

PD-1/PD-L1 Directed Immunotherapy for Advanced NSCLC

Karen Kelly, MD

Professor of Medicine
Associate Director for Clinical Research
Jennifer Rene Harmon Tegley and Elizabeth Erica Harmon
Endowed Chair in Cancer Clinical Research
UC Davis Comprehensive Cancer Center, USA

Disclosures

Commercial Interest	Relationship(s)
Advisor:	AbbVie, Amgen, AstraZeneca, Debiopharm, Daiichi Sankyo, EMD Serono, Genentech, Genmab, Lilly, Merck, Novartis, Regeneron, Targeted Oncology, Takeda
Honoraria:	N/A
Research:	AbbVie, Astellas, EMD Serono, Five Prime, Genentech, Lilly, Novartis, Regeneron
Royalty:	UpToDate Author

Pembrolizumab Plus Ipilimumab vs Pembrolizumab Plus Placebo as 1L Therapy For Metastatic NSCLC of PD-L1 TPS ≥50%: KEYNOTE-598

Michael Boyer,¹ Mehmet A.N. Şendur,² Delvys Rodríguez-Abreu,³ Keunchil Park,⁴ Dae Ho Lee,⁵ Irfan Çiçin,⁶ Perran Fulden Yumuk,⁷ Francisco J. Orlandi,⁸ Ticiana A. Leal,⁹ Olivier Molinier,¹⁰ Nopadol Soparattanapaisam,¹¹ Adrian Langleben,¹² Raffaele Califano,¹³ Balazs Medgyasszay,¹⁴ Te-Chun Hsia,¹⁵ Gregory A. Otterson,¹⁶ Lu Xu,¹⁷ Bilal Piperdi,¹⁷ Ayman Samkari,¹⁷ Martin Reck¹⁸

¹Chris O'Brien Lifehouse, Camperdown, NSW, Australia; ²Ankara Yıldırım Beyazıt University, Faculty of Medicine and Ankara City Hospital, Ankara, Turkey ³Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain; ⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁵Asan Medical Center, Seoul, South Korea; ⁶Trakya University, Erdine, Turkey; ³Marmara University School of Medicine, Istanbul, Turkey; ³Orlandi-Oncología, Providencia, Chile; ³University of Wisconsin Carbone Cancer Center, Madison, WI, USA; ¹¹Hospital of Le Mans, Le Mans, France; ¹¹Mahidol University, Stangkok, Thailand; ¹²St. Mary's Hospital – ODIM, McGill University Department of Oncology, Montreal, QC, Canada; ¹³The Christie NHS Foundation Trust, and Division of Cancer Sciences, The University of Manchester, Manchester, UK; ¹⁴Veszprém Megyei Tüdőgyógyintézet Farkasgyepű, Farkasgyepű, Hungary; ¹⁵China Medical University and China Medical University Hospital, Taichung, Taiwan; ¹⁶The Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA; ¹¹Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁵LungenClinic, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany

KEYNOTE-598 Study Design

Key Eligibility Criteria

- Stage IV NSCLC
- · No prior systemic therapy
- ECOG PS 0 or 1
- PD-L1 TPS ≥50%^a
- No targetable EGFR mutations or ALK translocations^b
- No known untreated CNS metastases
- ≥1 lesion measurable per RECIST v1.1

Stratification Factors

- ECOG PS (0 vs 1)
- Region (East Asia vs not East Asia)
- Histology (squamous vs nonsquamous)

Pembrolizumab 200 mg Q3W for up to 35 doses

Ipilimumab 1 mg/kg Q6W for up to 18 doses

Pembrolizumab 200 mg Q3W for up to 35 doses

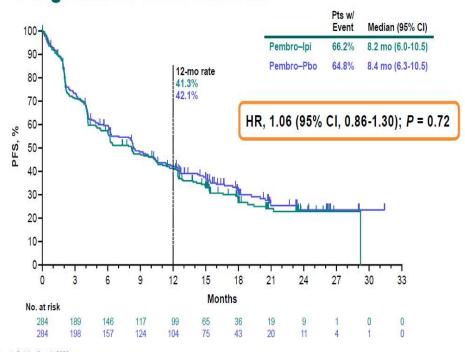
Saline Placebo Q6W for up to 18 doses

End Points

(1:1)

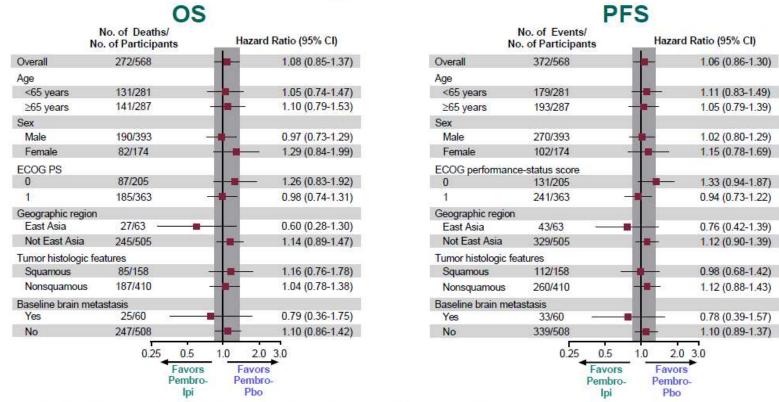
- Dual primary: OS and PFS per RECIST v1.1 by BICR
- Key secondary: ORR and DOR per RECIST v1.1 by BICR and safety

aAssessed centrally using the PD-L1 IHC 22C3 pharmDx assay (Agilent).
Patients with ROS1 rearrangement were also excluded if ROS1 testing and treatment were locally approved and accessible.
KEYNOTE-598 ClinicalTrials.gov identifier, NCT03302234. BICR, blinded independent central review.


Baseline Characteristics

	Pembrolizumab–lpilimumab (N = 284)	Pembrolizumab–Placebo (N = 284)
Age, median (range), years	64 (35-85)	65 (35-85)
Men	202 (71.1%)	191 (67.3%)
Enrolled in East Asia	32 (11.3%)	31 (10.9%)
ECOG PS 1	183 (64.4%)	180 (63.4%)
Former/current smoker	255 (89.8%)	259 (91.2%)
Histology		
Squamous	77 (27.1%)	81 (28.5%)
Nonsquamous	207 (72.9%)	203 (71.5%)
Brain metastases	31 (10.9%)	29 (10.2%)

Overall Survival RMST at RMST at Pts w/ Median Event (95% CI) 24 mo Max Time Pembro-Ipi 48.2% 21.4 mo (16.6-NR) 16.09 mo 18.76 mo 100-21.9 mo (18.0-NR) 19.32 mo Pembro-Pbo 16.61 mo 90-12-mo rate 80-63.6% 70-60 50 40 HR, 1.08 (95% CI, 0.85-1.37); P = 0.74 30-RMST difference at 24 mo, -0.52a 20-RMST difference at max observation time, -0.56a 10-9 12 15 18 21 24 27 30 33 Months No. at risk 284 245 230 215 284 ^aNonbinding futility criteria met.

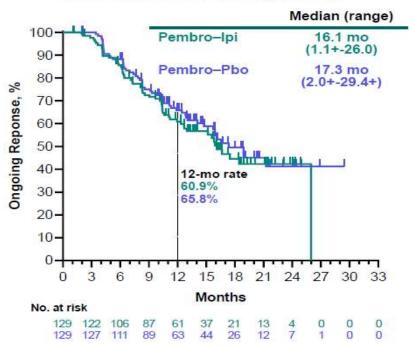

Data cutoff date: Sep 1, 2020.

Progression-Free Survival

Data cutoff date: Sep 1, 2020.

OS and PFS in Subgroups

Only those subgroups for that accounted for ≥10% of the overall population are shown. Data cutoff date: Sep 1, 2020.


JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Summary of Response

	Pembro-Ipi N = 284	Pembro-Pbo N = 284
ORR, % (95% CI)	45.4% (39.5-51.4)	45.4% (39.5-51.4)
Best response, n (%	b)	
CR	13 (4.6%)	8 (2.8%)
PR	116 (40.8%)	121 (42.6%)
SD	70 (24.6%)	73 (25.7%)
PD	51 (18.0%)	44 (1 <mark>5.5%</mark>)
NE ^a	6 (2.1%)	6 (2.1%)
NAb	28 (9.9%)	32 (11.3%)

³≥1 post-baseline imaging assessment, but none evaluable per RECIST v1.1 by BICR. ⁵No post-baseline imaging assessment. Data cutoff date: Sep 1, 2020.

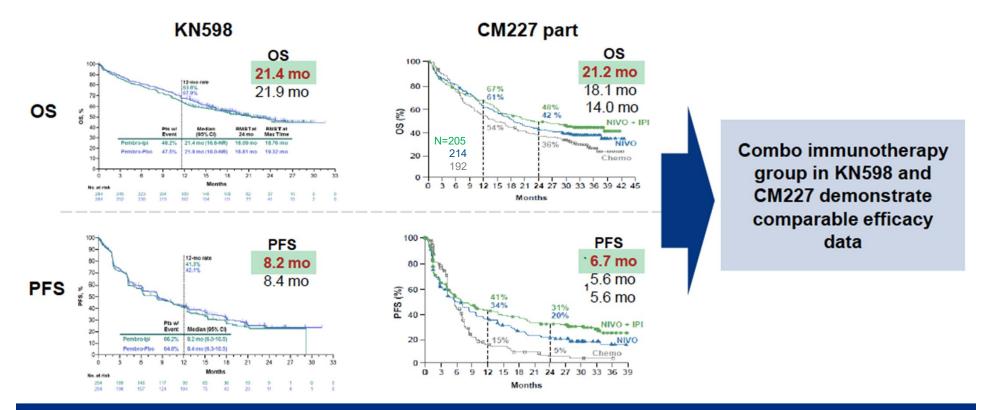
Duration of Response

Adverse Events and Exposure

No. of Patients (%)	Treatment-	Related AEs	Immune-Mediated AEs and Infusion Reactions ^a			
	Pembro-Ipi (N = 282)	Pembro-Pbo (N = 281)	Pembro-Ipi (N = 282)	Pembro-Pbo (N = 281)		
Any grade	215 (76.2%)	192 (68.3%)	126 (44.7%)	91 (32.4%)		
Grade 3-5	99 (35.1%)	55 (19.6%)	57 (20.2%)	22 (7.8%)		
Serious	78 (27.7%)	39 (13.9%)	54 (19.1%)	20 (7.1%)		
Led to death	7 (2.5%)	0	6 (2.1%)	0		
Led to discontinuation ^b						
lpi or placebo only	17 (6.0%)	9 (3.2%)	5 (1.8%)	3 (1.1%)		
Both drugs	54 (19.1%)	21 (7.5%)	34 (12.1%)	12 (4.3%)		

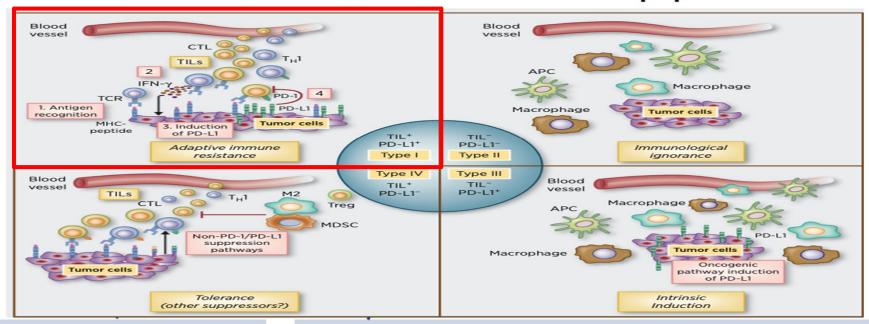
Median Treatment Exposure, Pembrolizumab-Ipilimumab vs Pembrolizumab-Placebo

No. of cycles^c: 10 vs 15


· Months on ipilimumab or placebo: 5.6 vs 8.8

· Months on pembrolizumab: 6.3 vs 9.7

^aEvents were considered regardless of attribution to treatment by the investigator. ^bPatients could discontinue ipilimumab/placebo and continue pembrolizumab; pembrolizumab discontinuation required ipilimumab/placebo discontinuation. ^cOne cycle = 3 weeks. Data cutoff date: Sep 1, 2020.


Efficacy data of Pembro-Ipi and Nivo-Ipi in KN598 and CM227

Fan Yun MD discussant

Potential rationale for the non-beneficial treatment of double blockade in PD-L1≥50% NSCLC population

CTLA-4 blockade allows for activation and proliferation of extra T-cell clones

PD-L1≥50% population presents with high level of pre-actived CD8+T cells already, hence additional CTLA-4 blockade may not bring clinical benefits as expected

wclc2020.IASLC.com | #WCLC20

CONQUERING THORACIC CANCERS WORLDWIDE

EMPOWER-Lung 1: Clinical benefits of first-line (1L) cemiplimab monotherapy by PD-L1 expression levels in patients with advanced NSCLC

Saadettin Kilickap,¹ Ahmet Sezer,² Mahmut Gümüş,³ Igor Bondarenko,⁴ Mustafa Özgüroğlu,⁵ Miranda Gogishvili,⁶ Haci M Turk,ⁿ Irfan Cicin,⁶ Dmitry Bentsion,⁶ Oleg Gladkov,¹⁰ Philip Clingan,¹¹ Virote Sriuranpong,¹² Naiyer Rizvi,¹³ Siyu Li,¹⁴ Sue Lee,¹⁴ Tamta Makharadze,¹⁵ Semra Paydas,¹⁶ Marina Nechaeva,¹⊓ Frank Seebach,¹⁰ David M Weinreich,¹⁰ George D Yancopoulos,¹⁰ Giuseppe Gullo,¹⁰ Israel Lowy,¹⁰ Petra Rietschel¹⁰

¹Department of Medical Oncology, Hacettepe University Institute of Cancer, Ankara, Turkey; ²Department of Medical Oncology, Başkent University, Adana, Turkey; ³Department of Medical Oncology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey; ⁴Department of Oncology and Medical Radiology, Dnipropetrovsk Medical Academy, Dnipro, Ukraine; ⁵Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey; ⁶High Technology Medical Centre, University Clinic Ltd, Tbilisi, Georgia; ⁷Department of Medical Oncology, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey; ⁸Department of Medical Oncology, Trakya University, Edirne, Turkey; ⁹Sverdlovsk Regional Oncology Centre, Sverdlovsk, Russia; ¹⁰LLC, "EVIMED", Chelyabinsk, Russia; ¹¹Southern Medical Day Care Centre and Illawarra Health and Medical Research Institute, University of Wollongong/Illawarra Cancer Centre, Wollongong Hospital, Wollongong, New South Wales, Australia; ¹²Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand; ¹³Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA; ¹⁴Regeneron Pharmaceuticals, Inc., Basking Ridge, New Jersey, USA; ¹⁵LTD High Technology Hospital Medcenter, Batumi, Georgia; ¹⁶Department of Medical Oncology, Faculty of Medicine, Cukurova University, Adana, Turkey; ¹⁷Arkhangelsk Clinical Oncology Center, Arkhangelsk, Russia; ¹⁸Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA

R 1:1

wclc2020.IASLC.com | #WCLC20

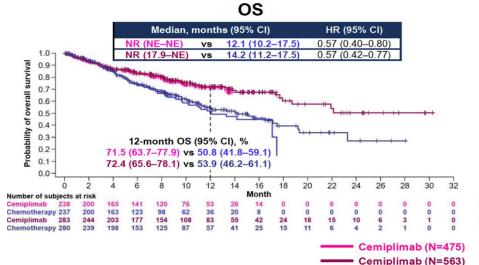
CONQUERING THORACIC CANCERS WORLDWIDE

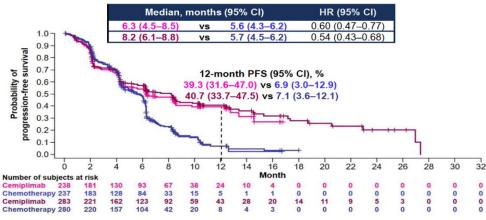
EMPOWER-Lung 1 Study Design

Key Eligibility Criteria

- Treatment-naïve advanced NSCLC
- PD-L1 ≥50%
- · No EGFR, ALK, or ROS1 mutations
- ECOG PS 0 or 1
- Treated, clinically stable CNS metastases and controlled hepatitis B or C or HIV were allowed

Only current/former smokers

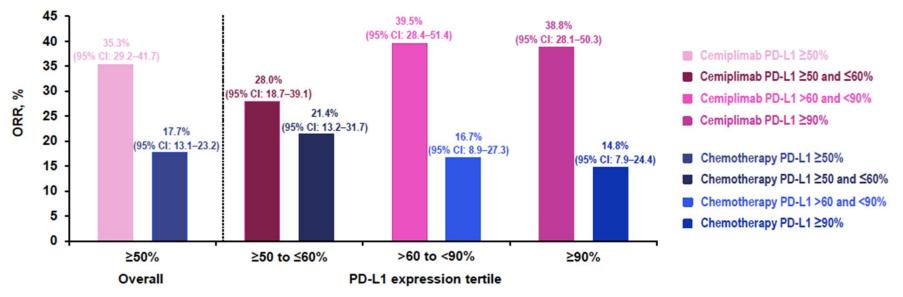

- Stratification Factors:
- Histology (squamous vs non-squamous)
- · Region (Europe, Asia, or ROW)


Optional Arm A continuation of Cemiplimab monotherapy IV PD cemiplimab + 4 350 mg Q3W cycles of Treat until PD or 108 weeks chemotherapy Optional crossover Arm B PD to cemiplimab 4-6 cycles of investigator's choice monotherapy chemotherapy

Endpoints:

- Primary: OS and PFS
 - Secondary: ORR (key), DOR, HRQoL, and safety

N=710

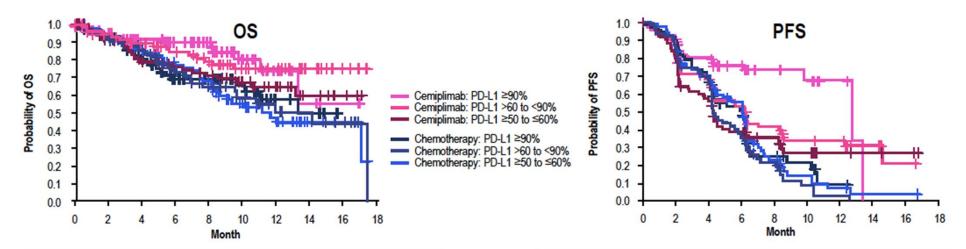

PFS

Chemotherapy (N=475)
Chemotherapy (N=563)

wclc2020.IASLC.com | #WCLC20

CONQUERING THORACIC CANCERS WORLDWIDE

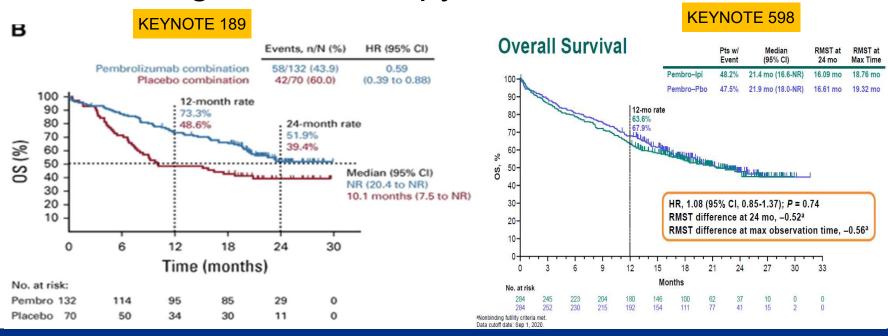
PD-L1 Expression Levels Correlate with Objective Response Rate (N=475)


JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

wclc2020.IASLC.com | #WCLC20

CONQUERING THORACIC CANCERS WORLDWIDE

PD-L1 Expression Levels Correlate with OS and PFS (N=475)


	Median,	HR (95% CI)		
	Cemiplimab (N=238)		Chemotherapy (N=237)	
≥90%	NR (13.4-NE)	VS	13.3 (10.2-NE)	0.54 (0.27-1.10)
>60 to <90%	NR (NE-NE)	VS	14.2 (9.6-17.5)	0.49 (0.26-0.92)
≥50 to ≤60%	NR (13.2-NE)	VS	11.7 (8.3-NE)	0.74 (0.44-1.24)

	Median,	HR (95% CI)		
	Cemiplimab (N=238)		Chemotherapy (N=237)	
≥90%	12.7 (9.8-13.4)	VS	6.1 (4.2-6.2)	0.33 (0.19-0.58)
>60 to <90%	6.2 (4.2-8.4)	VS	4.3 (4.1-5.9)	0.57 (0.38-0.85)
≥50 to ≤60%	4.3 (2.8-5.2)	VS	6.0 (4.4-6.2)	0.89 (0.61-1.29)

IASLC ((2020 World Conference on Lung Cancer Singapore

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

How do we improve efficacy in patients with tumors expressing PD-L1 > 50%?
Adding chemotherapy to PD-L1 inhibitors

What's more for immunotherapy in advanced PD-L1≥50% NSCLC ? (phase I/II study)

Trial	N	Population	Line of treatment	IMP/control	PD-L1 stratum	ORR%	PFS mo	OS mo							
				Tiragolumab +	≥1%	37	5.55	NR							
CITYSCAPE	135	PD-L1	Treatment-	Treatment-	Treatment-	Treatment-	Treatment-	Treatment-	Treatment-	Atezolizumab		≥50%	66	NR HR 0.3	NR
(Phase 2) 1	135	TPS ≥ 1%	naïve	Atezolizumab	≥1%	21	3.88	NR							
				Atezolizulilab	≥50%	24	4.11	NR							
M7824	80	All comer	Second or	M7824	ALL	27.5	4.0	14.5							
(Phase 2) ²	00	All come	later	1200mg	≥80%	85.7	NR	NR							
WJOG10718L (Phase 2) ³	39	PD-L1 TPS ≥ 50%	Treatment- naïve	Atezolizumab + Bevacizumab	≥50%	64.1	15.9	NR							

Fan Yun MD discussant

What's more for immunotherapy in advanced PD-L1≥50% NSCLC ? (phase I/II study)

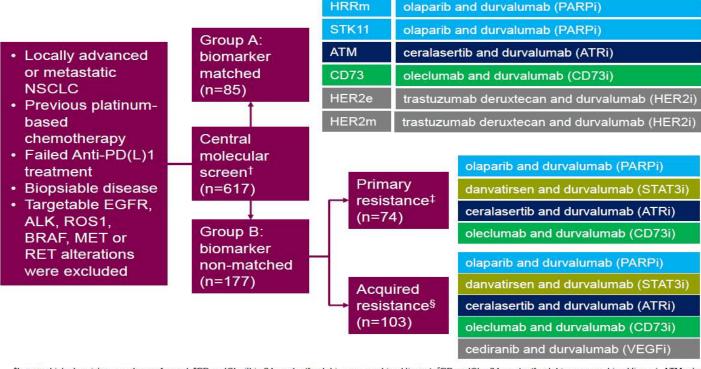
Trial	N	Population	Line of treatment	IMP/control	PD-L1 stratum	ORR%	PFS mo	OS mo
CITYSCAPE	135	PD-L1	Treatment-	Tiragolumab + Atezolizumab	SKYS	SCR	APEF	R 1
(Phase 2) 1	133	TPS ≥ 1%	naïve	Atezolizumab				
M7824 (Phase 2) ²	80	All comer	Second or later	M7824 1200mg		@PI Vega		ng 03
WJOG10718L (Phase 2) ³	39	PD-L1 TPS ≥ 50%	Treatment- naïve	Atezolizumab + Bevacizumab	@Be			

Fan Yun MD discussant

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

HUDSON

An Open-Label, Multi-Drug, Biomarker-Directed, Phase II Platform Study in Patients with Non-Small Cell Lung Cancer, who Progressed on an anti-PD(L)-1 Therapy


Benjamin Besse

Institut Gustave Roussy, Villejuif and Paris-Sud University, Paris, France

On behalf of the HUDSON study group

B. Besse, M. Awad, P. Forde, M. Thomas, K. Park, G. Goss, N. Rizvi, F. Huemer, M. Hochmair, J. Bennouna, J. Cosaert, Z. Szucs, P. Mortimer, R. Hobson, K. Sachsenmeier, E. Dean, H. Ambrose, C. Hayward, M. Dressman, S. Barry, J. Heymach

HUDSON study design

Primary endpoint:

· Overall response rate

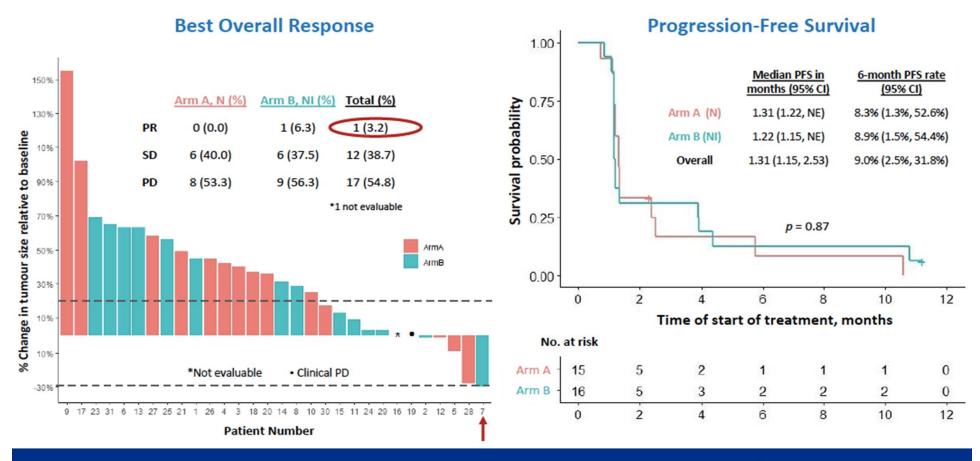
Secondary endpoints:

- Progression-free survival
- Overall survival
- · Disease control rate
- Safety and tolerability

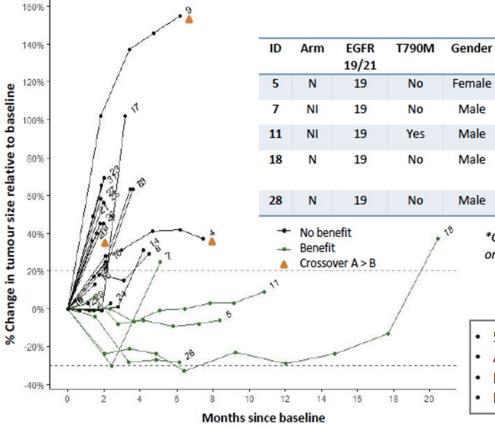
†Immunohistochemistry was also performed. ‡PD on ICI within 24 weeks (fresh biopsy or archived tissue); §PD on ICI > 24 weeks (fresh biopsy or archived tissue). ATM, ataxia-telangiectasia mutated; ATRi, ataxia-telangiectasia receptor inhibitor; CD73, cluster of differentiation 73; HER2, human epidermal growth factor receptor 2; HRR, homologous recombination repair; NSCLC, non-small-cell lung cancer; PARPi, poly ADP ribose polymerase inhibitor; PD, progression of disease; STAT3i, Signal transducer and activator of transcription 3 inhibitor; STK11, Serine/threonine kinase 11 (also known as LKB1)

HUDSON – ORR and median PF HUDSON – median OS

	Ourvalumab ombination	N	mF/U m	ORR n (%)	Median PFS m (80% CI)	PFS rate (%) 6, 9 and 12 m	100	Ourvalumab ombination	N	mF/U m	Median OS m (80% CI)	100 E TO TO	rate (° and 12	
	Olaparib HRR	21	2.8	2 (9.5)	2.79 (1.48 – 5.26)			Olaparib HRR	21	9.6	9.63 (5.26 – 15.97)			
arker :ted	Olaparib STK11	21	1.4	1 (4.8)	1.41 (1.38 – 1.81)	_	narker	Olaparib STK11	21	5.6	5.75 (5.29 – 10.84)			
Biomarker selected	Ceralasertib ATM	18	5.0	2 (11.1)	7.43 (3.45 – 9.46)		Biomarker selected	Ceralasertib ATM	18	10.5	15.80 (11.01 – NC)	5		
	Oleclumab 73H	23	1.5	0 (0)	1.58 (1.41 – 2.76)	•		Oleclumab 73H	23	7.6	9.49 (7.49 – NC)			
	Olaparib	22	2.8	0 (0)	3.38 (2.10 – 4.93)			Olaparib	22	7.2	7.16 (4.93 – 10.28)			
ary	Danvatirsen	23	1.7	0 (0)	1.68 (1.64 – 2.99)		ary	Danvatirsen	23	6.0	6.01 (3.55 – 6.51)			
Frimary resistance	Ceralasertib	20	2.6	2 (10.5)	4.24 (1.94 – 6.77)		Primary resistance	Ceralasertib	20	6.7	11.60 (10.45 - NC)			
	Oleclumab	9	1.4	0 (0)	1.41 (1.35 – 1.81)		_	Oleclumab	9	2.8	7.06 (4.90 – 7.06)			
	Olaparib	23	4.2	1 (4.3)	4.17 (2.69 – 4.37)			Olaparib	23	11.6	15.51 (8.80 – 19.75)			
Acquired resistance	Danvatirsen	22	2.8	0 (0)	3.09 (2.83 – 6.14)		ired	Danyatirsen	22	10.8	11.20 (9.72 – 12.55)			
Acquired resistanc	Ceralasertib	24	4.6	2 (8.3)	4.96 (3.55 – 5.98)		Acquired resistance	Ceralasertib	24	12.7	17.38 (14.06 – NC)			
	Oleclumab	25	2.6	1 (4.2)	2.63 (1.64 – 2.79)			Oleclumab	25	6.1	12.78 (6.14 – 12.78)			
						50 50 ■ 6m ■ 9m ■ 12						0 🔲 6m	50 III 9m	1



Randomised phase 2 study of Nivolumab (N) versus Nivolumab and Ipilimumab (NI) combination in *EGFR* mutant NSCLC


Gillianne G.Y. Lai¹, Jacob J.S. Alvarez², Jia Chi Yeo², Ngak Leng Sim², Aaron C. Tan¹, Siqin Zhou¹, Lisda Suteja¹, Tze Wei Lim¹, Neha Rohatgi², Joe P.S. Yeong³, Angela Takano³, Kiat Hon Lim³, Apoorva Gogna³, Chow Wei Too³, Kun Da Zhuang³, Amit Jain¹, Wan Ling Tan¹, Ravindran Kanesvaran¹, Quan Sing Ng¹, Mei Kim Ang¹, Tanujaa Rajasekaran¹, Lanying Wang¹, Chee Keong Toh¹, Wan-Teck Lim¹, Wai Leong Tam², Florent Ginhoux⁴, Sze Huey Tan¹, Anders M.J. Skanderup², Daniel S.W. Tan¹, Eng-Huat Tan¹

¹National Cancer Centre Singapore, ²Genome Institute of Singapore, ³Singapore General Hospital, ⁴Singapore Immunology Network

Individual Tumour Response

*Clinical benefit defined by ongoing PR/SD at 6 months, or best response of PR

80%

PDL1

status

5%

0%

10%

CNS

mets

No

No

No

No

Yes

Best

Response

SD

PR

SD

SD

SD

5 patients with clinical benefit

Smoking Status

Non-smoker

Non-smoker

Non-smoker

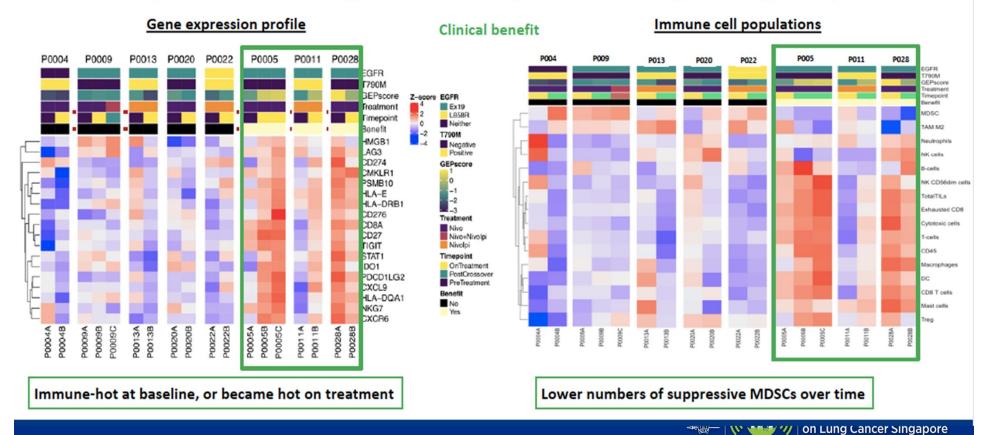
Non-smoker

Non-smoker

- · All EGFR exon 19 deletion; 4 of 5 T790M negative
- · No association between PDL1 status and response to ICI
- No salvage achieved with crossover from A > B (ID 4, 9, 20)

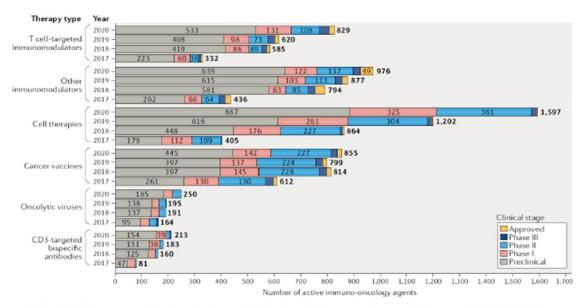
Treatment-related adverse events

Adverse Event	Any Grade (n=31) N (%)	Grade 3 N (%)		
Any event	23 (74.2)	2 (6.0)		
Immune-related				
Skin	11 (35.5)	-		
Endocrine	4 (12.9)	1 (3.2)		
Gastrointestinal	3 (9.6)	-		
Hepatic	3 (9.6)	-		
Pulmonary	1 (3.2)	-		
Musculoskeletal	1-	1 (3.2)		


Checkmate 227¹ Common treatment-related select AE with a potential immunologic cause

	Nivolumab- Ipilimumab	Nivolumab
Skin	34.0%	21.2%
Endocrine	23.8%	13.0%
Gastrointestinal	18.2%	12.8%
Hepatic	15.8%	10.7%
Pulmonary	8.3%	7.7%

¹Hellmann MD, et al. NEJM 2019



Dynamic changes across paired biopsies (n=8)

How do we continue to exploit the immune system to increase treatment efficacy?

Immuno-oncology drug development forges on despite COVID-19

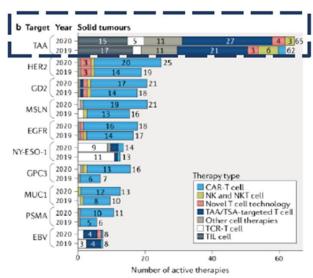


Fig. 1 | **Trends in the immuno-oncology drug development pipeline.** The 4,720 immuno-oncology agents in the current global clinical pipeline are compared with the pipelines from analogous analyses in previous years, based on the therapy type.

TAKE HOME MESSAGE

Vast opportunities to exploit the immune system for therapeutic advances alone and in combinations.

Precision immuno-oncology will require a deeper understanding of the interactions between the tumor, TME and the host.

