Immunotherapy for Non-Small Cell Lung Cancer: Integration of Predictive Biomarkers

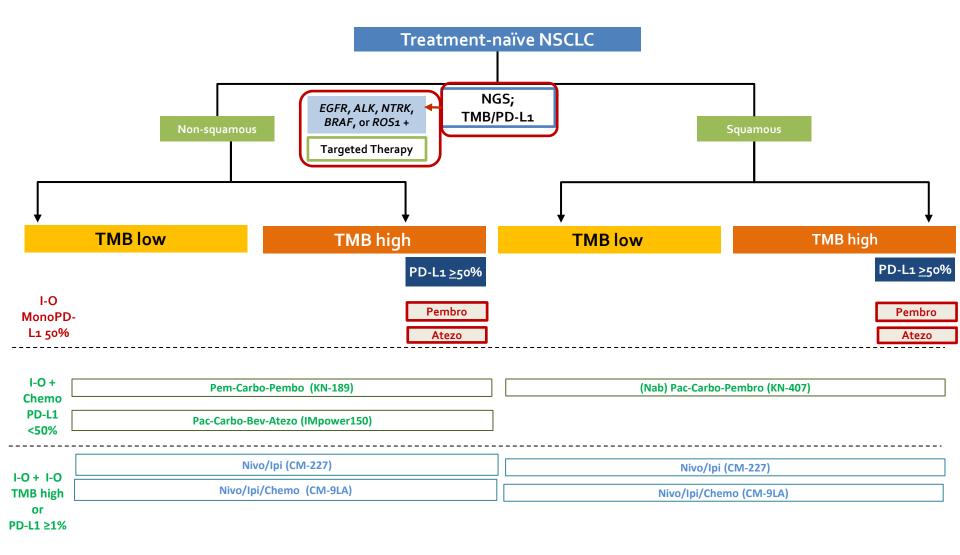
David R. Gandara, MD University of California Davis Comprehensive Cancer Center

Immunotherapy Therapeutic Landscape in Advanced NSCLC: August 2021

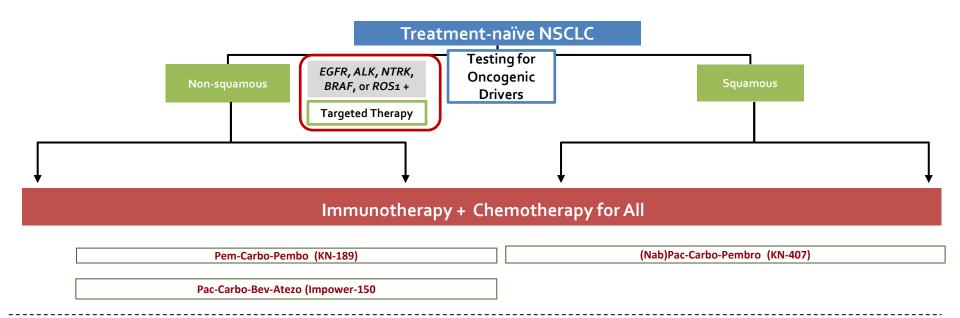
	Clinical Tria	al Results of 1s	t line Cheo	kpoint Immunot	therapy in Adva	nced NSCLC		
Study	Drug (vs Chemo)	PDL1 Selection	Line of Tx	Control	Primary Endpoint	HR-Primary Endpoint	Result	1 st Line Trials
KN024	Pembro	≥50%	1st	Plat Chemo	PFS	0.50	Positive	Test Regimen
CM026	Nivo	≥5%	1st	Plat Chemo	PFS	1.15	Negative	CPI Monotherapy CPI+Chemo
MYSTIC	Durva or Durva-Tremi	≥25%	1st	Plat Chemo	PFS & OS	NR	Negative	CPI+Chemo+Bev CPI + CTLA4
KN189 (Non-SQ)	Pembro-Chemo	≥1%	1st	Plat Chemo	PFS	0.52	Positive	Biomarker
KN042	Pembro	≥1%	1st	Plat Chemo	OS	0.81 for OS 0.69 for 50%	Positive	None PD-L1
KN047 (SQ)	Pembro-Chemo	None	1st	Plat-Nab Paclitaxel	PFS & OS	0.64 for OS	Positive	ТМВ
Impower 150 (Non-SQ)	Atezo +Bev/ Pac/Carbo	None	1st	Bev/Pac Carbo	PFS OS	0.71	Positive	Histology All
Impower 131 (SQ)	Atezo + Nab/Carbo	None	1st	Pac/ Carbo	PFS OS	0.71 (PFS)	Positive	Squamous Non-Squamous °
CM227	Nivo or Nivo-Ipi	<1%/1% & TMB≥10	1st	Plat Chemo	PFS & OS	0.58 (in H-TMB)	Positive	1 Endpoint
IMpower 110	Atezo	≥1%	1st	Plat Chemo	OS in TC3/IC3	0.59	Positive	PFS OS Both
CM-9LA	Nivo-Ipi-Chemo	None	1st	Plat Chemo	OS	0.66	Positive	Both

Precision/Personalized Medicine in Non-Oncogene-driven NSCLC: Two Different & Shifting Viewpoints (Stereotyped)

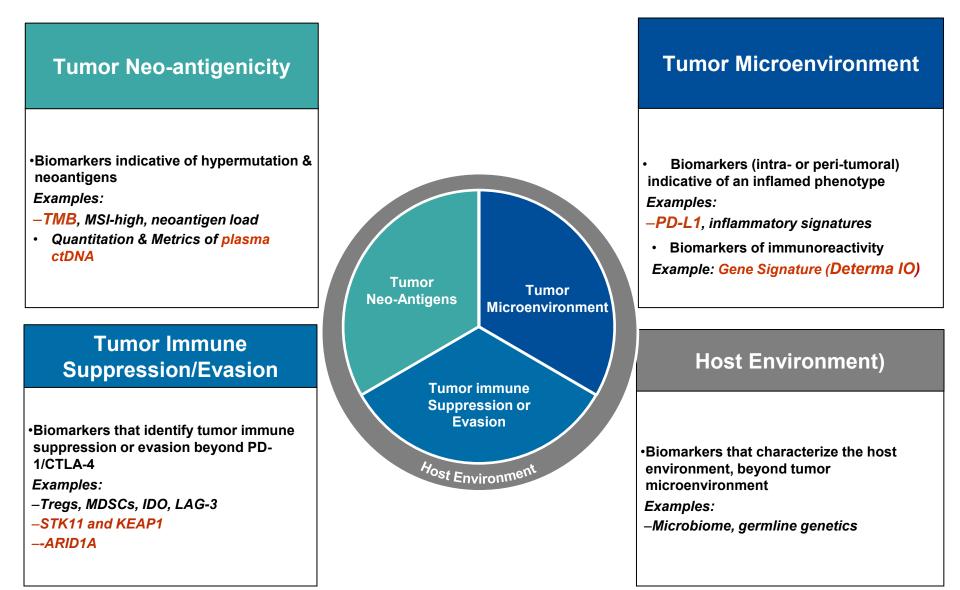
Empiric Therapy (Non-Biomarker-Driven) "Lumper" Oncologist



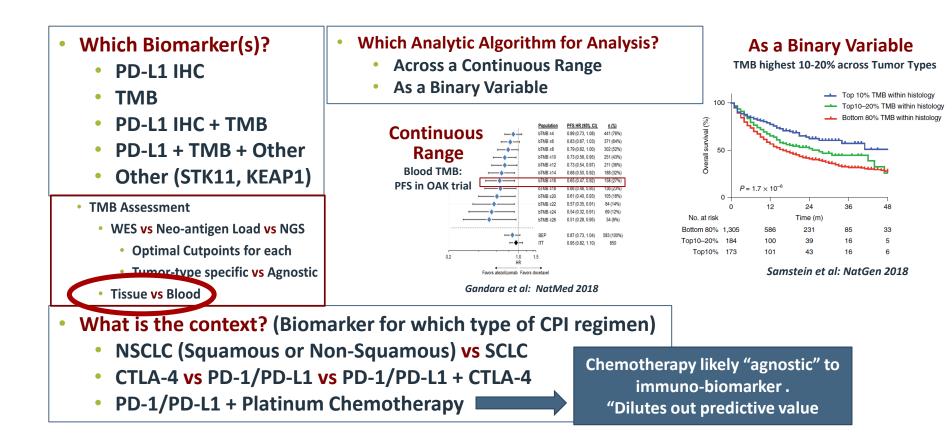
Personalized Therapy (Biomarker-Driven) "Splitter" Oncologist


- One regimen for all (more or less)
- Primary goal is to initiate therapy rapidly
- Oncogene testing done "along the way"

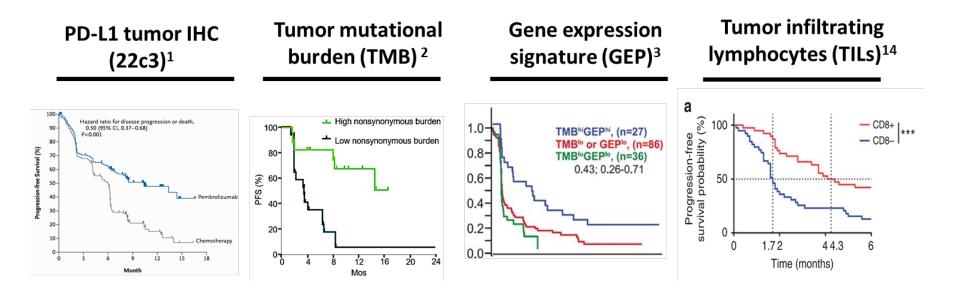
- Attempts to individualize therapy for each patient
- Biomarker testing "early & often"
- Awaits initiation of 1st line therapy until oncogene testing returns
- Uses immunotherapy biomarkers (PD-L1 +/-TMB) to select 1st line IO therapy


Stage IV NSCLC: Biomarker-driven Therapeutic Landscape Algorithm of the "Splitter"

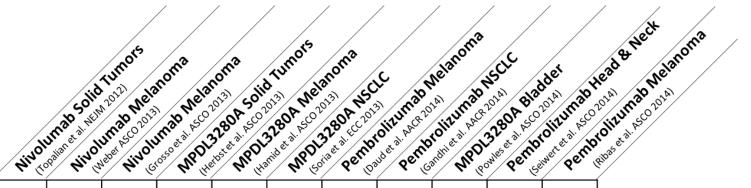
Stage IV NSCLC: Biomarker-driven Therapeutic Landscape: Algorithm of the "Lumper"



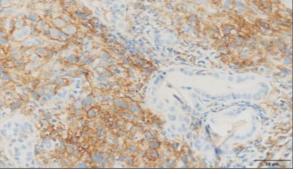
Potential Predictive Biomarkers for benefit from Checkpoint Immunotherapy



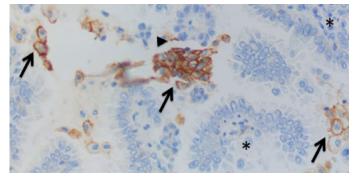
Predictive Biomarkers for Checkpoint Immunotherapy (CPI)


Note: cannot be equated to a discrete variable like driver mutations (Present or Absent) PD-L1 & TMB are dynamic & continuous variables across a context-specific range

Selected Biomarkers associated with Checkpoint Immunotherapy efficacy in NSCLC

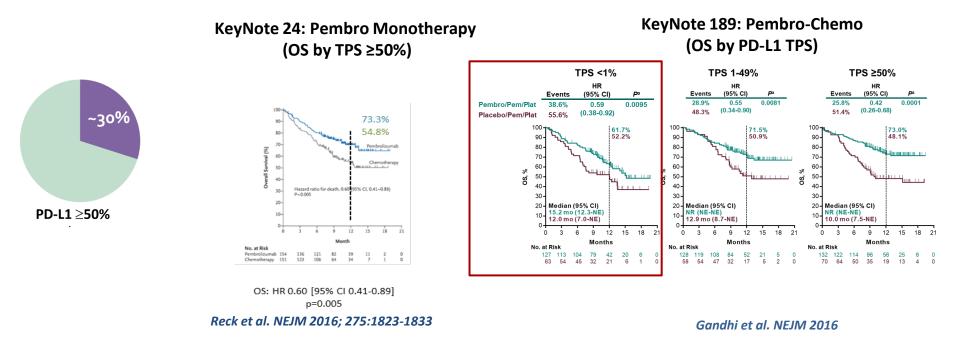


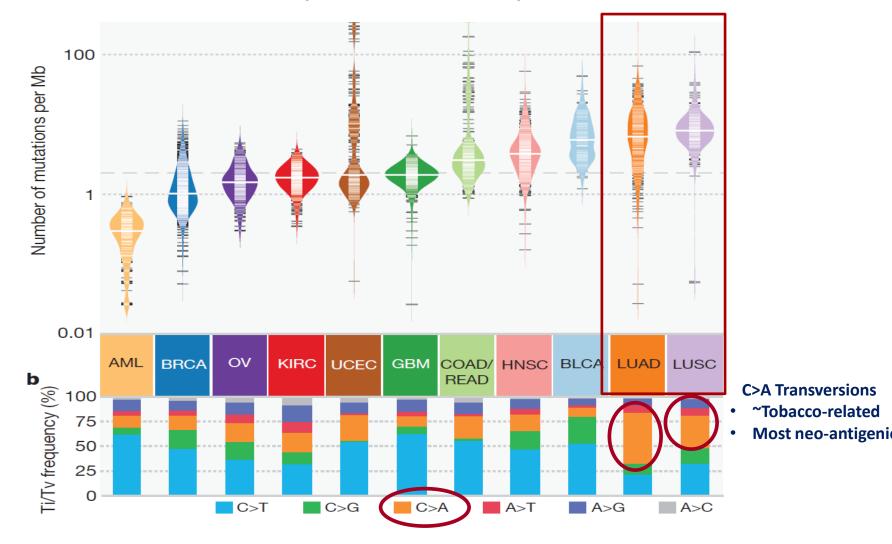
PD-L1 expression & response to PD-1/PD-L1 blockade across multiple assays, drugs & tumor types



Patient number	42	44	34	94	30	53	113	129	65	55	411
Response Rates											
Unselected	21%	32%	29 %	22%	23%	23%	40%	19%	26%	18%	40%
PD-L1 +	36%	67%	44%	39 %	27%	46%	49 %	37%	43%	46%	49%
PD-L1 -	0%	19%	17%	13%	20%	15%	13%	11%	11%	11%	13%

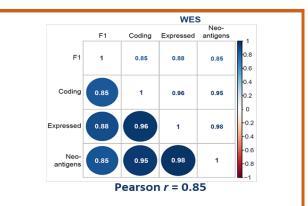
PD-L1 expression by TPS vs CPS

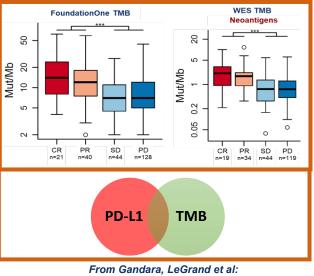

TPS >50% (TC)


CPS 30% (TC=0, IC=30%)

Callahan: ASCO 2014; Marchi et al. J Clin Path 2020

PD-L1 ≥50% TPS distinguishes a Patient Subset with Substantial Benefit from CPI Monotherapy (KN024) as well as CPI + Chemotherapy (KN189)

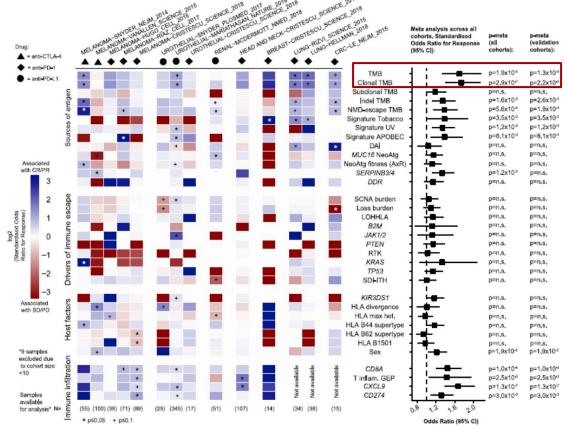

NSCLC is complex both genomically & immunologically, with Quantitative & Qualitative differences from other Cancer Types ("Mutational Load")

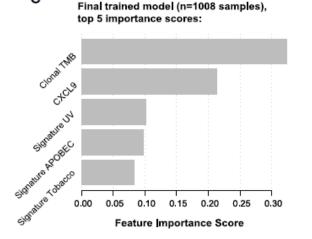


Adapted from The Cancer Genome Atlas Project: Kandoth et al *Nature* 2013.

Tumor Mutational Burden (TMB) as a Candidate Predictive Biomarker for Cancer Immunotherapy

- Somatic mutations in cancers are multifactorial (including DNA repair defects, carcinogens & enzymatic alterations in DNA polymerases)
- These mutations produce neoantigens that induce anti-tumor immune responses
- TMB is an emerging predictive biomarker for cancer checkpoint immunotherapy (CIT)
- TMB can be estimated using whole-exome sequencing (WES) or comprehensive genomic profiling by NGS (e.g., FoundationOne & FACT in blood[bTMB]). MSK-IMPACT. Guardant OMNI in blood¹⁻⁸
 - Studies show that TMB either by WES or CGP correlate with each other & with efficacy of CPI therapy in multiple cancer types¹⁻³
- Predicted neoantigen load (NAL), a component of TMB most closely linked to immune response, correlates with F1 TMB & OMNI^{4,5,7,8}
- TMB identifies a distinct patient population not currently captured by PD-L1 IHC or other immune biomarkers^{5,6}

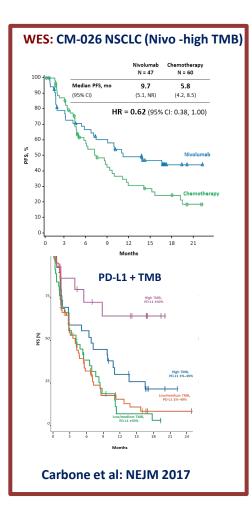


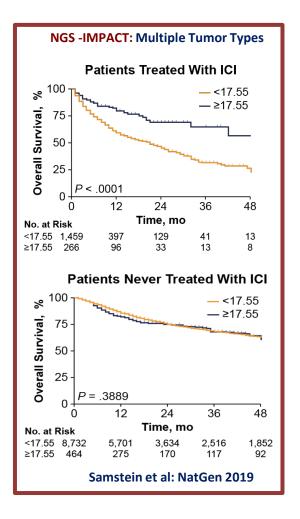

ASCO 2018

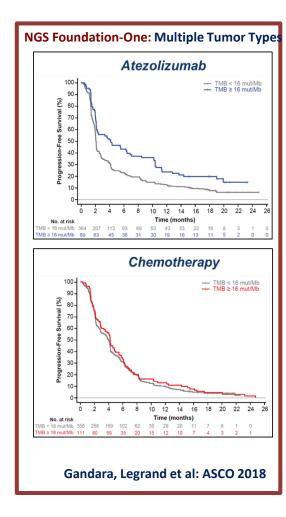
IHC, immunohistochemistry; PD-L1, programmed death-ligand 1; TMB, tumor mutational burden.
1. Yarchoan M, et al. N Engl J Med. 2017; 2. Chalmers ZR, et al. Genome Med. 2017; 3. Goodman AM, et al. Mol Cancer Ther. 2017; 4. Efremova M, et al. Front Immunol. 2017; 5. Topalian SL, et al. Nat Rev Cancer. 2016; 6. Kowanetz M, et al. WCLC 2017. 7. Mariathansan, et al. Nature 2018. 8. Rizvi et al: ESMO IO 2018.

Pan-cancer Outcomes in >1,000 patients treated with Checkpoint Immunotherapy (CPI) by WES & Transcriptome analysis

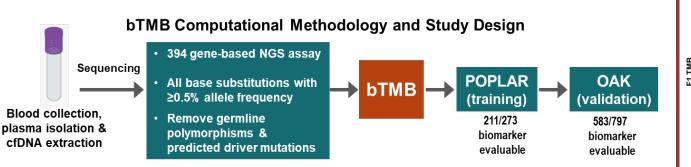
- Clonal TMB is strongest predictor of CPI response. OR for CR/PR: 1.74 [1.41–2.15]
- Total TMB: OR for CR/PR: 1.70 [1.33-2.17]
- Sub-clonal TMB not associated with CPI response: OR for CR/PR 1.18 [0.99–1.41
- A Multivariable Predictor adding
- CXCL9/CXCL13 expression, 9q34 loss & CCND1 amplification improves TMB as a predictor of CPI response

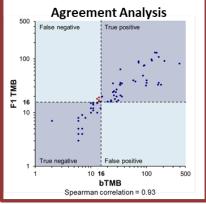




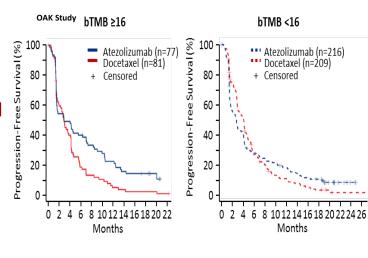

С

Lichtfield, Swanton et al. Cell, 2021

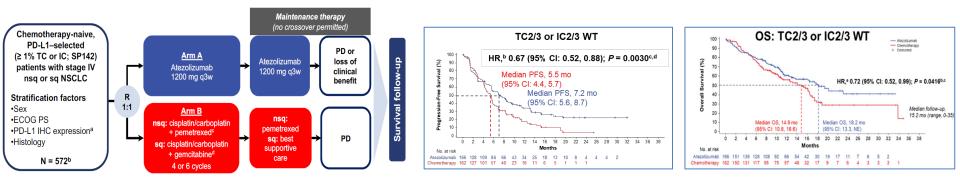

Regardless of Methodology, High Tissue TMB is associated with increased efficacy of Checkpoint Inhibitor Monotherapy in Advanced NSCLC



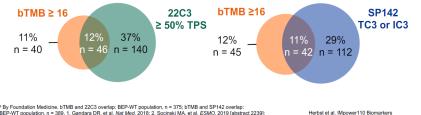



Analytical & Clinical Validation of Tumor Mutational Burden in Blood (bTMB) in association with Atezolizumab efficacy in advanced NSCLC (POPLAR & OAK Trials)

Progression-Free Survival – OAK



	PFS HR (95% CI)	OS HR (95% CI)
bTMB ≥16	0.64 (0.46, 0.91)	0.64 (0.44, 0.93)
TC3 or IC3	0.62 (0.41, 0.93)	0.44 (0.27, 0.71)
bTMB ≥16 and TC3 or IC3	0.38 (0.17, 0.85)	0.23 (0.09, 0.58)

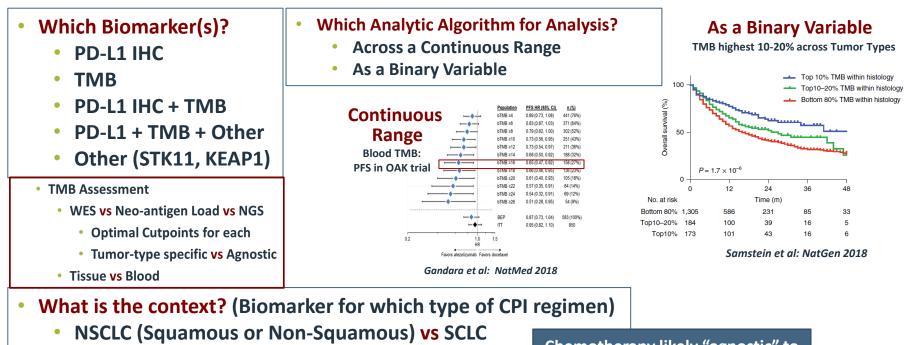

Blood TMB in IMpower110 Trial of Atezolizumab vs Platinum-based Chemotherapy

bTMB was assessed by Foundation assay*

• A bTMB score of 16 is equivalent to 16 mutations/1.1 Mb, or ≈14.5 mutations/Mb

• PD-L1 IHC (SP142 or 22C3) and bTMB identified distinct patient populations in IMpower110

BEP-VT population, n = 389. 1. Gandara DR, et al. Nat Med. 2018; 2. Socinski MA, et al. ESMO. 2019 [abstract 2239]; 3. Hellmann MD, et al. N Engl J Med. 2018; 4. Greillier L, et al. Transl Lung Cancer Res. 2018.

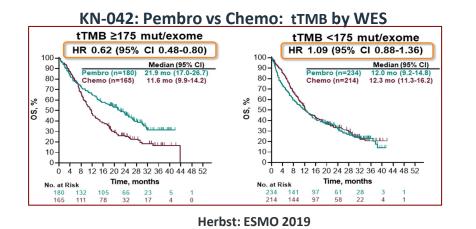

https://bit.ly/33XGN7P 14

PFS in the bTMB BEP-WT in IMpower110

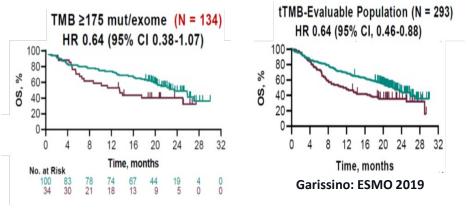
Cubanaun	- (0/)	1		Median	PFS, m
Subgroup	<u>n (%)</u>		PFS HR (95% CI) ^a	Atezo	Chem
TC1/2/3 or IC1/2/3-WT	554 (100)	-+→	0.77 (0.63, 0.93)	5.7	5.5
bTMB BEP-WT	389 (100)	⊢ ♦ <mark> </mark>	0.88 (0.70, 1.11)	5.5	5.4
bTMB ≥ 10	175 (45)	► <u>•</u> <u> </u>	0.74 (0.53, 1.05)	5.5	4.3
bTMB ≥ 16	87 (22)		0.55 (0.33, 0.92)	6.8	4.4
bTMB ≥ 20	56 (14)	▶ ── ♦ ──	0.56 (0.30, 1.06)	6.8	5.2
bTMB < 10	214 (55)	⊧ ∳ 1	1.03 (0.76, 1.39)	5.5	5.7
bTMB < 16	302 (78)	<u>ь </u>	1.00 (0.78, 1.29)	4.5	5.5
bTMB < 20	333 (86)	⊨ - ∳	0.95 (0.74, 1.21)	4.9	5.4
	0.2	1.0	2.0		
		Hazard Ratio	•		
		Favours Atezo (Arm A) Favours	Chemo (Arm B)		

Predictive Biomarkers for Checkpoint Immunotherapy (CPI)

Note: cannot be equated to a discrete variable like driver mutations (Present or Absent) PD-L1 & TMB are dynamic & continuous variables across a context-specific range

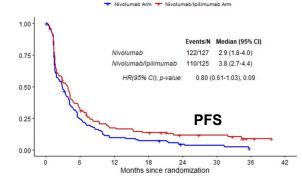


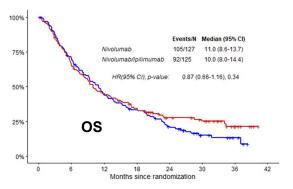
- CTLA-4 vs PD-1/PD-L1 vs PD-1/PD-L1 + CTLA-4
- PD-1/PD-L1 + Platinum Chemotherapy

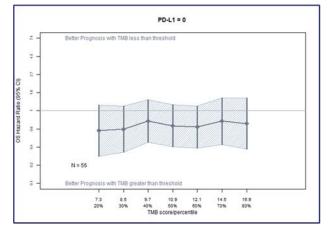

Chemotherapy likely "agnostic" to immuno-biomarker . "Dilutes out predictive value

TMB in CPI Monotherapy vs CPI + Chemo (or Ipi) Trials in NSCLC

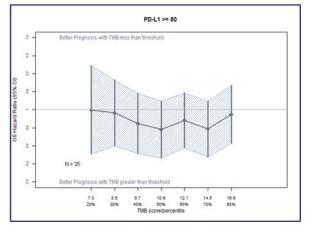
Phase III Trials	Mono- or Combination	ТМВ	PFS	OS
KN-010	Pembro Mono	WES-tissue	۷	۷
KN-042	Pembro Mono	WES-tissue	٧	۷
KN-189	Pembro + Chemo	WES-tissue	No	No
KN-407	Pembro + Chemo	WES-tissue	No	Νο
CM-227	Nivo + Ipi	Fone-tissue	۷	Νο
S1400i (LungMAP)	Nivo + Ipi	Fone-tissue	No	V
MYSTIC	Durva + Treme	OMNI-blood	٧	V



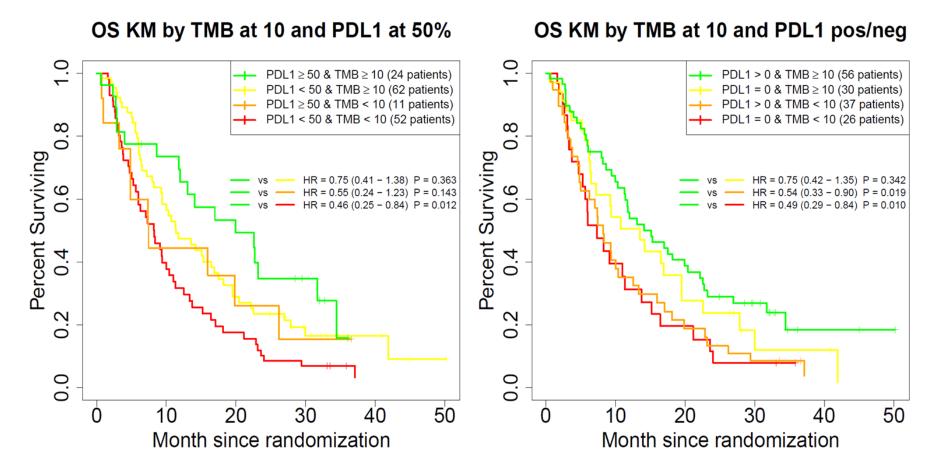

KN-189: Pembro+Chemo vs Chemo (Non-Squamous): tTMB by WES



Associations of Tumor Mutational Burden & Combination Index of TMB + PD-L1 in Lung MAP S1400i (Nivo +/-Ipi in 2nd line Squamous)


S1400I: Phase III study: Nivolumab + Ipilumumab vs Nivolumab

HRs ≤ 1.0 for OS by TMB in all PD-L1 subgroups

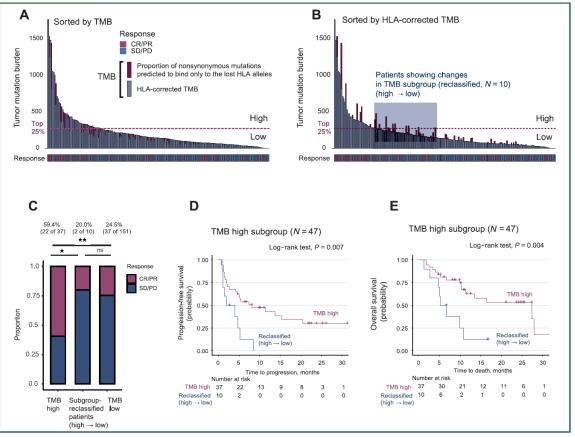

Hirsch et al: WCLC 2020; Gettinger et al: JamaOnc 2021

2020 World Conference on Lung Cancer Singapore

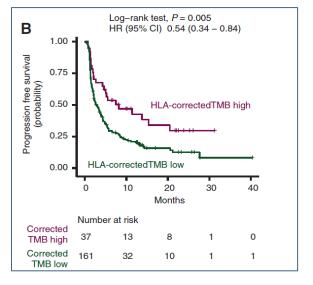
JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

Combination Index of TMB + PD-L1

Patient OS was best in patients with Combination Index of TMB-high + PD-L1-high

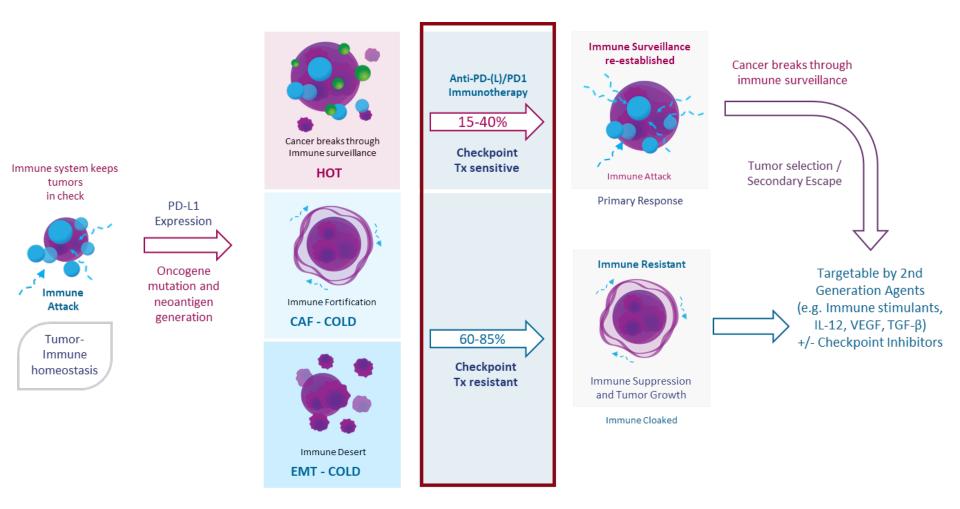

Community Oncology Research Program Hirsch et al: WCLC 2020

2020 World Conference on Lung Cancer Singapore


JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

HLA-corrected TMB: Impact of HLA-correction on TMB classification (High vs Low)

Shin et al: Ann Oncol 2020


- HLA-LOH is present in ~30% of NSCLC cases
- HLA-LOH is associated with increased somatic nonsynonomous mutations
- But HLA-LOH is not associated with increased efficacy of CPIs
- HLA-corrected TMB reclassifies the TMB score by removal of HLA-LOH effects

Determa-IO: A Predictive 27 Gene Signature for Checkpoint Immunotherapy Efficacy

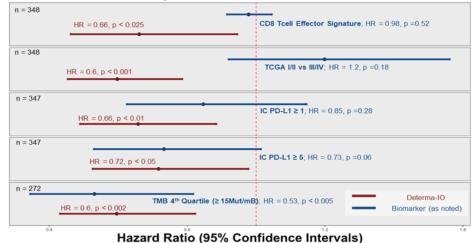
FINDING CURES TOGETHER®

Applying Determa-IO to Bladder cancer IMVigor210 – Results: Primary endpoint (OS)

AACR American Association for Cancer Research*

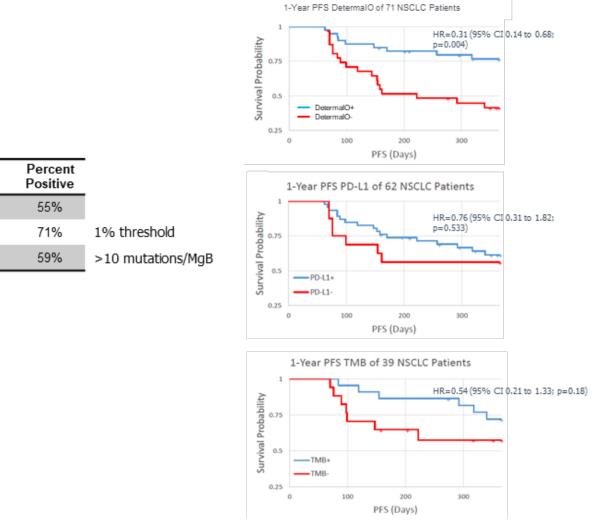
FINDING CURES TOGETHER®

DetermalO 27 Gene Predictor 1.0 DetermalO-Positive 41% Pos 0.8 DetermalO-Negative **Overall Survival** 0.6 0.4 N = 348, HR = 0.612, p<0.00 0.2 0.0 5 0 10 15 20


Months

	Median OS (mos)	2 Year OS
DetermalO- Positive	15.4	39.6%
DetermalO- Negative	7.9	20.9%

Comparison to Clinical Trial Endpoint: DetermalO met Primary Endpoint of IMVigor210 Trial (ORR > 10%):

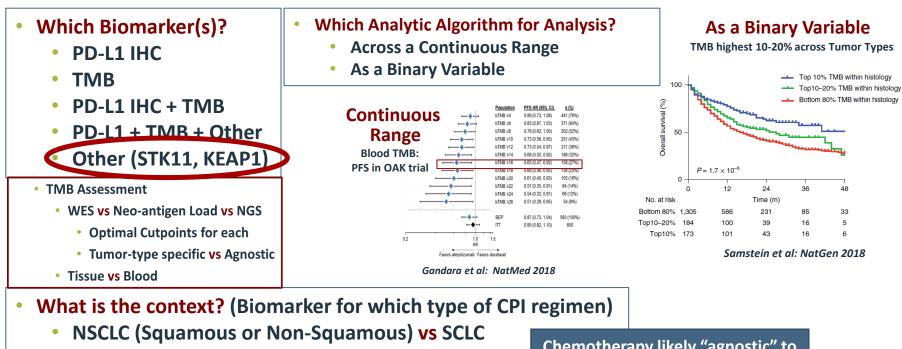

32% ORR (24 - 41 % CI); $\Delta 10\%$ p < 0.001

Bivariate Analysis with Various Biomarkers

Seitz et al. AACR ANNUAL MEETING 2021: APRIL 10-15, 2021 AND MAY 17-21, 2021

Pilot Study in Advanced NSCLC treated with Checkpoint Immunotherapy: Progression free survival comparing DetermaIO to PD-L1 & TMB analysis

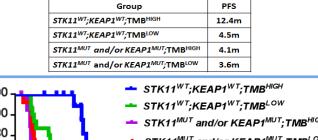
DetermalO was predictive of Checkpoint Inhibitor treatment outcome (PFS), independent of PD-L1 or TMB scores, demonstrating superiority to both biomarkers


Ranganath et al. SITC 2019

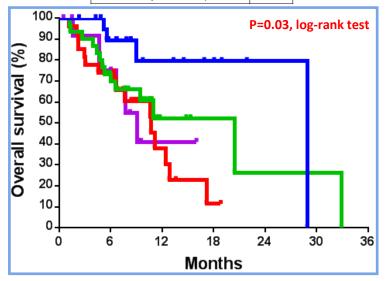
NSCLC (N=71)

Marker	Cases	Neg.	Pos.	Percent Positive	
DetermalO (-/+)	71	32	39	55%	
PD-L1	66	19	47	71%	1% thres
ТМВ	41*	17	24	59%	>10 muta

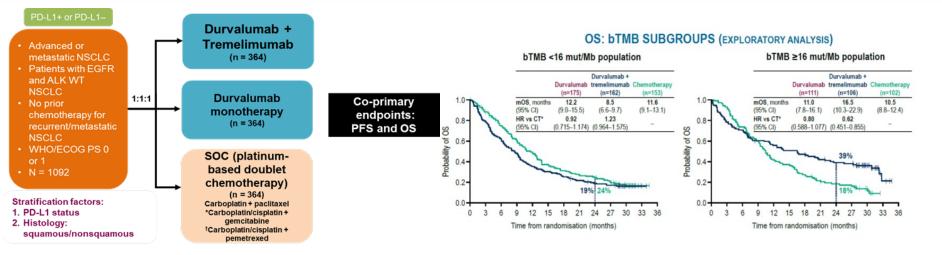
Predictive Biomarkers for Checkpoint Immunotherapy (CPI)


Note: cannot be equated to a discrete variable like driver mutations (Present or Absent) PD-L1 & TMB are dynamic & continuous variables across a context-specific range

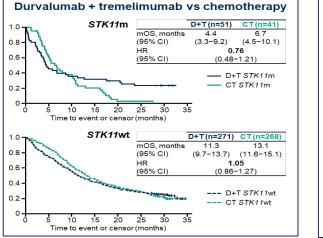
- CTLA-4 vs PD-1/PD-L1 vs PD-1/PD-L1 + CTLA-4
- PD-1/PD-L1 + Platinum Chemotherapy

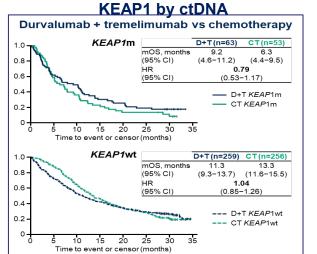

Chemotherapy likely "agnostic" to immuno-biomarker . "Dilutes out predictive value

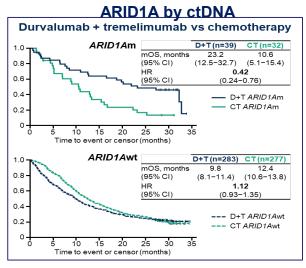
Integration of *STK11* and *KEAP1* genomic alterations with TMB & other biomarkers: Moving towards a composite panel?



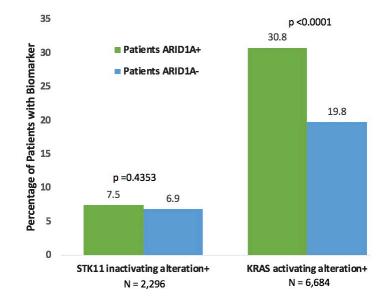
2	100 -	STK11 ^{WT} ;KEAP1 ^{WT} ;TMB ^{HIGH}
<u> </u>	90	STK11 ^{WT} ;KEAP1 ^{WT} ;TMB ^{LOW}
٨a	~	STK11 ^{MUT} and/or KEAP1 ^{MUT} ;TMB ^{HIGH}
÷	80 -	STK11 ^{MUT} and/or KEAP1 ^{MUT} ;TMB ^{LOW}
F	70 -	
e s	60 -	P=0.0005, log-rank test
fre	50 -	- <u>1</u> 1
Ē	100 - 90 - 80 - 70 - 50 - 40 - 30 - 20 - 10 -	TE-1
sio	30 -	1677 5
es	20 -	
ogr	10_	<u> </u>
ř	0	
-	0	6 12 18 24
		Months

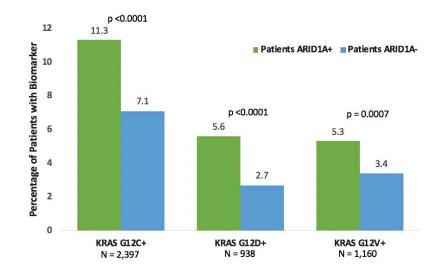

Group	os
STK11 ^{WT} ;KEAP1 ^{WT} ;TMB ^{HIGH}	28.9m
STK11 ^{WT} ;KEAP1 ^{WT} ;TMB ^{LOW}	20.4m
STK11 ^{MUT} and/or KEAP1 ^{MUT} ;TMB ^{HIGH}	10.7m
STK11 ^{MUT} and/or KEAP1 ^{MUT} ;TMB ^{LOW}	9.1m




Analysis of MYSTIC trial by STK11-KEAP1 & ARID1A mutational status (ctDNA by Guardant360)

STK11 by ctDNA

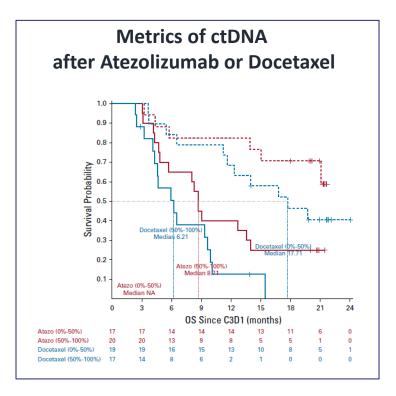


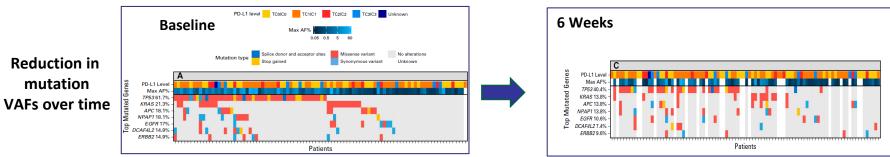

STK11 & KEAP1 may be primarily prognostic & not predictive of IO efficacy
ARID1A may be predictive for efficacy of Durva + Treme IO combination

Rizvi et al. JAMA Onc 2020

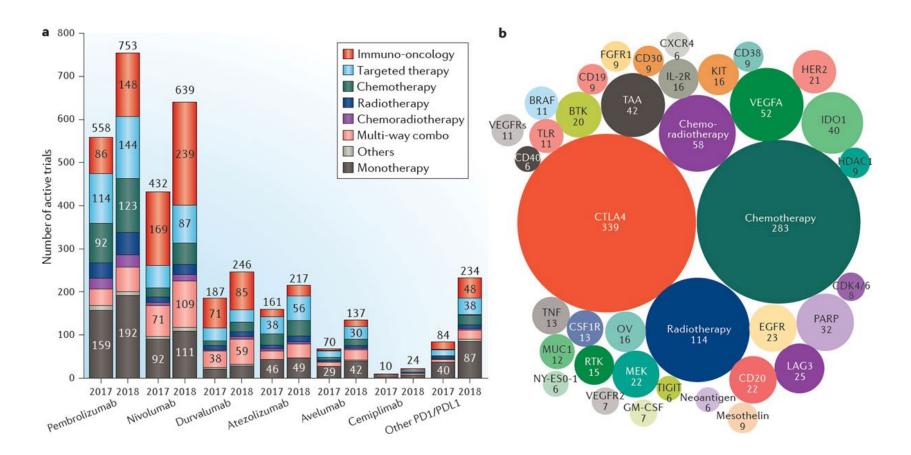
Analysis of ARID1A Mutations in NSCLC by plasma ctDNA (N=33,086 NSCLC patients; N=3,115 with ARID1A mutations)

Activating KRAS mutations were significantly more frequent in patients with fARID1A mutations KRAS mutations associated with smoking (G12C/V) and non- smoking (G12D) were significantly more frequent in patients with fARID1A mutations




2020ASCO ANNUAL MEETING Slides are the property of the author, permission required for reuse.

PRESENTED BY: David Gandara, MD


4

Plasma ctDNA in Advanced Stage NSCLC response monitoring: Checkpoint Immunotherapy & Chemotherapy

Ongoing Unmet Need for Predictive Biomarkers of Checkpoint Immunotherapy Efficacy

Over 2,250 clinical trials ongoing as of January 2019 (~4,000 trials as of 1-2021) requiring >500,000 patients ~750 trials in NSCLC

Tang: Nat RD 2018