
Pancreatic Cancer: Emerging Strategies

Edward J. Kim, M.D., Ph.D.

Disclosures

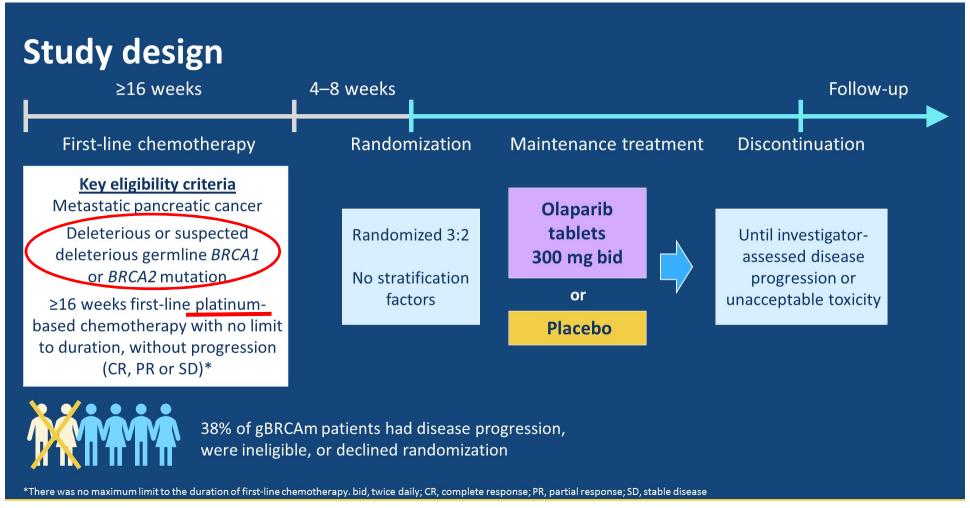
- Clinical trial support: Celgene, BMS, Astellas, Samumed, Boston Biomedical, Halozyme, EpicentRx, Merck, Oncomed
- Consultant: Lilly, Celgene, Eisai
- Speaker Bureau: Celgene, Eisai

Outline

- Pancreatic Cancer
 - PARPi update
 - Stroma update
 - (Neo)adjuvant update

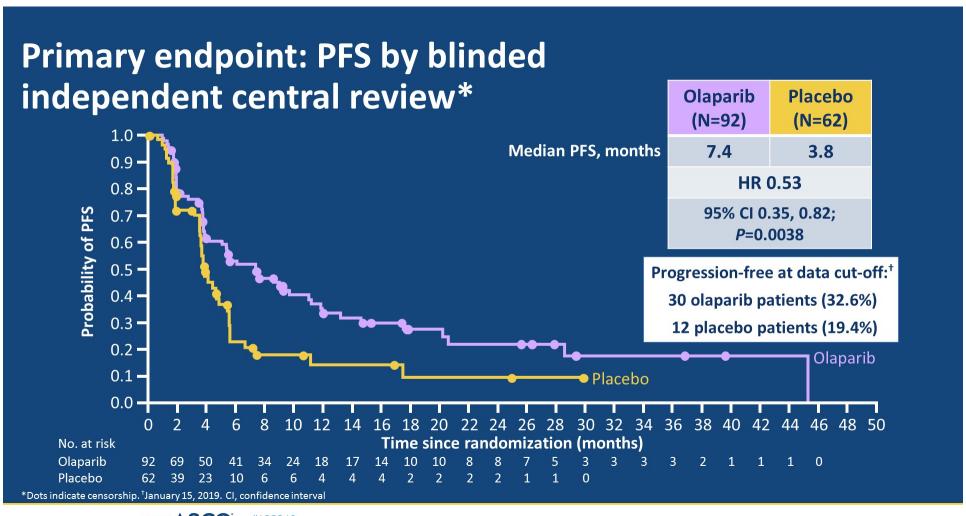
PARPi in pancreatic cancer

Olaparib as maintenance treatment following first-line platinum-based chemotherapy in patients with a germline BRCA mutation and metastatic pancreatic cancer: Phase III POLO trial

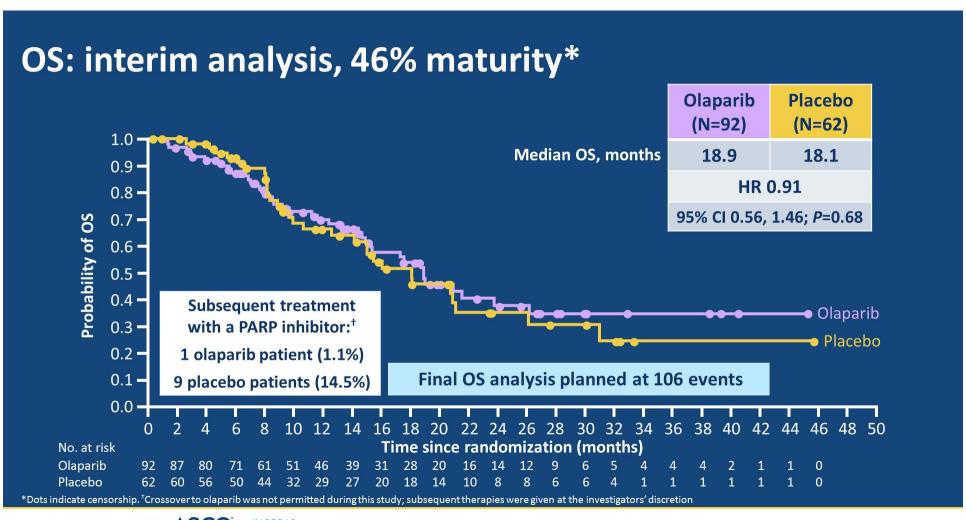

Hedy L Kindler,¹ Pascal Hammel,² Michele Reni,³ Eric Van Cutsem,⁴ Teresa Macarulla,⁵ Michael J Hall,⁶ Joon Oh Park,⁷ Daniel Hochhauser,⁸ Dirk Arnold,⁹ Do-Youn Oh,¹⁰ Anke Reinacher-Schick,¹¹ Giampaolo Tortora,¹² Hana Algül,¹³ Eileen M O'Reilly,¹⁴ David McGuinness,¹⁵ Karen Y Cui,¹⁶ Katia Schlienger,¹⁷ Gershon Y Locker,¹⁶ Talia Golan¹⁸

¹The University of Chicago, Chicago, IL, USA; ²Hôpital Beaujon (AP-HP), Clichy and University Paris VII, Paris, France; ³IRCCS Ospedale, San Raffaele Scientific Institute, Milan, Italy;
⁴University Hospitals Gasthuisberg and KU Leuven, Leuven, Belgium; ⁵Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain; ⁶Fox Chase Cancer Center, Philadelphia, PA, USA; ⁷Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁸University College London Cancer Institute, London, UK; ⁹Asklepios Tumorzentrum Hamburg AK Altona, Hamburg, Germany; ¹⁰Seoul National University Hospital, Seoul, South Korea; ¹¹St Josef-Hospital, Ruhr University Bochum, Bochum, Germany; ¹²Azienda Ospedaliera Universitaria Integrata Verona, Verona and Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy; ¹³Klinikum Rechts der Isar, Department of Internal Medicine II, Technische Universität München, Munich, Germany; ¹⁴Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹⁵AstraZeneca, Cambridge, UK; ¹⁶AstraZeneca, Gaithersburg, MD, USA; ¹⁷Merck & Co, Inc, Kenilworth, NJ, USA; ¹⁸The Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel

ClinicalTrials.gov identifier: NCT02184195. This study was sponsored by AstraZeneca and is part of an alliance between AstraZeneca and Merck Sharp & Dohme Corp, a subsidiary of Merck & Co, Inc, Kenilworth, NJ, USA (MSD)


#ASCO19
Slides are the property of the author,

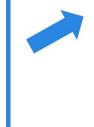
PRESENTED AT:



#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED AT: 2019 ASCO ANNUAL MEETING

#ASCO19
Slides are the property of the author, permission required for reuse.



PRESENTED AT: 2019 ASCO ANNUAL MEETING

#ASCO19
Slides are the property of the author, permission required for reuse.

Randomized Phase II Cisplatin, Gemcitabine +/- Veliparib; Germline BRCA/PALB2

Untreated Stage III- IV ECOG 0-1 gBRCA1/2, PALB2 N= 50 RANDOMIZE

Arm A:

Cisplatin 25 mg/m²,Gemcitabine 600mg/m² day 3,10 + Veliparib 80 mg BID day 1-12 All q3 weeks Option for maintenance Veliparib

Arm B:

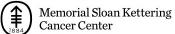
Cisplatin 25 mg/m², Gemcitabine 600mg/m² day 1,8 q3 weeks

Primary Endpoint: Response Rate

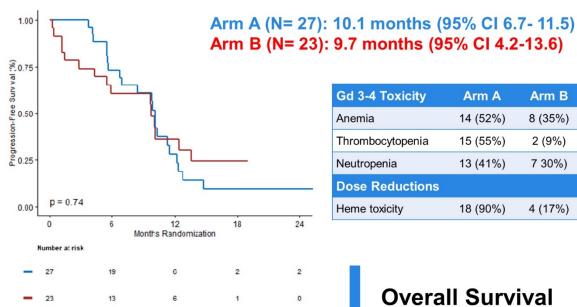
Secondary: PFS, DCR, OS, exploratory

Simon 2-stage design: 16-25/arm

Unacceptable RR 10%; Promising 20%; Type 1, II errors 10%


NCT01585805; O'Reilly, et al. Cancer, 2018

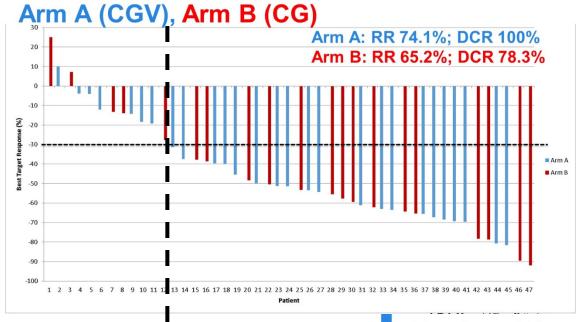
Patient Demographics (N= 50)*


Characteristic	Arm A N= 27	Arm B N= 23	A+B N= 50		
Total Patients	27 (54%)	23 (46%)	50 (100%)		
Age (years)	64 (48-82)	63 (37-81)	63.5 (37-82)		
Sex					
Male	12 (44)	10 (43)	22 (44%)		
Female	15 (56)	13 (57)	28 (56%)		
AJCC Stage					
III (Locally advanced)	5 (19)	3 (13)	8 (16%)		
IV (Metastatic)	22 (81)	20 (87)	42 (84%)		
ECOG					
0	15 (56)	8 (35)	23 (46%)		
1	12 (44)	15 (65)	27 (54%)		

Characteristic	Arm A N= 27	Arm B N= 23	A+B N= 50
Genomic Descriptors			
BRCA1	7 (26%)	5 (22%)	12 (24%)
BRCA2	19 (70)	16 (70)	35 (70%)
PALB2	1 (4)	2 (9)	3 (6%)
BRCA AJ Founder		N = 28 (56	3)
BRCA1 187delAG	2 (7)	1 (4)	3 (6%)
BRCA1 5385insC	2 (7)	2 (9)	4 (8%)
BRCA2 6174delT	13 (48)	8 (35)	21 (42%)
Sites of Metastases	· · · · · · · · · · · · · · · · · · ·		
Liver	20 (74)	17 (74)	37 (74%)
Lung	7 (26)	7 (30)	14 (28%)
Lymph nodes	10 (37)	8 (35)	18 (36%)
Peritoneum	3 (11)	4 (17)	7 (14%)

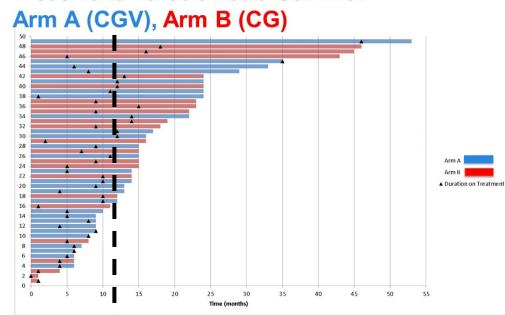
^{*2} withdrew consent from Arm B – arm assigment

Progression-Free Survival & Toxicity



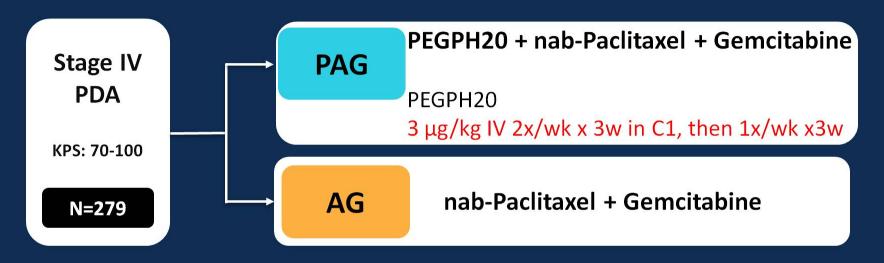
Gd 3-4 Toxicity	Arm A	Arm B
Anemia	14 (52%)	8 (35%)
Thrombocytopenia	15 (55%)	2 (9%)
Neutropenia	13 (41%)	7 30%)
Dose Reductions		
Heme toxicity	18 (90%)	4 (17%)

Overall Survival 1.00 Arm A (N= 27): 15.5 months (95% CI 12.2- 24.3) (%) Suivin Arm B (N= 23): 16.4 months (95% CI 11.7- 23.4) 0.25 p = 0.610.00 24 12 18 Months Randomization 17


Memorial Sloan Kettering

Primary Endpoint: RECIST Response

Treatment Duration and Survival



Targeting stroma in pancreatic cancer

PEGPH20

Pamrevlumab

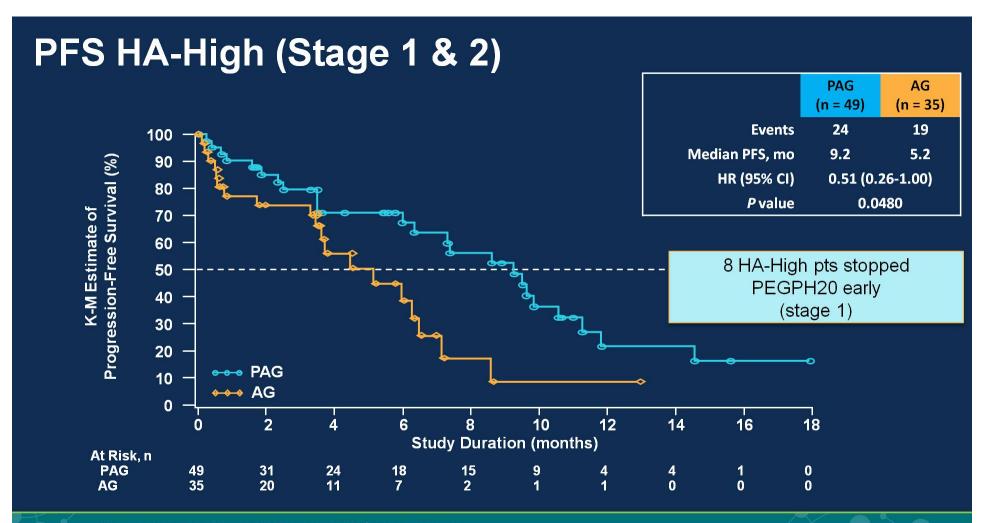
HALO-202: Phase 2 Randomized Study

Primary Endpoints:

- PFS
- Thromboembolic Event Rate

Secondary Endpoints:

- PFS by HA Level
- ORR
- OS


Exploratory Endpoints:

- OS by HA Level
- DoR
- DCR (CR+PR+SD)

Primary & Secondary PFS Endpoint: 80% power at 2-sided alpha level of 0.1

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17

Presented by: Sunil R. Hingorani, MD, PhD

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author. Permission required for reuse

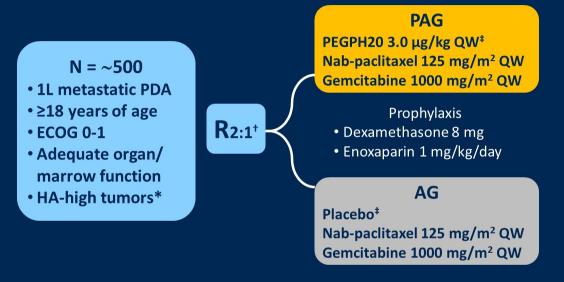
Presented by: Sunil R. Hingorani, MD, PhD

Other Phase II and III Clinical Trials with PEGPH20

Phase II FOLFIRINOX

±

PEGPH20 3 μg/kg Q2W


HALO-301 Phase III Gemcitabine/Nab-Paclitaxel

> PEGPH20 vs placebo HA-high PDAC

SWOG S1313

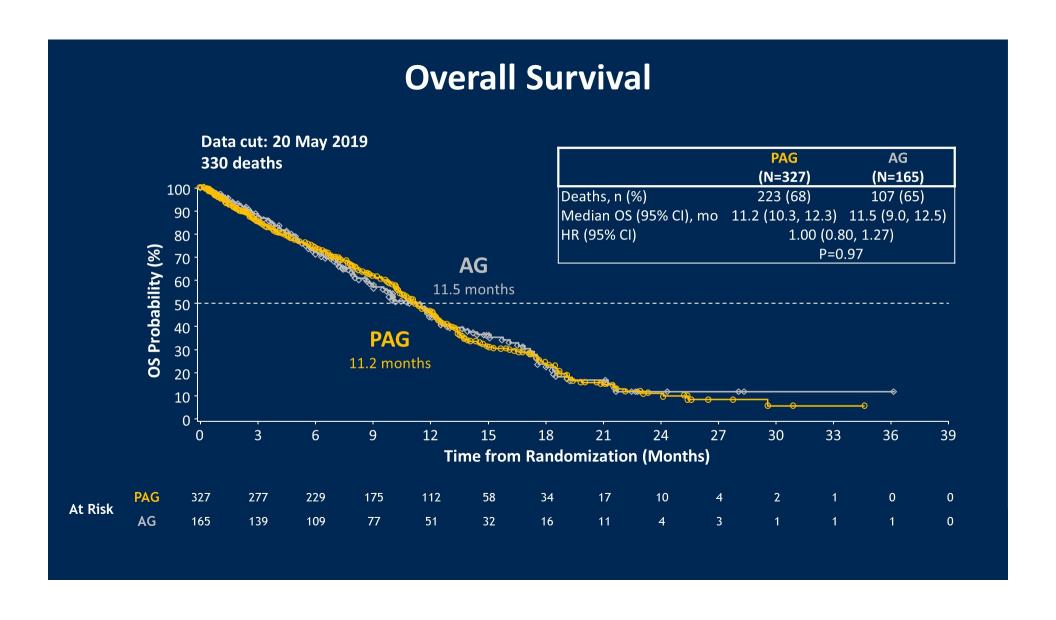
- Unselected population
- DSMB stopped study for futility 04/2017
- Why?
 - PEGPH20 dose less frequent?
 - drug interaction?
 - more toxicity and less chemo exposure?

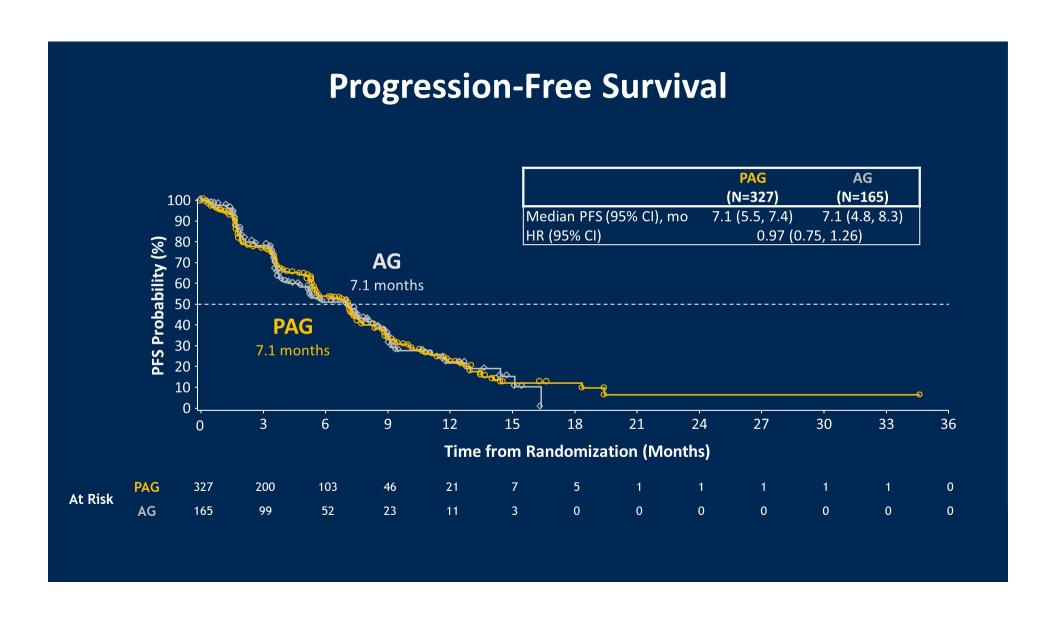
HALO 109-301 Study Design

Primary Endpoint

· OS

Secondary Endpoints


- PFS
- ORR
- Safety
- OS supportive analysis


Statistical assumptions

- Median OS of ~8.5 months for AG arm
- 330 deaths will have 93% power to detect HR 0.67 with 2-sided alpha of 0.05
- 50% increase in median OS to 12.7 months

*≥50% hyaluronan staining in tumor samples (fresh or archival after metastatic diagnosis) by HA affinity histochemistry assay (Ventana HA RxDx Assay); †stratified by geographic region (North America, Europe, other territories); †twice weekly for Cycle 1 (4-week cycles: 3 weeks on/1 week off)

1L=first line; ECOG=Eastern Cooperative Oncology Group; ORR=objective response rate; OS=overall survival; QW=once weekly; R=randomization

Response Outcomes

	PAG (N=327)	AG (N=165)
ORR, %*	47%	36%
ORR ratio (95% CI)	1.29 (1.0	03, 1.63)
Best response, n (%)		
Complete response	2 (0.6)	1 (0.6)
Partial response	152 (46.5)	59 (35.8)
Stable disease	71 (21.7)	54 (32.7)
Non-CR/Non-PD	9 (2.8)	2 (1.2)
Progressive disease	47 (14.4)	22 (13.3)
Not evaluable/unknown	46 (14.1)	27 (16.4)
DOR, median, months [†]	6.1	7.4
Confirmed ORR, %	34%	27%
Confirmed ORR ratio (95% CI)	1.22 (0.9	91, 1.62)

^{*}Complete and partial responses assessed by blinded independent centralized review based on RECIST version 1.1

 ${\it CR=} complete\ response;\ DOR=} duration\ of\ response;\ PD=\\ progressive\ disease$

[†]Estimated by the Kaplan-Meier method

Response Outcomes

	PAG (N=327)	AG (N=165)
ORR, %*	47%	36%
ORR ratio (95% CI)	1.29 (1.0	03, 1.63)
Best response, n (%)		
Complete response	2 (0.6)	1 (0.6)
Partial response	152 (46.5)	59 (35.8)
Stable disease	71 (21.7)	54 (32.7)
Non-CR/Non-PD	9 (2.8)	2 (1.2)
Progressive disease	47 (14.4)	22 (13.3)
Not evaluable/unknown	46 (14.1)	27 (16.4)
DOR, median, months [†]	6.1	7.4
Confirmed ORR, %	34%	27%
Confirmed ORR ratio (95% CI)	1.22 (0.9	91, 1.62)

^{*}Complete and partial responses assessed by blinded independent centralized review based on RECIST version 1.1

 ${\it CR=} complete\ response;\ DOR=} duration\ of\ response;\ PD=\\ progressive\ disease$

[†]Estimated by the Kaplan-Meier method

Drugs that failed in clinical trials involving pancreatic adenocarcinoma: 2004-2014

Summary of main negative studies (i.e. studies that do not have statistically significant results) evaluating targeted agents in advanced pancreatic ductal adenocarcinoma.

Class	Molecule [Ref]	Type	Phase	Endpoint	Result	Hypothesis for failure
Antiangiogenesis inhibitors	Bevacizumab (Kindler et al.,	mAb	III	OS	Negative	PDAC avascular hypoxic microenvironment selecting
	2010; Van Cutsem et al., 2009)	SMI	III	OS	Negative	anaerobic cancer cells that are intrinsically resistant to
	Axitinib (Kindler et al., 2011)	SMI	III	PFS	Negative	hypoxia-induced apoptosis and, consequently, to
	Sorafenib (Goncalves et al., 2012)					antiangiogenics
MMP inhibitors	Marimastat (Bramhall et al., 2002)	SMI	III	OS	Negative	Poor selectivity of MMP inhibitors, poor target
						validation, and complexity of MMP biological effects
EGF and HER2 receptor inhibitors	Cetuximab (Philip et al., 2010)	mAb	III	OS	Negative	Frequent (>90%) activating KRAS mutations downstream of
	Erlotinib (Moore et al., 2007)	SMI	III	OS	Positive ^a	the receptor driving resistance, as described in colorectal
	Trastuzumab (Harder et al., 2012)	mAb	II	PFS	Negative	cancer
	Lapatinib (Safran et al., 2011)	SMI	II	OS	Negative	
IGF receptor inhibitors	Cixutumumab (Philip et al., 2014)	mAb	II	PFS	Negative	Crosstalk with other signaling pathways, benefit maybe
	Ganitumab (NP: NCT01231347)	mAb	III	OS	Negative	restricted to a subset of patients with high levels of
					(stopped)	circulating factors of the IGF axis (McCaffery et al., 2013)
Farnesyl-transferase inhibitors	Tipifarnib (Van Cutsem et al., 2004)	SMI	III	OS	Negative	Existence of other Ras isoforms (e.g. N-Ras) that do not
(K-Ras-directed agents)						rely on farnesylation, and geranylgeranylation working
						as an alternative pathway for K-Ras membrane
						attachment when farnesylation is inhibited
MEK inhibitors	CI-1040 (Rinehart et al., 2004)	SMI	II	Response	Negative	Crosstalk with other signaling pathways, particularly
	Selumetinib (Bodoky et al., 2012)	SMI	II	OS	Negative	with the mTOR pathway, potential activity of dual
	Trametinib (Infante et al., 2014)	SMI	II	OS	Negative	MEK/mTOR pathway inhibition (Tolcher et al., 2015)
mTOR inhibitors	Everolimus (Wolpin et al., 2009)	SMI	II	PFS	Negative	Crosstalk with other signaling pathways, particularly
	Temsirolimus (Javle et al., 2010)	SMI	II	OS	Negative	with the MAPK pathway
Hedgehog inhibitors	Vismodegib (NP: NCT01064622)	SMI	II	PFS	Negative	Stroma depletion may enhance cancer cell invasion and
	Saridegib (NP: NCT01130142)	SMI	II	OS	Negative	accelerate PDAC progression (Ozdemir et al., 2014;
					(stopped)	Rhim et al., 2014)

EGF: epidermal growth factor; IGF: insulin-like growth factor; mAb: monoclonal antibody; MAPK: mitogen-activated protein kinase; MMP: matrix metalloproteinase; NP: not published; OS: overall survival; PFS: progression-free survival; SMI: small molecule inhibitor.

^a Marginal overall survival benefit (14 days).

Drugs that failed in clinical trials involving pancreatic adenocarcinoma: 2015-2018

Drug	Target/Mechanism	Phase	Number of patients
Evofosfamide	Alkylator (Hypoxia)	3	694
Ruxolotinib	JAK1/2	3	Early termination
Necuparanib	Heparan mimetic	1/2	128
Masatinib	TKI (Kit, Lyn, Fyn)	3	353
Vandetanib	TKI (VEGFR2, RET, EGFR)	2	142
Algenpantucel-L	Vaccine	3	722
CRS-207 + GVAX	Vaccine	2b	240
Tarextumab	Notch2/3	2	177
Demcizumab	DLL4	2	204
⁹⁰ Y-Clivatuzumab Tetraxetan	MUC1	3	334
Apatorsen	HSP27	2	132
Simutuzumab	LOX-2	2	240 (159)
			Slide courtesy of

Current clinical trial model

Phase I – treatment refractory *advanced* multi-histology

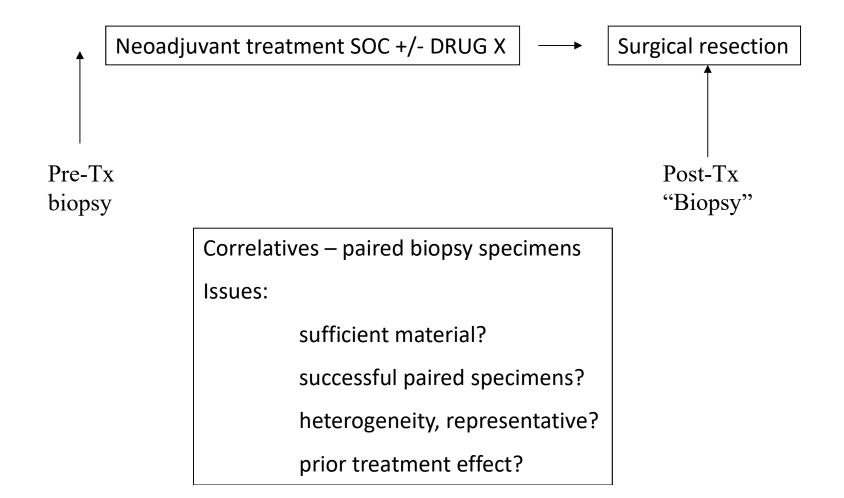
Phase II – histology-specific *advanced* tx refractory / tx naive

Phase III – randomized histology-specific *advanced* tx refractory / tx naive

Correlatives – paired biopsy specimens

Issues:

sufficient material?

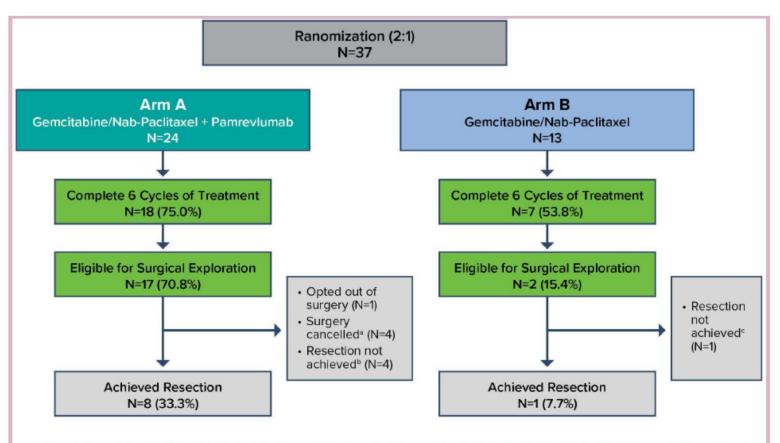

successful paired specimens?

heterogeneity, representative?

prior treatment effect?

"Window of opportunity" study

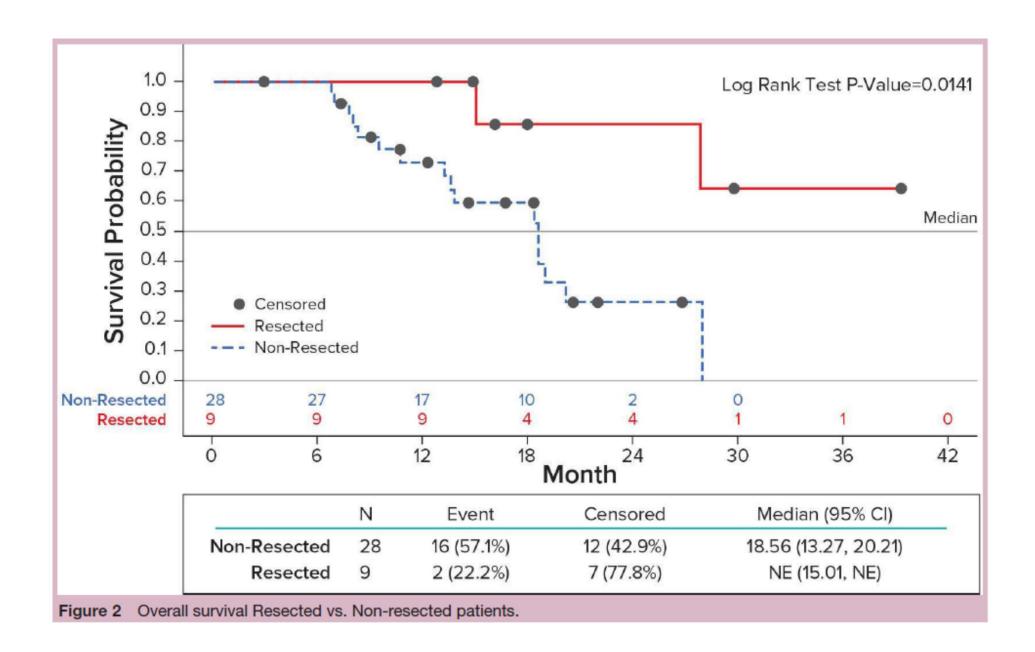
Early stage disease


Targeting stroma in pancreatic cancer

PEGPH20

Pamrevlumab

Neoadjuvant setting


- Pamrevlumab
 - Fully recombinant human monoclonal antibody against connective tissue growth factor -1 (CTGF-1)
 - Studies in Idiopathic pulmonary fibrosis
- Phase I/II trial of Locally advanced <u>Unresectable</u> Pancreatic adenocarcinoma
 - 37 pts 2:1 randomization gemcitabine/nab-paclitaxel +/pamrevlumab

- a. In Arm A, four of the eligible subjects had their surgeries canceled (1 = portal vein thrombosis, 3 = medical issues precluding surgery)
- b. In Arm A, four eligible subjects underwent surgery, but resection was not achieved (3 = metastatic disease discovered, 1 = extensive SMA encasement)
- c. In Arm B, one eligible subject underwent surgery, but resection was not achieved (1 = extensive vascular encasement)

Figure 1 Patient flow and surgery outcomes. In Arm A, four of the eligible subjects had their surgeries cancelled (1=portal vein thrombosis, 3=medical issues precluding surgery). In Arm A, four eligible subjects underwent surgery, but resection was not achieved (3=metastatic disease discovered, 1=extensive SMA encasement). In Arm B, one eligible subject underwent surgery, but resection was not achieved (1=extensive vascular encasement). SMA, superior mesenteric artery.

Table 3 Summary	of resected patients				
Site- subject ID	Treatment arm	Response to treatment*	NCCN baseline	NCCN end of treatment	Resection status
1001–1001	Α	1, 2, 3	Unresectable (coeliac)	Unresectable (coeliac)	R0
1001–1004	Α	1, 2	Unresectable (SMA, SMV)	Unresectable (SMA, SMV)	R1
1001–1005	Α	1, 2	Unresectable (coeliac)	Unresectable (coeliac)	R0
1001–1009	Α	2, 4	Unresectable (coeliac)	Borderline resectable	R0
1001–1015	Α	1, 3	Unresectable (SMV)	Unresectable (SMV)	R1
1001–1017	Α	1, 2	Unresectable (SMA)	Unresectable (SMA)	R1
1008–8001	Α	1, 2	Unresectable (SMA, SMV, coeliac)	Unresectable (coeliac)	R1
1008–8005	Α	2	Unresectable (SMA)	Unresectable (SMA)	R0
1001–1008	В	1, 2	Unresectable (coeliac)	Unresectable (coeliac)	R0

Phase III trial ongoing

Locally Advanced Pancreatic cancer

Stratification:

- SMA> or $\leq 180^{\circ}$
- Unreconstructible or reconstructible
- Geographic region

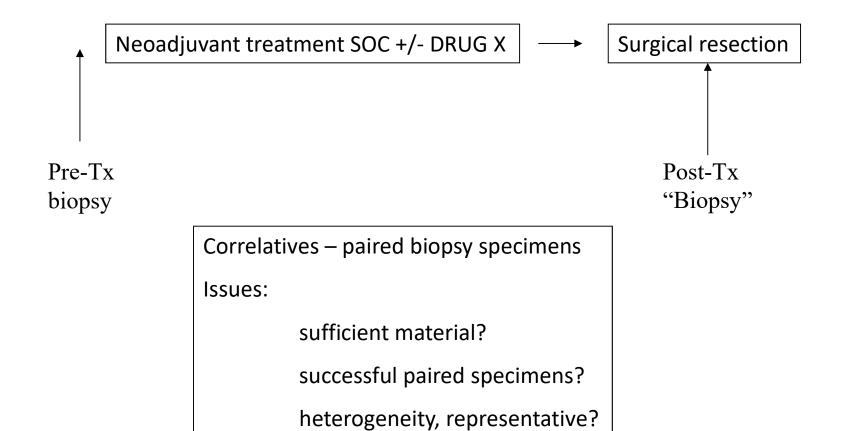
Neoadjuvant treatment 6 cycles

Arm A G/NP + Pamrevlumab

1:1

Arm B
G/NP + placebo

Surgical resection


Resected tissue collected for exploratory analysis

Primary Endpoint = OS

Surrogate endpoint for accelerated approval = proportion of randomized pts achieving R0/R1 resection

"Window of opportunity" study

Resectable disease

prior treatment effect?

Adjuvant Pancreatic Cancer Clinical Trials Summary

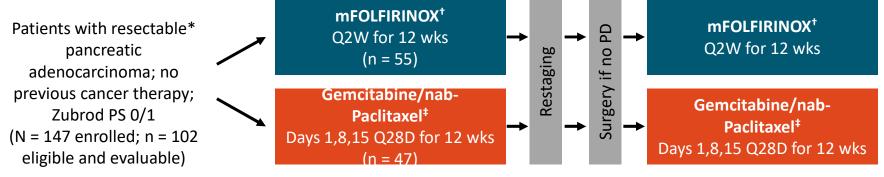
Trial	Study Arms	# pts	Dates	Where done	DFS (m)	mOS (m)
CONUC 004	Gemcitabine	254	2007 ¹ (1998-04)	Cormany Austria	13.4	22.1
CONKO-001	observation	354		Germany Austria	6.9	20.2
ESPAC-4	Gemcitabine	569	2017 ² (2008-14)	GB,Germany, France, Sweden	13.1	25.5
	Gem + Capecitabine	509			13.9	28.0
DRODICE 24	Gemcitabine	402	2018 ³	Franco Canada	12.8	35
PRODIGE 24	FOLFIRINOX	493	(2012-16)	France, Canada	21.6	54.4
APACT	Gemcitabine	866	2019 ⁴	International	13.7	36.2*
	Gem + nab-paclitaxel	000	(2014-18)	International	16.6	40.5*

^{1.} Oettle et al. JAMA (2007) 297: 267-77.

^{2.} Neoptolemos et al. Lancet (2017) 389: 1011-24.

^{3.} Conroy et al. NEJM (2018) 379: 2395-2406.

^{4.} Tempero et al. ASCO 2019. Abstract #4000.


Neoadjuvant Therapy for Resectable Pancreatic Cancer?

Advantages	Disadvantages
Greater ability to administer systemic therapy without delay or concern regarding postoperative complications Can assess drug sensitivity of tumor in vivo Can select patients most likely	Could lose window of opportunity for curative operation? Requires preoperative biopsy/biliary decompression and stent management
to benefit from surgical intervention	

Slide credit: clinicaloptions.com

SWOG S1505: Perioperative mFOLFIRINOX vs Gem/nab-Paclitaxel for Resectable Pancreatic Cancer

Randomized, open-label phase II trial

- Baseline scans underwent retrospective central radiology review for eligibility; determined that 44/147 enrolled patients ineligible for trial
- Primary endpoint: 2-yr OS ("pick the winner" design: 2-yr OS for each arm first compared with historical rate of 40%; arms compared if 2-yr OS rate ≥ 58% (power: 88%; 1-sided α = 0.05); 90% probability of selecting OS with HR ≥ 1.4 if 50 patients/arm

Sohal, ASCO 2020, Abstr 4504, NCT02562716.

Slide credit: clinicaloptions.com

^{*}Resectability determined by CT or MRI of C/A/P within 28 days of registration: no interface with celiac, common hepatic, or superior mesenteric arteries; < 180° interface with portal and superior mesenteric veins; patent portal vein/splenic vein confluence; no lesions suspicious for metastases (nodes beyond surgical basin, visceral lesions). †5-FU 2400 mg/m² over 46 hrs + irinotecan 180 mg/m² + oxaliplatin 85 mg/m².

SWOG S1505: Survival and Resection Outcomes

Outcome	mFOLFIRINOX	Gemcitabine/nab-Paclitaxel
OS	n = 55	n = 47
2-yr OS rate (primary endpoint), %	43.1	46.9
Median OS, mos	22.4	23.6
Surgery outcomes, n (%)	n = 40	n = 33
R0 resection	34 (85)	28 (85)
Complete/major pathologic response	10 (25)	14 (42)
Median no. total nodes resected (range)	19 (1-56)	18 (3-45)
Node-negative resection	16 (40)	15 (45)
DFS after resection, mos	10.9	14.2

Study failed to meet primary endpoint (2-yr OS rate ≥ 58%)

Slide credit: clinicaloptions.com

Sohal. ASCO 2020. Abstr 4504.

PREOPANC-1: Neoadjuvant Chemoradiotherapy vs Immediate Surgery for Resectable Pancreatic Cancer

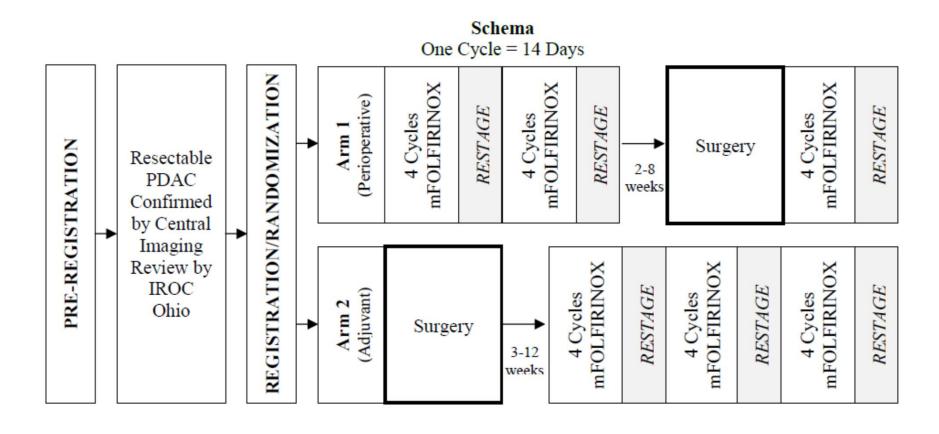
International, randomized, controlled phase III trial

^{*}No contact with superior mesenteric, celiac trunk, or common hepatic arteries and $\leq 90^{\circ}$ contact with superior mesenteric portal vein. $^{\dagger}\geq 1$ of the following required: $\leq 90^{\circ}$ contact with superior mesenteric, celiac trunk, or common hepatic arteries or 90° to 270° contact with superior mesenteric portal vein and no occlusion.

- Primary endpoint: OS (ITT)
- Secondary endpoints: R0 resection rate, DFS, distant metastases—free interval, locoregional recurrence-free interval, perioperative complications

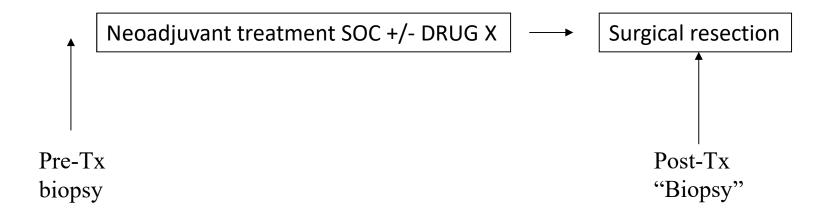
Slide credit: clinicaloptions.com

van Tienhoven. ASCO 2018. Abstr LBA4002.


PREOPANC-1: Efficacy

Outcome	Preoperative Radiochemotherapy (n = 119)	Immediate Surgery (n = 127)	HR	<i>P</i> Value
Median OS, mos (ITT population)*	17.1	13.7	0.74	.074
 Subset with R0/R1 resection[†] 	42.1	16.8	NR	< .001
Resection rate, n (%)	72 (60)	91 (72)		.065
RO resection rate, n/N (%)	45/72 (63)	28/91 (31)		< .001
Median DFS, mos	9.9	7.9	0.71	.023
Median distant metastases–free interval, mos	18.4	10.6	0.71	.013
Median locoregional recurrence-free interval, mos	Not reached	11.8	0.55	.002
Serious AEs, n (%)	55 (46)	49 (39)		.28

^{*}Preliminary analysis; only 149/176 events. †Preoperative radiochemotherapy, n = 72; immediate surgery, n = 91.


Slide credit: clinicaloptions.com

A021806 – A Phase III trial of perioperative vs adjuvant chemotherapy for resectable pancreatic cancer

"Window of opportunity" study

Resectable disease

Are we ready to study new drugs in this setting?

Thank You

Questions?