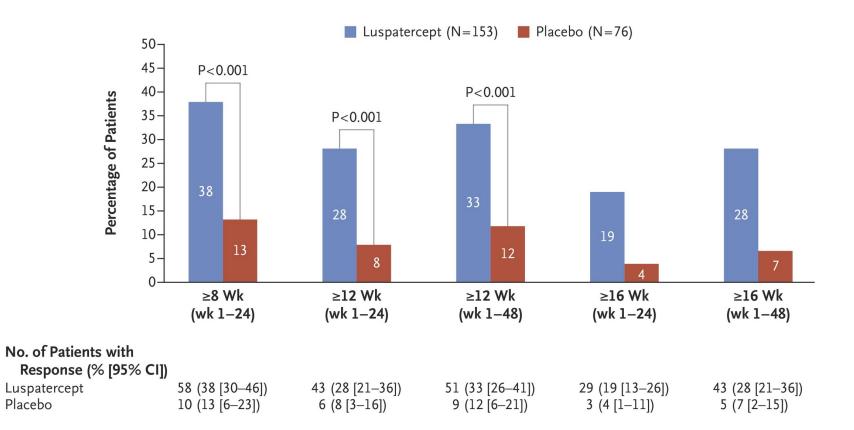
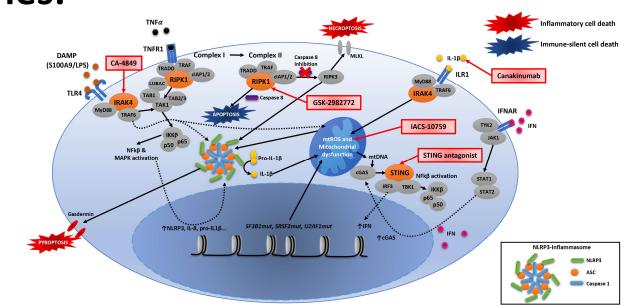

How to Manage Myelodysplasia: Biomarkers and Novel Treatments

Guillermo Garcia-Manero MD Professor of Medicine Chief Section of MDS Deputy Chair Department of Leukemia MD Anderson Cancer Center University of Texas Houston, TX

15th Annual New Orleans Summer Cancer Meeting


(Slow) progress in MDS

- Chronological order of discoveries in MDS:
- IPSS classification: 1997
- Approval of azacitidine: 2004
- Approval of lenalidomide: 2005
- Approval of decitabine: 2006
- Improved cytogenetic classification: 2012
- Application of NGS assays in MDS: 2013
- Approval of luspatercept 2020
- Approval oral decitabine 2020



MEDALIST Trial RBC-TI

New approaches for anemia in MDS

- COMMANDS: testing luspatercept in LR MDS against ESA
- Combinations of luspatercept with ESA, len, HMA in LR and HR-MDS
- New approaches:
 - Imetelstat
 - Roxadustat

Courtesy G. Montalban-Bravo Wei et al Leukemia 2013, Wei et al Leukemia 2013, Zhang et al Nature 2015, Li et al Nat Immunol 2016

DAC vs. AZA in LR-MDS. Response (IWG)

Response	DAC (N=70) n (%)	AZA (N=39) n (%)	Ρ	
CR	26 (37)	14 (36)	0.90	
mCR	6 (9)	2 (5)		
HI	17 (24)	3 (8)		
ORR	49 (70)	19 (49)	0.03	
SD	18 (26)	17 (44)		
PD	3 (4)	3 (8)		

Median number of cycles: 9 (range: 1-41)

Jabbour et al. Blood 2017

Oral HMAs in MDS

- Two approaches to oral HMA development
- Combined with cytidine deaminase inhibitor
 - Cedazuridine (ASTX727, ASTX030)
 - Tetrahydrouridine
- Single agent uncombined (CC-486)
- Significant differences in PK profile

Pharmacokinetic Exposure Equivalence and Preliminary Efficacy and Safety from a Randomized Cross-Over Phase 3 Study (ASCERTAIN) of an Oral Hypomethylating Agent ASTX727 (cedazuridine/decitabine) Compared to IV Decitabine

Guillermo Garcia-Manero¹, James McCloskey², Elizabeth Griffiths³, Karen Yee⁴, Amer Zeidan⁵, Aref Al-Kali⁶, Kim-Hien Dao⁷, H Joachim Deeg⁸, Prapti Patel⁹, Mitchell Sabloff¹⁰, Mary-Margaret Keating¹¹, Nancy Zhu^{12*}, Nashat Gabrail^{13*}, Salman Fazal¹⁴, Joseph Maly¹⁵, Olatoyosi Odenike¹⁶, Aditi Shastri¹⁷, Amy E DeZern¹⁸, Casey O'Connell¹⁹, Gail Roboz²⁰, Aram Oganesian^{21*}, Yong Hao^{21*}, Harold Keer²¹, Mohammad Azab²¹, Michael Savona²² **On behalf of ASCERTAIN Investigators Team**

¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²John Theurer Cancer Center, Hackensack Medical Center, NJ; ³Roswell Park Comprehensive Cancer Center, Buffalo, NY; ⁴Princess Margaret Cancer Centre, Toronto, Ontario, Canada; ⁵Yale University and Yale Cancer Center, New Haven, CT; ⁶Mayo Clinic, Rochester, MN; ⁷Oregon Health & Science University, Portland, OR; ⁸Fred Hutchinson Cancer Research Center, Seattle, WA; ⁹University of Texas Southwestern Medical Center, Dallas, TX; ¹⁰Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; ¹¹Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada; ¹²University of Alberta, Edmonton, Alberta, Canada; ¹³Gabrail Cancer Center, Canton, OH; ¹⁴West Penn Hospital, Allegheny Health Network, Pittsburgh, PA; ¹⁵Norton Cancer Institute, Louisville, KY; ¹⁶University of Chicago, Chicago, IL; ¹⁷Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY; ¹⁸Johns Hopkins University Hospital, Baltimore, MD; ¹⁹USC Keck School of Medicine, University of Southern California, Los Angeles, CA; ²⁰Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY; ²¹Astex Pharmaceuticals, Inc., Pleasanton, CA; ²²Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN

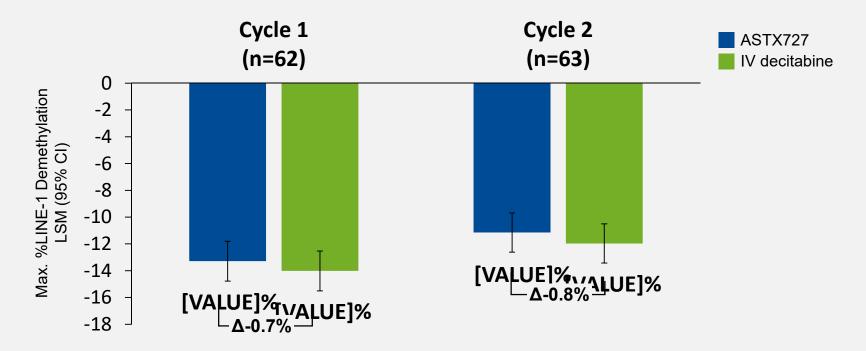
61st ASH Annual Meeting, Orlando, FL. Dec 7-10, 2019. Abstract #846

Clinicaltrials.gov NCT03306264

ASTX727 (cedazuridine/decitabine): Background

- Current HMA treatment poses significant patient burden due to 5–7 days per month of parenteral administration in a clinic setting
- Oral bioavailability of HMAs decitabine and azacitidine is limited due to rapid degradation by CDA in the gut and liver

- Cedazuridine is a novel, potent, and safe CDA inhibitor
 - Large safety margin, with no adverse events at up to 200 mg/kg in monkeys (~2400 mg/m² human equivalent)


Primary Endpoint (5-day Decitabine AUC Equivalence)

Decitabine		IV DEC		Oral ASTX727		Ratio of Geo. LSM	Intrasubject
5-day AUC ₀₋₂	₄ (h∙ng/mL)	Ν	Geo. LSM	Ν	Geo. LSM	Oral/IV, % (90% CI)	(%CV)
Primary Analysis	Paired ¹	123	864.9	123	855.7	98.9 (92.7, 105.6)	31.7

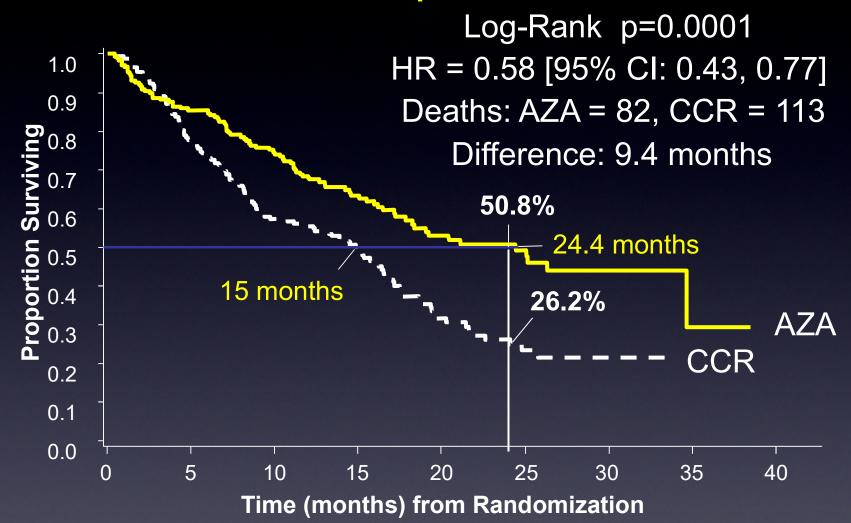
¹ Paired patient population: patients who received both ASTX727 and IV decitabine in the randomized first 2 cycles with adequate PK samples.

- Study met its primary endpoint with high confidence: Oral/IV 5-day decitabine AUC ~99% with 90% CI of ~93-106%
- All Sensitivity and secondary PK AUC analyses confirmed findings from primary analysis

Pharmacodynamics (*LINE-1* DNA Demethylation in Cycles 1 and 2)

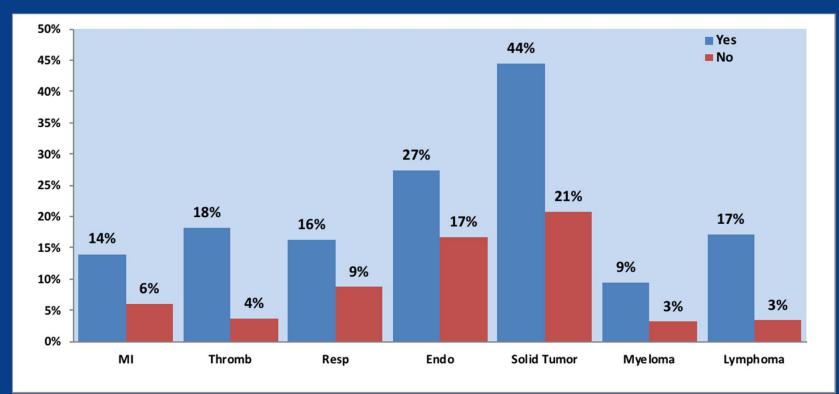
 No significant difference in % LINE-1 DNA demethylation between ASTX727 and IV decitabine (<1% difference in each cycle)

Efficacy: Preliminary Response in MDS/CMML Central Review by Independent Review Committee (IRC)


	Evaluable Patients ¹ N=101 n (%)
Complete response (CR)	12 (11.9%)
Partial response (PR)	0
Marrow CR (mCR)	46 (45.5%)
mCR with hematologic improvement	14 (13.9%)
Hematologic improvement (HI)	7 (5.3%)
HI-erythroid	2 (2.0%)
HI-neutrophils	1 (1.0%)
HI-platelet	6 (5.9%)
Overall response (CR + PR + mCR + HI)	65 (64.4%)
Stable disease	28 (27.7%)
Progressive disease	8 (7.9%)

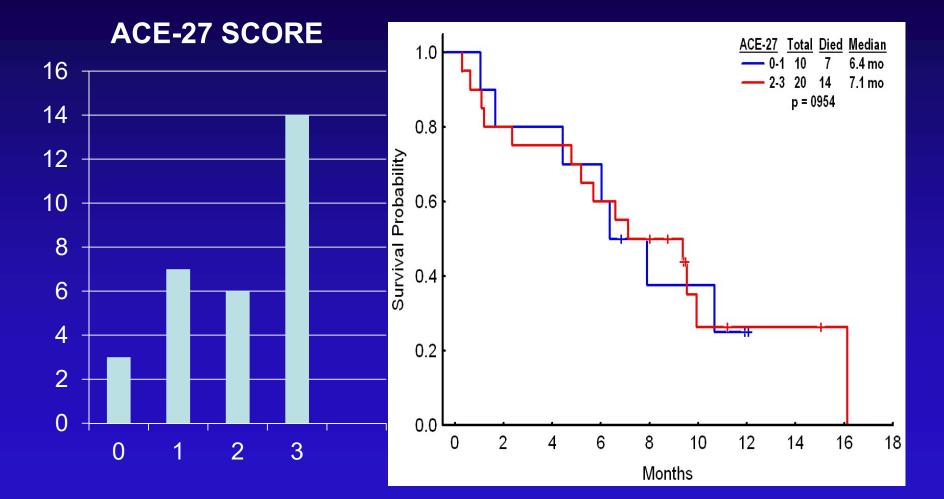
¹ Due to short median follow up (~ 5 months) at data cutoff, 32 patients could not be evaluated for response by the Central IRC. Response was assessed by IWG 2006 criteria Longer term follow up response assessment and molecular/cytogenetic analyses are pending

Incorporation of oral HMAs in MDS

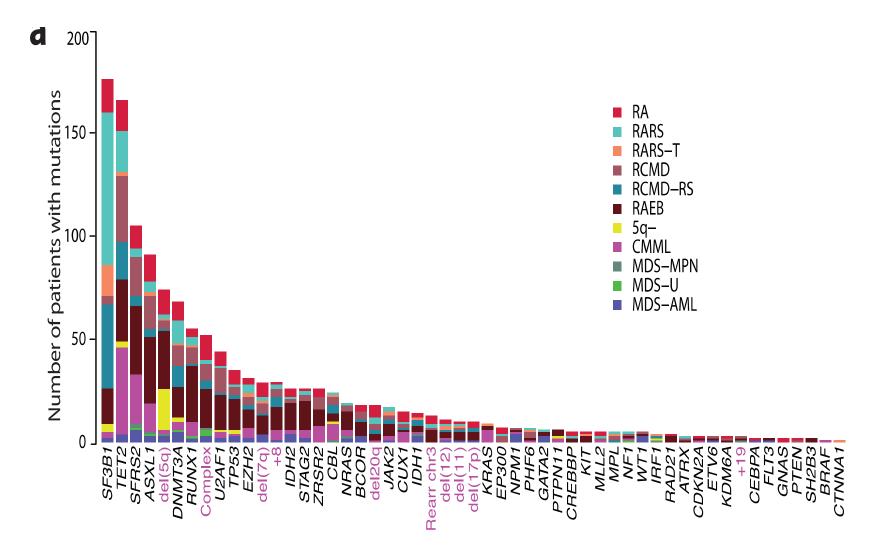

- Expanded use in LR-MDS
- Replacing single agent azacitidine or decitabine (ASTX030, ASTX727, CC-486?)
- Multiple combinations: total oral therapy
- Role post alloSCT: total therapy in MDS

Overall Survival: Azacitidine vs CCR ITT Population

Fenaux et al. Lancet Oncology 2010


CHIP mutations and comorbidities in MDS. Comorbidities by mutations

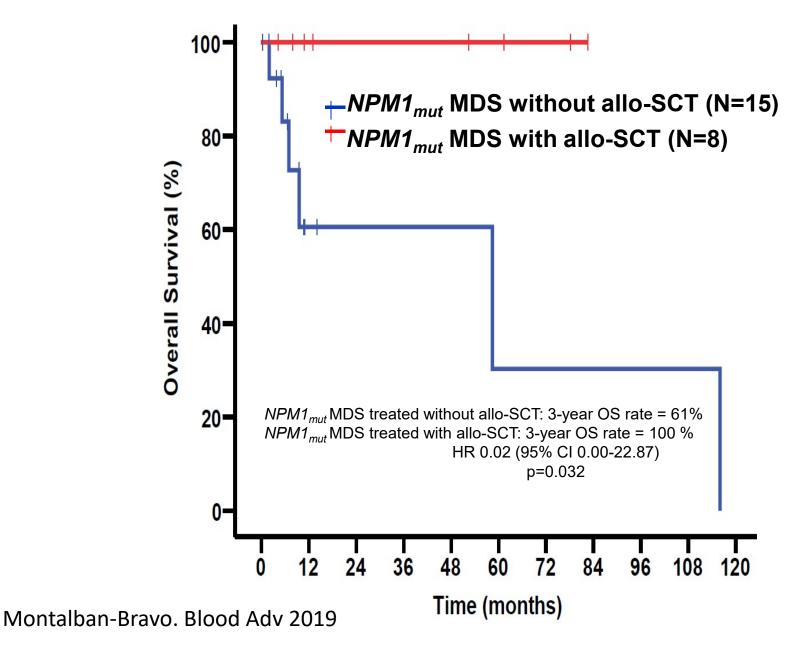
- DNMT3A was associated with a higher frequency of prior history of myocardial infarction (MI) (OR= 2.62; 95% CI 1.095-6.246; p=0.03)
- JAK2 was associated with a higher frequency of prior history of veno-occlusive disease (OR= 6.48; 95% CI 1.375-30.477; p=0.02)
- *TP53* mutation was highly associated with history of prior malignancy


AZA+Vorinostat: Impact of Cormorbidity

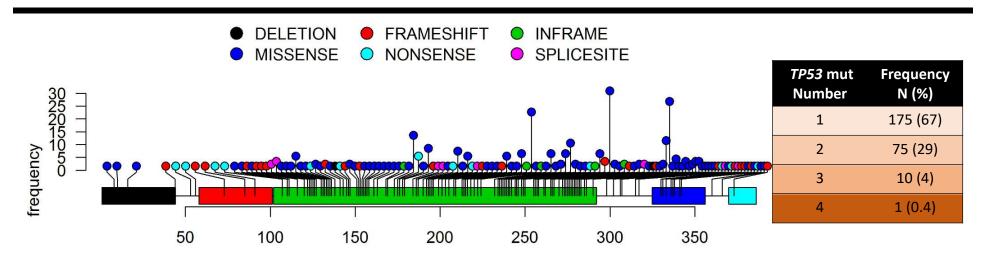
Median ACE-27 score in CR vs no-response: 2 vs 2.5

Montalban-Bravo; Leukemia 2017

Genomics of MDS



Papaemmanuil et al Blood 2013;122:3616-27


Targeted options in MDS

- IDH-2
- IDH-1
- Flt-3
- BCL-2
- CD47
- TP53
- NPM1
- NEDD8 (pevonidostat)
- ICPI/TIM-3 (sabatolimab)

NPM1 in MDS: Survival Outcomes

Distribution of Mutations in patients with TP53 mutated MDS

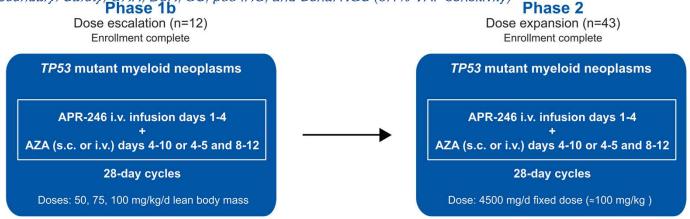
- 396 TP53 mutations: 309 (78%) missense, 28 (7%) nonsense, 37 (9%) frameshift and 18 (5%) splice-site
- Median VAF 39% (range 1-94%)
- Most prevalent: R273H (n=18, 0.05%), Y220C (n=16, 0.04%), R248W (n=14, 0.04%), R175H (n=13, 0.03%)

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History'

Montalban-Bravo et al Blood Adv 2020

Phase 1b/2 Combination Study of APR-246 and Azacitidine (AZA) in Patients with *TP53* Mutant Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML)

David A. Sallman¹, Amy E. Dezern², Guillermo Garcia-Manero³, David P. Steensma⁴, Gail J. Roboz⁵, Mikkael A. Sekeres⁶, Thomas Cluzeau⁷, Kendra Sweet¹, Amy McLemore¹, Kathy McGraw¹, John Puskas¹, Ling Zhang¹, Jiqiang Yao⁸, Qianxing Mo⁸, Lisa Nardelli¹, Najla H Al Ali¹, Eric Padron¹, Greg Korbel⁹, Eyal C. Attar⁹, Hagop M. Kantarjian³, Jeffrey E. Lancet¹, Pierre Fenaux¹⁰, Alan F. List¹, and Rami S. Komrokji¹

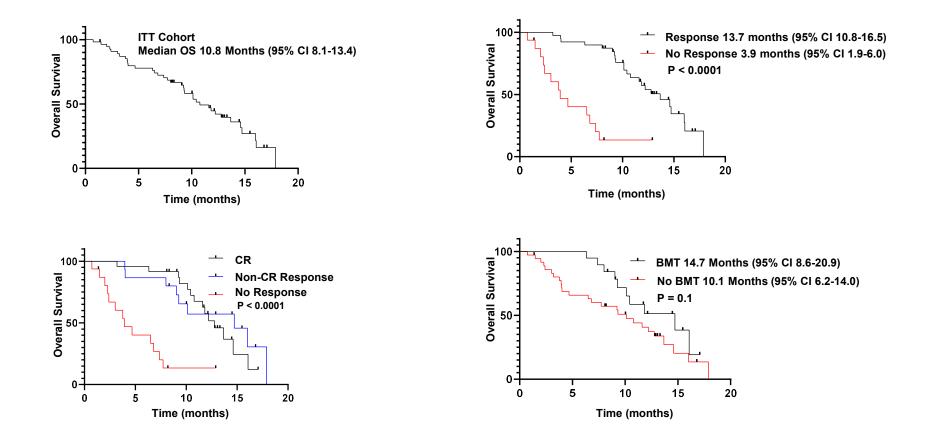

¹Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; ²Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; ³Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA; ⁴Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ⁵Weill Cornell Medical College, New York, NY, USA; ⁶Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA; ⁷Hematology Department, Cote D'azur University, Nice Sophia Antipolis University, Nice, France; ⁸Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA; ⁹Aprea Therapeutics, Boston, MA, USA, ¹⁰Hospital St Louis, Paris 7 University, Paris, France

APR-426: Frontline Combination Therapy with APR-246 + **Azacitidine: Study Design and Objectives**

IIT evaluating frontline APR-246 + azacitidine in TP53 MT HMA-naïve MDS, oligoblastic AML (≤ 30% blasts) and MDS-MPN ٠

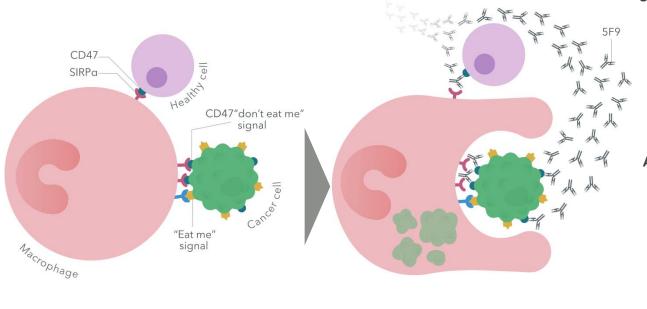
- Phase 1b Results (Sallman D et al., ASH 2018) ٠
 - RP2D of 4500mg/day days 1-4 (~100mg/kg LBM) + azacitidine (75mg/m²)
 - Manageable G1/G2 nausea and transient neurological AEs (dizziness/altered sensation) to APR-246; No DLTs
 - Activation of p53-dependent pathways following monotherapy treatment (1 mCR+partial cytogenetic remission in lead-in phase)
- Phase 2 •
 - Primary: CR rate
 - Secondary: Safety, ORR, DoR, OS, p53 IHC, and Serial NGS (0.1% VAF sensitivity) Phase 1b

ClinicalTrials.gov NCT03072043; i.v., intravenous; s.c., subcutaneous; RP2D, recommended Phase 2 dose; CR, complete remission; DoR, duration of response; LBM, lean body mass

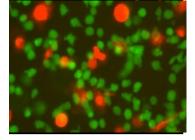


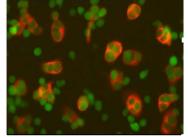
APR-426: Response to Treatment

	All Patients (N=55)	Evaluable Patients (N=45)
ORR, n (%) [95% CI]	39 (71) [57 – 82]	39 (87) [73 – 95]
Time to first response in months, median (range)		2.1 (0.1 – 5.4)
Duration of response in months, median [95% CI]		8.0 [6.5 – 11.2]
Best response by IWG, n (%)		
CR	24 (44)	24 (53)
PR	0 (0)	0 (0)
mCR + HI	8 (15)	8 (18)
mCR / MLFS	4 (7)	4 (9)
н	3 (5)	3 (7)
SD	4 (7)	4 (7)
NR	11 (20)	1 (2)
PD	1 (2)	1 (2)
CR, n (%) [95% CI]	24 (44) [30 – 58]	24 (53) [38 – 68]
Time to CR in months, median (range)		3.1 (2.5 – 6.1)
Duration of CR in months, median [95% CI]		7.3 [5.8 – N.E.]
Cytogenetic response, n (%) [95% CI]		26/44 (59) [43 – 74]
Partial		8/44 (18) [8 – 33]
Complete		18/44 (41) [26 – 57]
TP53		
NGS negative, n (%)		20 (44)
Serial IHC ≤ 5%		22 (49)



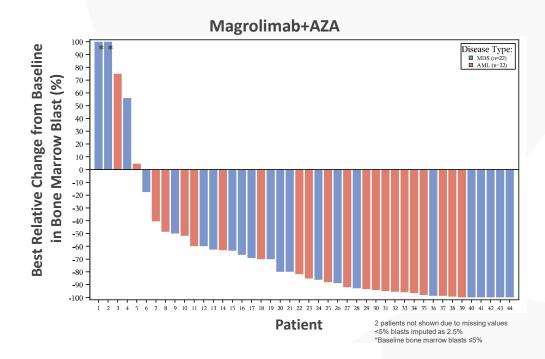
APR-426: Overall Survival (ITT)




Magrolimab (Formerly 5F9) is a First-in-class Macrophage Immune Checkpoint Inhibitor Targeting CD47

Control mAb: No Phagocytosis

Anti-CD47 mAb: Phagocytosis


Macrophages Cancer cells

Magrolimab is an IgG4 anti-CD47 monoclonal antibody being investigated in multiple cancers

• Magrolimab was well tolerated in a UK Phase 1 trial in r/r AML with no MTD reached (Vyas et al., EHA abs 2018)

Anti-Leukemic Activity is Observed with Magrolimab + AZA in MDS and AML

Best Overall Response	1L MDS N=24	1L AML N=22	
ORR	22 (92%)	14 (64%)	
CR	12 (50%)	9 (41%)	
CRi	-	3 (14%)	
PR	0	1 (5%)	
MLFS/ marrow CR	8 (33%) 4 with marrow CR + HI	1 (5%)	
Hematologic improvement (HI)	2 (8%)	-	
SD	2 (8%)	7 (32%)	
PD	0	1 (5%)	

Response assessments per 2006 IWG MDS criteria and 2017 AML ELN criteria; Patients with at least one post-treatment response assessment are shown, all other patients are on therapy and are too early for first response assessment, except for 2 MDS patients not evaluable (withdrawal of consent) and 3 AML (1 AE, 2 early withdrawal) "-" not applicable

- Magrolimab + AZA induces a 92% ORR (50% CR) in MDS and 64% ORR (55% CR/CRi) in AML
- Median time to response is 1.9 months, more rapid than AZA alone
- Magrolimab + AZA efficacy compares favorably to AZA monotherapy

Preliminary Results from the Phase II Study of the IDH2-Inhibitor Enasidenib (AG-221) in Patients with High-Risk *IDH2*-Mutated Myelodysplastic Syndromes (MDS)

Guillaume Richard-Carpentier, Amy DeZern, Koichi Takahashi, Marina Konopleva, Sanam Loghavi, Lucia Masarova, Yesid Alvarado, Farhad Ravandi, Christopher Benton, Guillermo Montalban-Bravo, Kiran Naqvi, Koji Sasaki, Ricardo Delumpa, Mikkael A. Sekeres, Gail Roboz, Hagop M. Kantarjian, Guillermo Garcia-Manero and Courtney D. DiNardo

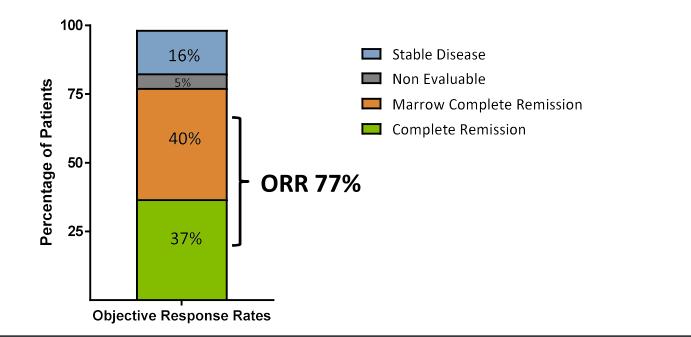
> Abstract number 678 American Society of Hematology Annual Meeting Orlanda, December 9th 2019

Phase II Study of Enasidenib in Patients With High-Risk IDH2-Mutated Myelodysplastic Syndromes

Response rates

	Total (N = 31)	Arm A (Untreated) AZA + ENA (N = 13)	Arm B (HMA-failure) ENA (N = 18)
Overall response rate (ORR) , n (%)	21 (68)	11 (85)	10 (56)
Complete remission (CR)	8 (26)	3 (23)	5 (28)
Partial remission (PR)	1 (3)	0 (0)	1 (6)
Marrow CR (mCR)	9 (29)	7 (54)	2 (11)
Hematological improvement (HI) only	3 (10)	1 (8)	2 (11)
No response (NR), n (%)	10 (32)	2 (15)	8 (44)
Stable disease (SD)	9 (29)	2 (15)	7 (39)
Progressive disease (PD)	1 (3)	0 (0)	1 (6)

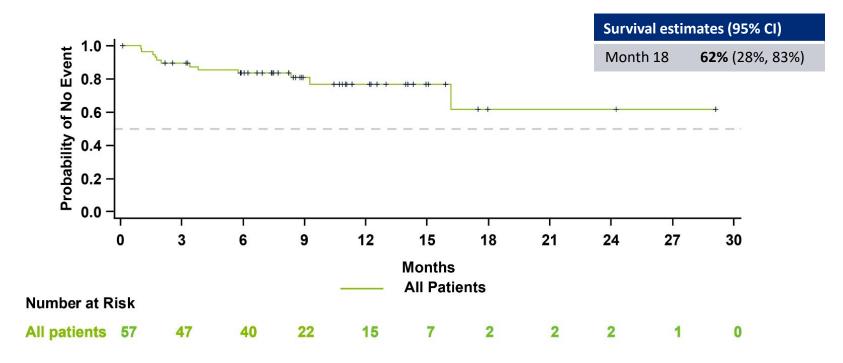
A Phase 1b Study Evaluating the Safety and Efficacy of Venetoclax in Combination with Azacitidine in Treatment-Naïve Patients with Higher-Risk Myelodysplastic Syndrome 568

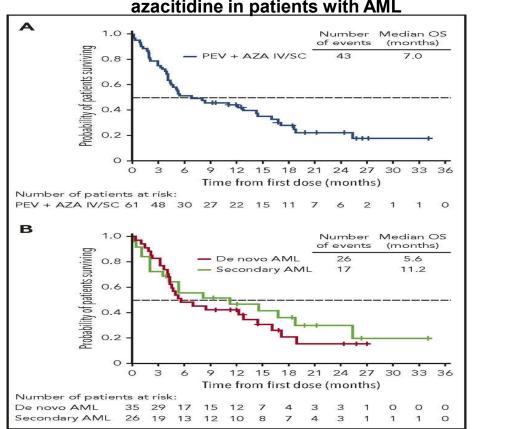

Andrew H Wei¹, Jacqueline S Garcia², Uma Borate³, Chun Yew Fong⁴, Maria R Baer⁵, Florian Nolte⁶, Pierre Peterlin⁷, Joseph Jurcic⁸, Guillermo Garcia-Manero⁹, Wan-Jen Hong¹⁰, Uwe Platzbecker¹¹, Olatoyosi Odenike¹², Ilona Cunningham¹³, Martin Dunbar¹⁴, Ying Zhou¹⁴, Jason Harb¹⁴, Poonam Tanwani¹⁴, Sathej Gopalakrishnan¹⁵, Johannes Wolff¹⁴, Meagan Jacoby¹⁶

¹Department of Haematology, Alfred Hospital and Monash University, Melbourne, Australia, ²Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA, ³Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA ⁴Olivia Newton John Cancer Research Institute, Austin Health, Melbourne, VIC, Australia, ⁵Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA, ⁶Department of Hematology and Oncology, Charité University Hospital, Campus Benjamin Franklin, Berlin, Germany, ⁷Hematology Department, Nantes University Hospital, Nantes, France, ⁸Myelodysplastic Syndromes Center, Columbia University Medical Center, Columbia University, New York, NY, USA, ⁹Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, ¹⁰Genentech, South San Francisco, CA, ¹¹Medical Clinic and Policlinic 1, Hematology and Cellular therapy, University Hospital Leipzig, Germany, ¹²University of Chicago Medicine and Comprehensive Cancer Center, Chicago, IL, ¹³Concord Clinical School, University of Sydney, Sydney, Australia

¹⁴AbbVie Inc, North Chicago, IL, USA, ¹⁵AbbVie Deutschland GmbH & Co KG, Germany, ¹⁶Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA American Society of Hematology (ASH) – 61th Annual Meeting

Orlando, FL, USA • December 9, 2019


Venetoclax: Response Rates (IWG 2006)


Proportion of patients with complete remission is 37% and marrow complete remission is 40%

Excludes patients of arm C (Aza only)

Venetoclax: Overall Survival

Includes all patient that received Ven+Aza (excluding arm C) N=57

Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML

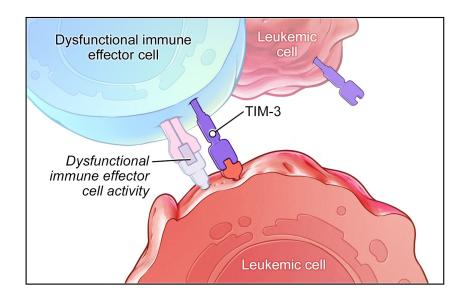
Swords et al. Blood 2018

Copyright © 2020 American Society of Hematology

American Society of Hematology Helping hematologists conquer blood diseases worldwide

The Latest Advances on **NEDD8 Inhibition** for Treatment of Higher-Risk MDS and Other Hematologic Malignancies

Phase Ib Study of the Anti–TIM-3 Antibody MBG453 in Combination With Decitabine in Patients With High-risk Myelodysplastic Syndrome and Acute Myeloid Leukemia


Uma Borate,¹ Jordi Esteve,² Kimmo Porkka,⁹ Steve Knapper,⁴ Norbert Vey,⁵ Sebastian Scholl,⁶ Guillermo Garcia-Manero,⁷ Martin Wermke,⁸ Jeroen Janssen,⁹ Elie Traer,¹ Chong Chyn Chua,¹⁰ Rupa Narayan,¹¹ Natalia Tovar,² Mika Kontro,³ Oliver Ottmann,⁴ Haiying Sun,¹² Tyler Longmire,¹³ Sebastian Szpakowski,¹³ Serena Liao,¹³ Anisa Mohammed,¹² Anuradha Patel,¹² Mikael Rinne,¹³ Andrew Brunner,¹¹ Andrew H. Wei¹⁰

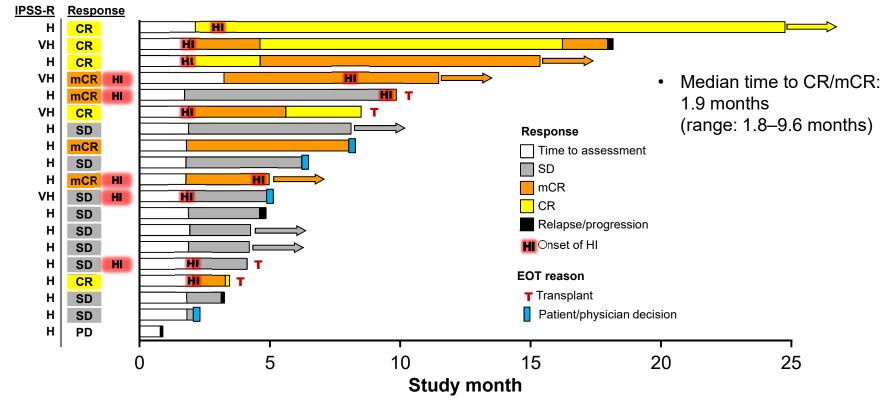
¹Oregon Health & Science University, Portland, OR; ²Hospital Clínic, Barcelona, Spain; ³Helsinki University Hospital Cancer Center, Helsinki, Finland;

⁴Department of Haematology, Cardiff University, Cardiff, UK; ⁵Institut Paoli-Calmettes, Marseille, France; ⁶University Hospital Jena, Jena, Germany; ⁷MD Anderson Cancer Center, Houston, TX; ⁸University Hospital Dresden, Dresden, Germany; ⁹Amsterdam University Medical Centers, loc. VUmc, Amsterdam, Netherlands; ¹⁰The Alfred Hospital and Monash University, Melbourne, Australia; ¹¹Massachusetts General Hospital, Boston, MA; ¹²Novartis Pharmaceuticals Corporation, East Hanover, NJ; ¹³Novartis Institutes for BioMedical Research, Cambridge, MA Co-senior authors Andrew Brunner and Andrew H. Wei contributed equally to this work

ASH 2019

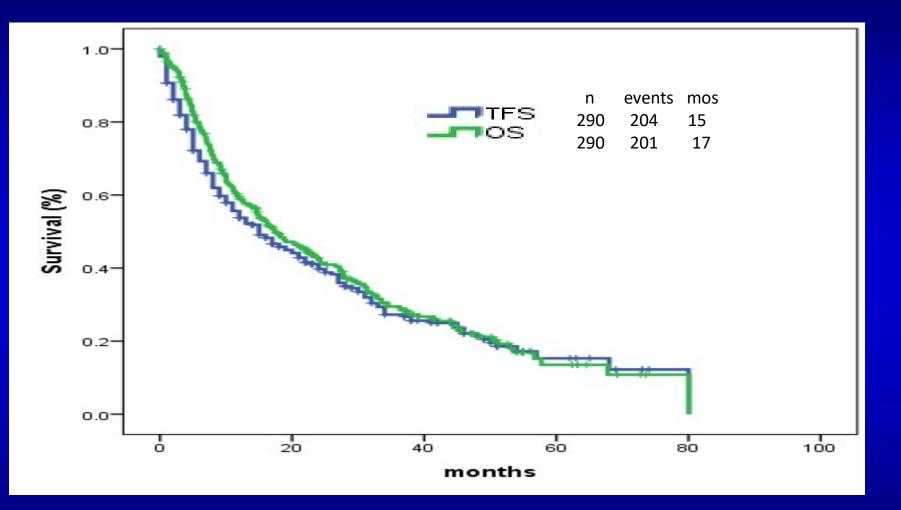
TIM-3: Cancer immunotherapy and leukemic stem cell target

- TIM-3 is an inhibitory receptor on multiple immune cell types, with a key role in regulating adaptive and innate immune responses^{1,2}
- TIM-3 is expressed on the majority of leukemic progenitors in AML, but not on normal HSCs^{3,4}
 - TIM-3 expression is seen to correlate with the severity of MDS and progression to AML⁵
 - TIM-3 activation is involved in LSC self-renewal and activation,⁶ as well as immune escape in AML⁷
- TIM-3 is a promising therapeutic target, providing an opportunity to both target leukemic stem cells and restore immune function^{4,8,9}


AML, acute myeloid leukemia; HSC, hematopoietic stem cell; LSC, leukemic stem cell; MDS, myelodysplastic syndrome; TIM-3, T-cell immunoglobulin domain and mucin domain-3.

^{1.} Pardoll DM. Nat Rev Cancer 2012;12:252-264; 2. Das M, et al. Immunol Rev 2017;276:97-111; 3. Kikushige Y and Miyamoto T. Int J Hematol 2013;98:627-633;

^{4.} Kikushige Y, et al. Cell Stem Cell 2010;7:708-717; 5. Asayama T, et al. Oncotarget 2017;8:88904-88917; 6. Kikushige Y, et al. Cell Stem Cell 2015;17:341-352;

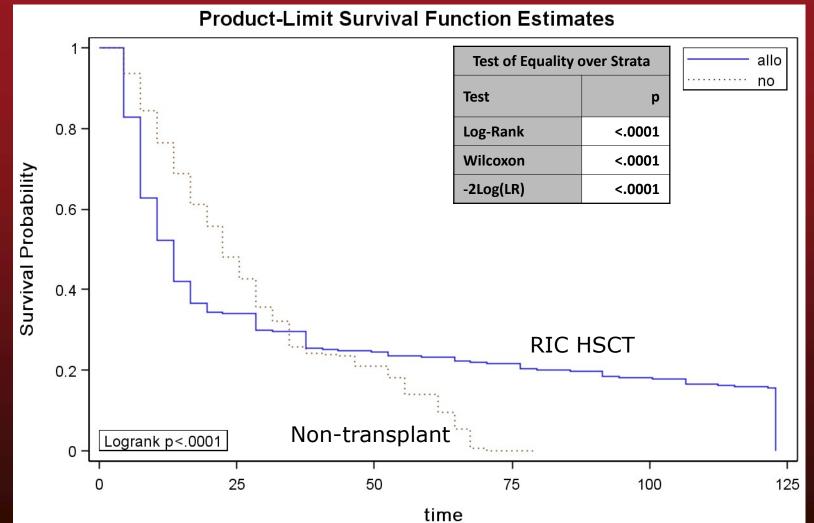

^{7.} Gonçalves Silva I, et al. EBioMedicine 2017;22:44-57; 8. Ngiow SF. Cancer Res 2011;71:3540-3551; 9. Sakuishi K, et al. Trends Immunol 2011;32:345-349.

Early responses with encouraging durability in HR-MDS

CR, complete remission; EOT, end of treatment; H, high; HI, hematologic improvement; HR-MDS, high-risk myelodysplastic syndrome; IPSS-R, Revised international Prognostic Scoring System; mCR, bone marrow CR; PD, progressive disease; SD, stable disease; VH, very high.

LR MDS post HMA Failure. Outcome

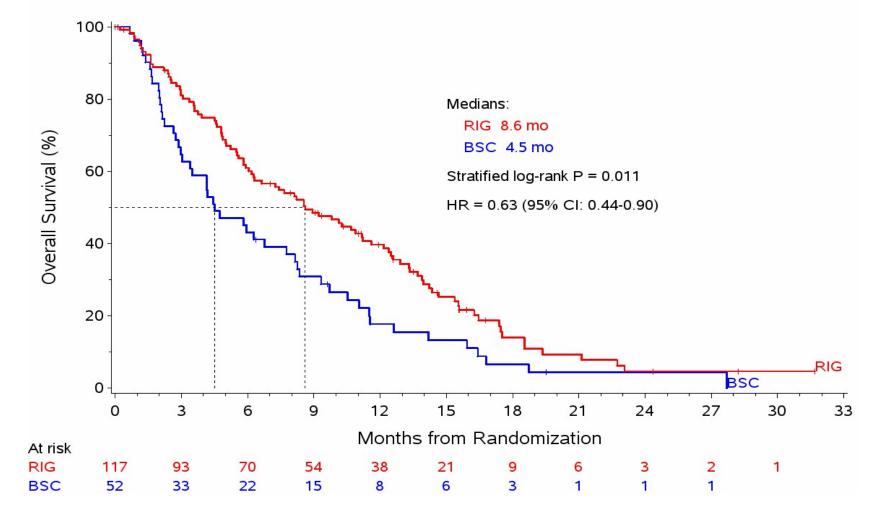
- Median follow-up: 16 (1-80) months
- Median TFS and OS: 15 and 17 months Jabbour et al


LR MDS post HMA Failure. Salvage Therapy

		%
Salvage	N (%)	Response
No therapy	90 (31)	NA
Conventional	83 (29)	18
Stem cell transplantation	26 (9)	62
Investigational	91 (31)	16

 Conventional therapies included cytarabine-based regimen and HMA

Jabbour et al

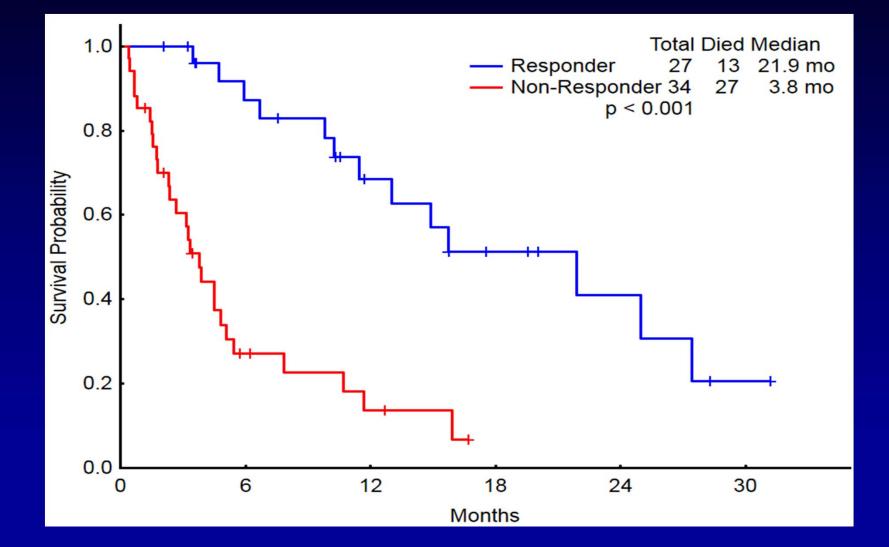

Monte Carlo – Int-2/High IPSS Survival Estimates

LK08-02-11_16.ppt

ONTIME Trial: Median Overall Survival for Pts with Primary HMA Failure - Blinded, Centralized Assessment

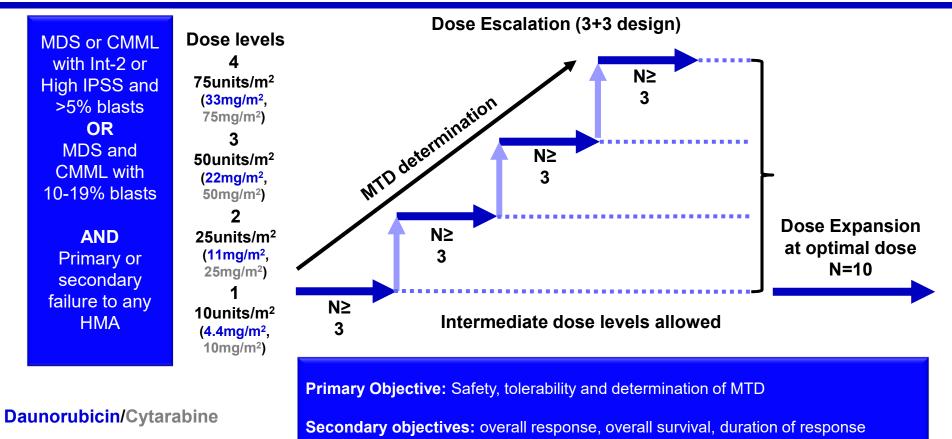
Clofarabine Plus Low-Dose Cytarabine For The Treatment Of Patients With higher-Risk Myelodysplastic Syndrome Who Have Relapsed Or Are Refractory To Hypomethylating Agent

Jabbour E, Sasaki K, Daver N, Pemmaraju N, Jain N, Kadia T, DiNardo C, Ravandi F, Miller D, Maduike R, Borthakur G, Konopleva M, Faderl S, O'Brien S, Cortes J, Kantarjian H, Garcia-Manero G

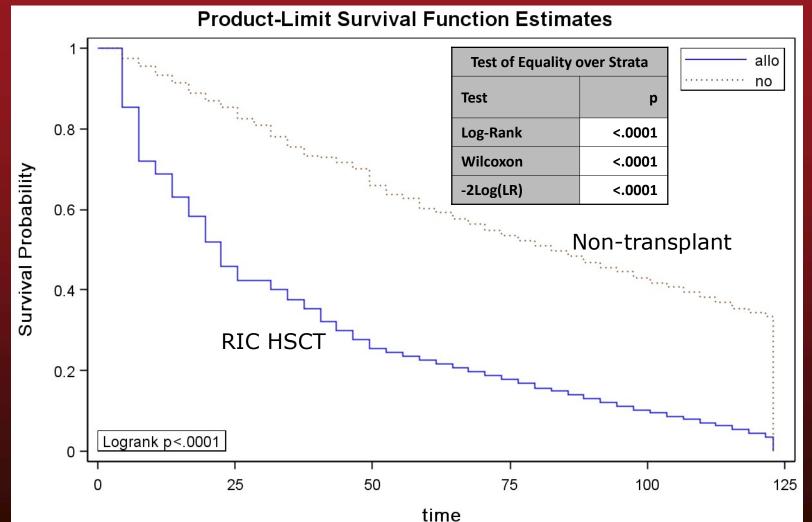

Cancer 2017

From the Department of Leukemia at MD Anderson Cancer Center Houston, Texas

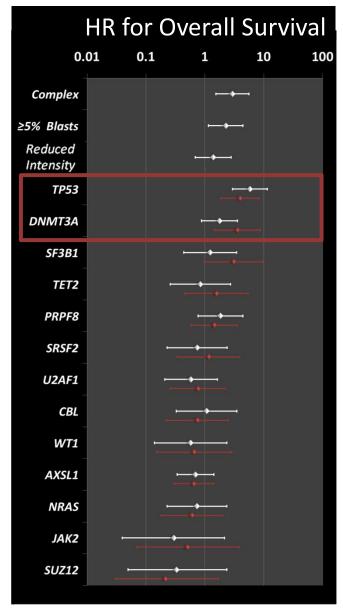
CLO and LDAC in HR MDS post HMA. MVA for Response and Survival


	Multivariate analysis			
	Response		Survival	
Parameter	OR	Ρ	HR	Ρ
Cyto Complex vs. Non	5.4	0.04	2.6	0.04
Plt ≤30 vs. >30	NA	NS	3.5	0.001
PS ≥2 vs. <2	NA	NS	5.5	<0.001
Response vs. Non-Response	NA	NS	7.1	<0.001
Prior response to HMA	NA	NS	NA	NS

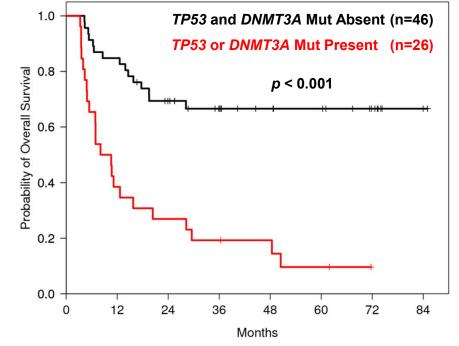
CLO and LDAC in HR MDS post HMA. Survival by Response Status


Phase I Dose Escalation Study of CPX-351 for MDS and CMML

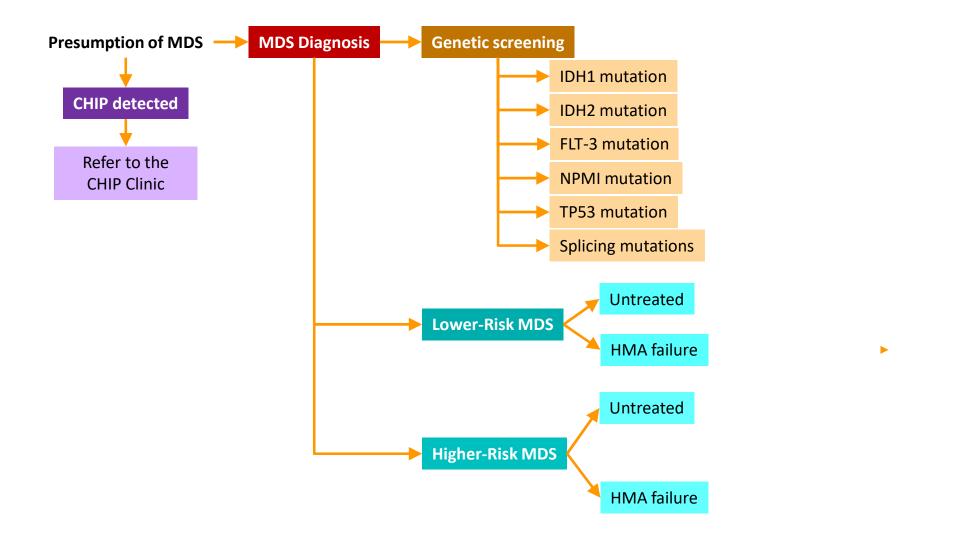
Study Design


Dr Montalban-Bravo MDACC

Monte Carlo – Low/int-1 IPSS Survival Estimates



SCT Cohort – Treatment Outcomes


	Gene	Adjusted HR (95% CI)	p-value		
	<i>TP53</i> (n = 14)	3.90	<0.001	TP53	14
		(1.85, 8.22)		DNMT3A	14
	<i>DNMT3A</i> (n = 14)	3.54	0.005	Karyotype	26
		(1.45, 8.64)	Raryocype		

Overall Survival After Transplant

Kristen Stevenson and Donna Neub

Treatment approach to MDS at MDACC

alloSCT at time of best response Close monitoring post alloSCT, consideration of post SCT therapy

Conclusion #1

- Immediate impact:
 - Luspatercept: approved by FDA. Need to define role/position
 - ASTX727 (oral decitabine). Met all endpoints. Role?
- Potential:
 - APR-246: study to complete in 2020/21
 - Magrolimab: 2020/2021
 - Pevonidostat: 2020/2021
 - ABT-199: starting large randomized trials
 - IDH2, IDH1: expanding single arm experience
- Others: TIM-3 (sabatolimab)

Conclusion #2

- Increased role of genomic annotation in MDS
- Multiple new targets: Bcl-2, TGF-b, TLR, SF3B1, IDH, Flt-3, NPM1, CD33, CD123, IL-1
- New ways to deliver HMA: attenuated schedules, CC-486, ASTX727, SGI-110
- Potential for multiple oral combinations
- Multiple registration trials: Commands (luspatercept), Verona (ABT-199), APR-246, magrolimab, pevonidostat, MBG453 (TIM-3)

Thank you! Any questions? Guillermo Garcia-Manero ggarciam@mdanderson.org cell 281 380 7813