comparison of Pooled Diagnostic Sensitivity and Specificity and Predictive Values for Responders vs Nonresponders After Anti-PD-1/PD-L1 Therapy Between Different Assay Modalities^a

Modality	Pooled Sensitivity	Pooled Specificity	Pooled PPVs	Pooled NPVs
PD-L1 IHC (n = 24)	0.50 (0.48-0.53)	0.63 (0.62-0.65)	0.34 (0.32-0.36)	0.78 (0.76-0.79)
TMB (n = 10)	0.57 (0.51-0.62)	0.70 (0.66-0.73)	0.42 (0.38-0.47)	0.80 (0.77-0.83)
GEP (n = 9)	0.71 (0.67-0.75)	0.51 (0.48-0.54)	0.42 (0.39-0.46)	0.77 (0.74-0.81)
mIHC/IF (n = 7)	0.60 (0.53-0.66)	0.78 (0.73-0.82)	0.63 (0.56-0.70)	0.75 (0.70-0.80)
Multimodality (n = 6)	0.58 (0.50-0.65)	0.79 (0.75-0.82)	0.41 (0.33-0.48)	0.88 (0.85-0.91)

Abbreviations: GEP, gene expression profiling; mIHC/IF, multiplex immunohistochemistry/ immunofluorescence; PD-L1 IHC, programmed cell death ligand 1 immunohistochemistry; TMB, tumor mutational burden.

^a All data are reported as a proportion (95% Cl). Nonoverlapping 95% Cls suggest statistical significance.

From: Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and Meta-analysis

JAMA Oncol. Published online July 18, 2019. doi:10.1001/jamaoncol.2019.1549

Tumor PD-L1 is a borderline predictor

(A) PFS

	PD-L1 po	sitive	PD-L1 neg	ative		Odds Ratio	Odd	s Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H. Eb	ed, 95% CI
Adams1 2018 (31)	9	105	5	64	15.8%	1.11 [0.35, 3.46]		
Adams3 2018 P	3	12	2	12	4.2%	1.67 [0.22, 12.35]		
Emens 2018 PM	10	91	1	21	4.0%	2.47 [0.30, 20.43]		
Schmid 2018 ⁽³⁶⁾	38	185	39	266	70.8%	1.50 [0.92, 2.46]		+
Sherene 2019 ⁽²⁹⁾	4	40	0	12	1.9%	3.08 [0.15, 61.38]		
Voorwerk 2019 ⁽¹²⁾	5	- 44	1	21	3.3%	2.56 [0.28, 23.46]		
Total (95% CI)		477		396	100.0%	1.55 [1.02, 2.36]		•
Total events	69		48					······································
Heterogeneity: Chi ² =	0.94, df = 5	(P = 0.9)	7); P = 0%					1 10 1000
Test for overall effect:	Z = 2.07 (P	= 0.04)					Favours (PD-L1 negative)	Favours (PD-L1 positive)

(B) os

	PD-L1 po	sitive	PD-L1 neg	pative		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed, 95% C	M-H, Fixed, 95% CI
Adams3 2018 ^(H)	6	12	4	12	17.1%	2.00 [0.38, 10.41]	
Emens 2018 ^{THE}	13	91	0	21	5.9%	7.39 [0.42, 129.48]	
Schmid 2018 ^{DB}	15	185	11	266	70.8%	2.05 [0.92, 4.56]	
Sherene 2019 ⁽²⁸⁾	1	40	0	12	6.2%	0.95 [0.04, 24.81]	
Total (95% Cl)		328		311	100.0%	2.28 [1.16, 4.48]	+
Total events	35		15				
Heterogeneity: Chi ² =	1.02, df = 3	(P = 0.8)	0);; I ² = 0%				
Test for overall effect:	Z = 2.40 (P	= 0.02)					Favours (PD-L1 negative) Favours (PD-L1 positive)

Zou et al. 2020

PD-L1 expressed on cancer cells or immune cells?

Blood Biomarkers

- Immune cell subsets: PD1+ CD8 T cells, Tregs
- Serum cytokines: IL-6
- Immune cells signaling responses
- T cell receptor (TCR) clonality
- Peripheral blood shed PD-L1
- Cell-free (cf)DNA

Multi-parameter blood biomarkers

Biomarker	Cancer type		No. of patients	Main results	Reference
(%Ki-67 ⁺ cells/PD-1 ⁺ CD8 ⁺ T cells 3-wk post- treatment)/baseline tumor burden (Ki67/TB)	Melanoma	Discovery cohort: 23		Higher Ki67/TB significantly associated with superior ORR $(p=0.03)$ and PFS $(p=0.004)$.	Huang et al. (34)
		Validation cohort: 18		Higher Ki67/TB associated with superior ORR (p=0.14) and PFS (p=0.06).	
(%Ki-67 ⁺ cells/PD-1 ⁺ CD8 ⁺ T cells 1-wk post-treatment)/(%Ki-67 ⁺ cells/PD-1 ⁺ CD8 ⁺ T cells a baseline) (Ki-67b7/D0)	TET t	Discovery cohort: 31		Higher Ki-67D7/D0 significantly associated with durable clinical benefit (PR, or SD for 6 months or longer; p<0.001) and PFS (p=0.027)	Kim et al. (32)
	NSCLC	Discovery cohort: 33		Higher Ki-67D7/D0 significantly associated with durable clinical benefit (PR, or SD for 6 months or longer; p<0.01), PFS (p=0.004), and OS (p=0.001)	
		Validation cohort: 46		Higher Ki-67D7/D0 significantly associated with durable clinical benefit (PR, or SD for 6 months or longer; p<0.01), PFS (p=0.002), and OS (p=0.037)	
%FoxP3 [*] PD-1 ^{hi} CD4 ⁺ T cells/CD4 ⁺ T cells (4PD1 ^{hi}) 3-wk post-treatment Fold change of 4PD1 ^{hi}	Melanoma	52		Higher frequency of $4PD1^{hi}$ 3-wks post treatment (p=0.0005) and fold change of $4PD1^{hi}$ (p=0.046) associated with poorer OS.	Zappasodi et al. (36)
TCR diversity of PD-1 ⁺ CD8 ⁺ T cells at baseline and post-treatment	NSCLC	Discovery cohort: 25 Validation cohort: 15		Higher baseline diversity in $PD-1^{+}CD8^{+}T$ cells (p=0.021) and increased clonality after treatment (p=0.002) associated with superior PFS.	Han et al. (39)
%CD27 ⁻ CD28 ⁻ cells/CD4 ⁺ T cells at baseline	NSCLC	51		Higher frequency of CD27 ⁻ CD28 ⁻ CD4 ⁺ T cells associated superior PFS (p=0.001).	Zuazo et al. (42)
Ratio of the frequency of Treg cells and PMN-MDSCs at baseline	NSCLC	Discovery cohort: 34		Higher ratio of the frequency of Treg cells and PMN-MDSCs associated with superior PFS (p=0.0079).	Kim et al. (44)
		Validation cohort: 29		Higher ratio of the frequency of Treg cells and PMN-MDSCs associated with superior PFS (p=0.0017).	
%Effector/memory (CCR7 ⁻ CD45RA ⁻) cells/CD8 ⁺ T cells at baseline	NSCLC	263 (flow cytometry a	nalysis in 144)	Lower frequency of effector/memory CD8^+ T cells with development of hyperprogressive disease (p<0.001) and poor PFS (p<0.001) and OS (p<0.001).	Kim et al. (53)
%TIGIT ⁺ cells/PD-1 ⁺ CD8 ⁺ T cells at baseline				Higher frequency of TIGIT ⁺ cells among PD-1 ⁺ CD8 ⁺ T cells in peripheral blood at baseline significantly associated with development of hyperprogressive disease (p<0.001) and poor PFS (p<0.001) and OS (p=0.01).	

NSCLC, non-small-cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; SD, stable disease; TET, thymic epithelial tumor; CCR7, C-C chemokine receptor type 7.

Kim et al. 2020

Biomarkers for irAEs

Biomarker	Cancer type	# pts	Main results	Reference				
Fold change of effector Treg cells 1-wk post-	TET	31	Patients with irAEs can be distinguished into 4 distinct	Kim et al.				
Th17 to Th1 ratio at baseline	NSCLC	60	subtypes according to the T-cell parameters and each	(63)				
%Ki-67 ⁺ /PD-1 ⁺ CD8 ⁺ T cells 1-wk post-treatment			T-cell parameter predicts the corresponding subtype of					
%TNF- α^+ /CD4 ⁺ or CD8 ⁺ T cells 1-wk post-treatment			irAEs					
Memory cytotoxic (CD45 $RO^+GzmB^+Ki-67^+$) CD4 ⁺ T	Melanoma	3	Activated memory CD4 ⁺ T cells were highly enriched	Johnson et al.				
cells			in inflammed, affected region of cases with	(68)				
Early B cell changes (decline in B cells, increase in	Melanoma	23	Decline in B cells but an increase in CD21 ^{lo} B cells	Das et al.				
CD21 ^{lo} B cells)			more prominent in patients with severe irAEs that	(72)				
			received combined anti-PD-1 and anti-CTLA-4					
Cytokine expression-based score	Melanoma	98	Eleven cytokines were integrated into a single score	Lim et al.				
			(CYTOX) and it significantly predicted development of	(77)				
			severe irAEs in patients treated with combined anti-PD					
		49	CYTOX score significantly predicted development of					
Auto-Abs (rheumatoid factor, antinuclear Ab,	NSCLC	137	Preexisting rheumatoid factor or auto-Abs significantly	Toi et al. (75)				
antithyroglobulin, and antithyroid peroxidase)			correlates with development of any grade irAEs					
Anti-thyroid Abs (anti-microsomal and anti-	NSCLC	51	Presence of anti-thyroid Abs either at baseline or	Osorio et al.				
thyroglobulin)			during anti-PD-1 treatment was significantly associated	(76)				
NSCLC, non-small-cell lung cancer; TET, thymic epithelial tumor.								

Precision Immunotherapy

Summary and Future Directions

Integrative algorithms:

Response

High tumor mutational burden

Checkpoint protein expression (PD-L1)

High quantities of infiltrating CD8+ T cells

Low circulating neutrophil:lymphocyte ratio

Higher diversity of gut microbiomes

High expression of immune-related genes (Tumor Inflammation immunosignature)

Resistance

Lack of T cell infiltration

High quantities of T-regs, TAMs, MDSCs

Expression of alternative checkpoint proteins

High stromal burden (cancerassociated fibroblasts)

High suppressive cytokines (VEGF, cofactors, IL-6, TGF-β)

Genetic mutations (JAK 1/2, PTEN loss, β-catenin/Wnt signaling)

Future Directions

Refining PD-L1 antibody precision

Biomarkers for CTLA-4 response

Neoantigen signatures superior to TMB in some tumors

Implementing new technologies to assess immune microenvironment

Statistical models to incorporate multiple biomarkers