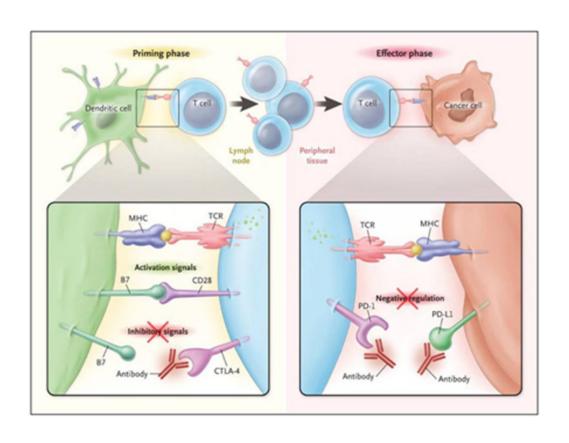
Pasquale Benedetto, MD Leonard M Miller Professor of Medicine University of Miami Sylvester Cancer Center

Immunotherapy and Sarcomas

Relevant financial relationships in the past twelve months by presenter or spouse/partner.

Grant/Research Support: AB Science, Janssen, Pfizer, Astellas Consultant: Pfizer, Novartis Stock Shareholder: Amgen, GSK

The speaker will directly disclose the use of products for which they are not labeled (e.g., off label use) or if the product is still investigational.


15th Annual New Orleans Summer Cancer Meeting

Soft Tissue Sarcomas and Immunotherapy

- Do checkpoint inhibitors demonstrate activity in soft tissue sarcomas?
- Is activity histology specific?
- Is single agent or combination therapy preferable?
- What are the parameters which might predict response?
- What can we do to make tumors more immunogenic to enhance treatment response.

SARC028:

Phase II Pembrolizumab (anti-PD-1) in Soft Tissue and Bone Sarcomas

- Dose 200 mg IV q3wks
- ≤ 3 lines therapy
- STS cohorts (4):

STS	#	PR (%)
LMS	10	0
UPS	10	4 (40)
LPS	10	2 (20)
Synovial Sarcoma	10	1
Total	40	7 (18)

- PFS at 12 wks 55%, (c/w 40%)
- mPFS 18 wks

Tawbi, et al, Lancet Oncol 2017; 18: 1493-1501

Single Agent Immunotherapy Soft Tissue Sarcoma

Agent	# Pts	ORR (%)	mPFS (m)	RR by subtype	
Ipilimumab		0	1.9	SS	Maki, 2013
Pembrolizumab (sarco28)	80	18	4.5	UPS 23% (2 CR), LPS 10%	Burgess, 2019
Atezolizumab		42	NR	ASPS	Coyne, 2018
Nivolumab		0	1.8	Uterine LMS	Ben-Ami, 2017
Nivolumab Ipilimumab + Nivolumab (Alliance 091401)	85	5 16	1.7 4.1	ASPS, LMS UPS 28.6, LPS 14.3	D'Angelo, 2018

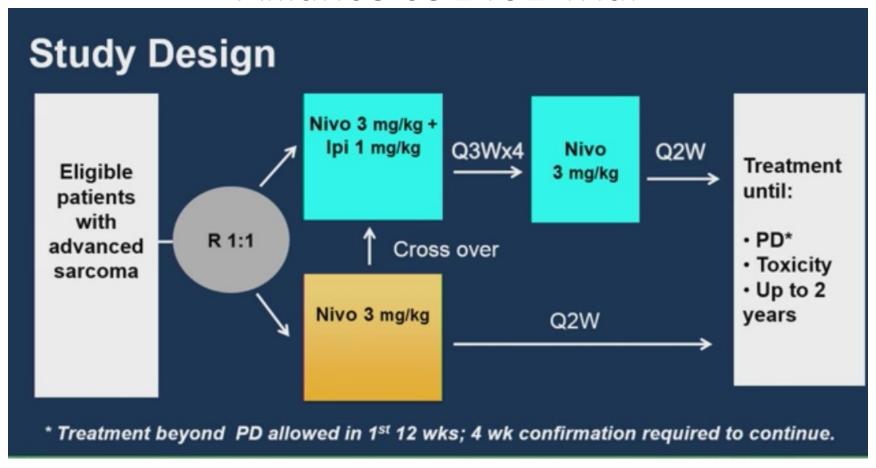
ST Sarcoma histology specific response to immunotherapy

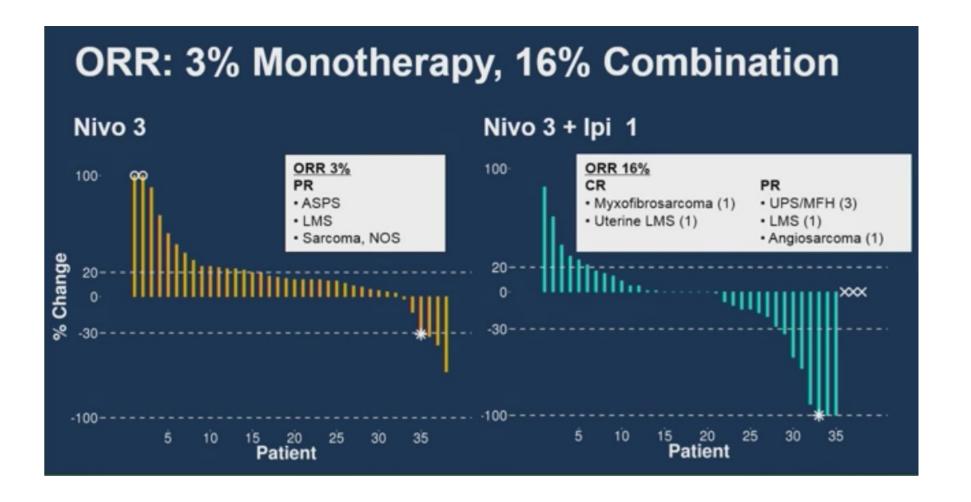
Histology	Drugs	Response Rate
UPS	Pembrolizumab Nivolumab + Ipilimumab	23% 29%
ASPS	Atezolizumab Pembrolizumab + axitinib	42% 55%
Angiosarcoma	Anti-CTLA4, Pembrolizumab, Axitinib + Pembrolizumab	71%
DDLPS	Pembrolizumab Nivolumab + ipilimumab	10% 14%
Uterine LMS	Nivolumab	0%

Tawbi et al. Lancet Oncology 2018, Chen et al. ASCO 2020, Coyne et al. CTOS 2018, Florou et al. JITC 2019, Wilky et al. Lancet Oncology 2019, Ben-Ami Cancer 2017

Do checkpoint inhibitors demonstrate activity in soft tissue sarcomas?

- YES
- Evidence from multiple studies identifies response ≈ 20%
- Acceptable activity of Pembrolizumab monotherapy
- Nivolumab monotherapy did not meet established response criteria for further study


Is activity histology specific?


- YES
- Significant responses in alveolar soft part sarcoma (ASPS)/atezolizumab; angiosarcoma
- Responses in "common" histologies are primarily observed for UPS > LPS
- Minimal activity in tumors with single or isolated genetic alteration
 - e.g., synovial sarcoma, Ewing's, GIST

Soft Tissue Sarcomas and Immunotherapy

- Do checkpoint inhibitors demonstrate activity in soft tissue sarcomas?
- Is activity histology specific?
- Is single agent or combination therapy preferable?
- What are the parameters which might predict response?
- What can we do to make tumors more immunogenic to enhance treatment response.

Alliance 091401 Trial

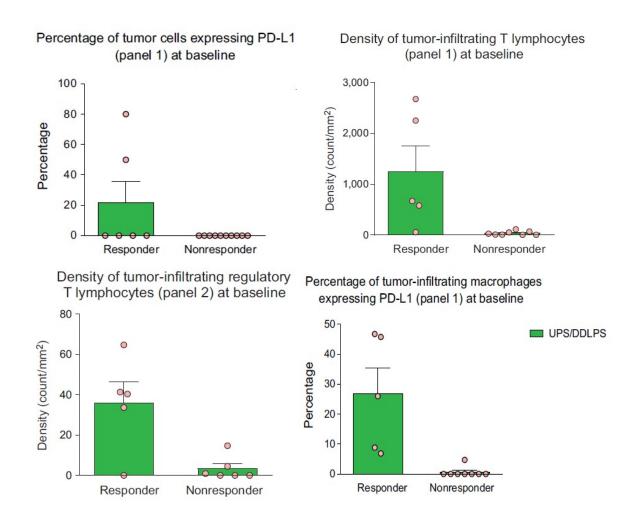
A091401 Expansion cohort

	GIST (n=18)		DDLS (n=24		UPS (n=24)	
Treatment	N	N+I	N	N+I	Ν	N+I
Evaluable Design	9	9	12	12	12	12
Median age (range)	69 (41-79)	62 (40-81)	62 (27-82)	59 (46-68)	64 (34-85)	60 (44-84)
% female	20	46	53	36	36	53
% ≥3 regimens	80	46	33	43	50	40
%≥ Grade 3 TRAE	10	46	20	14	15	14
6mth RR n%, (CI)	0, 0% (0- 31%)	0, 0% (0- 28%)	1, 7% (0.2- 32%)	2, 14% (2-43%)	1, 8% (0.2- 36)	2, 14% (2-43%)
Response Duration ^b	-	.5	4.5	8.3 & 13.1	14.6	7 & 7.6
Median PFS ^b	1.5 (1.3-10)	2.9 (1.4- NE ^c)	4.6 (3.2- NE)	5.5 (2.8 - NE)	1.5 (1.4- NE)	2.7 (1.5 - NE)
Median OS ^b	9.1 (4.9- NE ^c)	12.2 (6-NE)	8.1 (7-NE)	13.1 (9.1- NE)	6.6 (2.4- 17.6)	NE (5.1- NE)

Chen et al ASCO 2020

Agent	ORR (%)	mPFS (m)	RR by subtype	
Ipilimumab	0	1.9	SS	Maki, 2013
Pembrolizumab	18	4.5	UPS 23% (2 CR), LPS 10%	Burgess, 2019
Atezolizumab	42	NR	ASPS	Coyne, 2018
Nivolumab	0	1.8	Uterine LMS	Ben-Ami, 2017
Nivolumab Nivolumab +Ipilimumab	5 16	1.7 4.1	ASPS, LMS UPS 28.6, LPS 14.3	D'Angelo, 2018
Durvalumab/Tremelimumab	14.3	2.8	ASPS 50%, chordoma 20%, AS/UPS 20%	Somaiah, 2020

Is monotherapy or combination immunotherapy preferable?

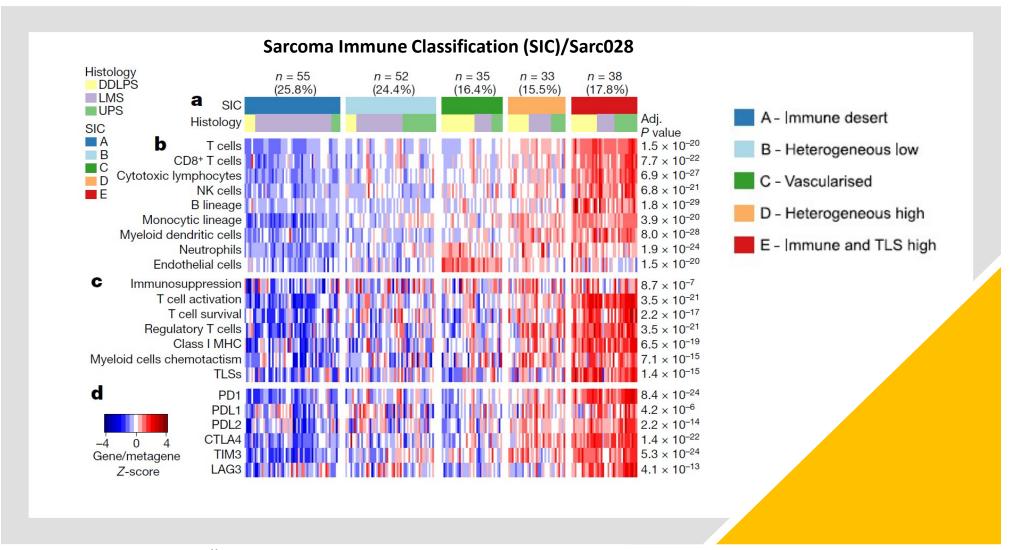

- 555
- Pembrolizumab monotherapy has substantial activity in specific sarcoma subtypes
- Combination IO/IO achieves higher response rate compared to Nivolumab monotherapy (16% v 5%), comparable to Pembrolizumab monotherapy
- Responses to combination immunotherapy in heavily pretreated population (16%, mPFS 4.1) are comparable to first line single agent (doxorubicin) chemotherapy (15-18%, mPFS 4-6 m)
- Toxicity of combination is more substantial than monotherapy, but tolerable
 - Gr 3/4 AE: N+I 48% v N 40%
 - Anemia (17%), hypotension (10%), hyponatremia (7%)

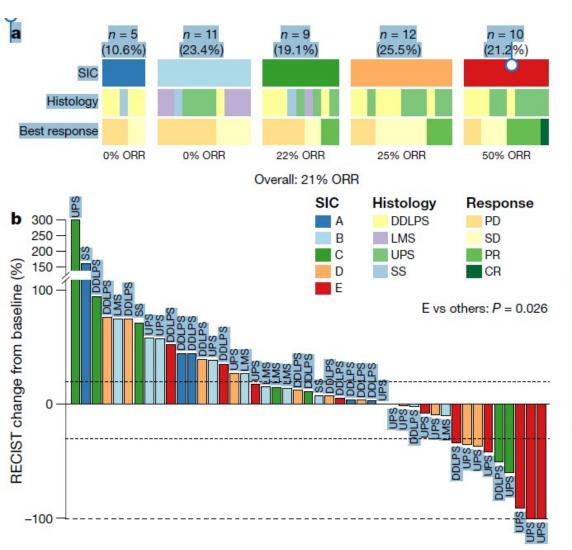
Soft Tissue Sarcomas and Immunotherapy

- Do checkpoint inhibitors demonstrate activity in soft tissue sarcomas?
- Is activity histology specific?
- Is single agent or combination therapy preferable?
- What parameters/biomarkers might predict IO response?
- What can we do to make tumors more immunogenic to enhance treatment response.

Assessment of baseline immune status in SARC028

- Baseline biopsy characteristics associated with response:
 - Increased tumor cell expression of PD-L1
 - Increased tumor IL
 - Increased PDL-1 macrophages
 - Increased antigen experienced T cells
 - Increased T regulatory cell infiltration




Keung, et al Clin Cancer Res 2020; 26(6):1258-66

Sarcoma Immune Classification (SIC)

Petitprez, Nature, January 2020

- Gene expression profiling of 4 independent cohorts
 - Composition of tumor microenvironment (TME) by MCP counter
 - e.g., T cells, NK cells, dendritic cells, endothelial cells, B cells
 - Functional orientation of immune TME incl tertiary lymphoid structures (TLS)
 - Expression of genes related to immune checkpoints
 - Association of SIC profile with histology
 - A Immune desert
 - B Heterogeneous low
 - C Vascularised
 - D Heterogeneous high
 - E Immune and TLS high

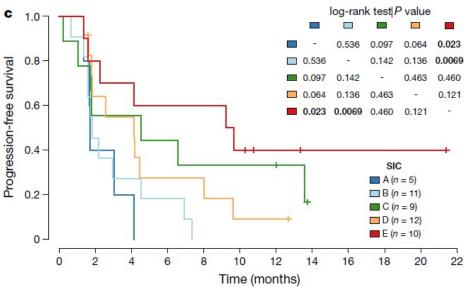
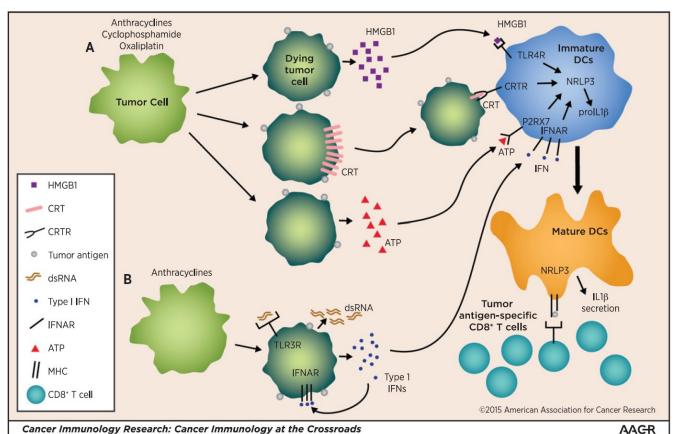


Fig. 4 | SICs are strongly associated with STS response to PD1 blockade

irAE and response

- Immune related toxicity associated with clinical benefit (Rosenbaum)
 - 124 pts

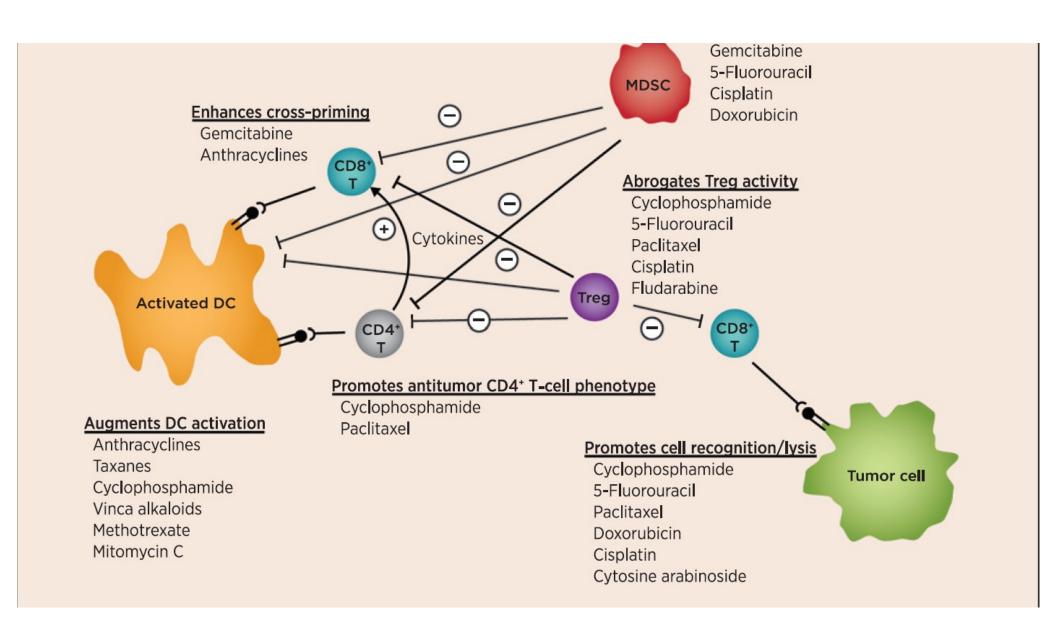
Immune related AE	+	-
Durable clinical benefit	53%	29%
Median PFS (mos)	16.6	10.6
RR	Gr 3/4 33% Gr 1/2 15% None 6%	


- Dual therapy > RR than monotherapy, but increased toxicity
 - I/N v N (Alliance A091401)

Biomarkers and ST Sarcoma

- Responses associated with
 - Baseline tumor immune status (SARC028)
 - Sarcoma Immune Classification (SIC): "Hot"
 - Heterogeneous High
 - Immune and TLS high
 - Immune related adverse effects (irAE)

Soft Tissue Sarcomas and Immunotherapy


- Do checkpoint inhibitors demonstrate activity in soft tissue sarcomas?
- Is activity histology specific?
- Is single agent or combination therapy preferable?
- What parameters/biomarkers might predict IO response?
- What can we do to make tumors more immunogenic to enhance treatment response?

Dying Tumor cells release:

- "danger" associated molecules: HMGB1
 - ATP
- CRT (calreticulin) -> phagocytosis signal
- type I IFN

Results in dendritic cell maturation and evolution of tumor specific CD8+ T cells

IO/chemo combinations

Agent	ORR (%)	mPFS (m)	RR by subtype	
Pembrolizumab	18	4.5	UPS 23% (2 CR), LPS 10%	Burgess, 2019
Pembrolizumab + Doxorubicin	22	7.8	UPS 66%, LPS 40%, LMS 30%	Pollack, 2019
Pembrolizumab + Cyclophosphamide	2	1.4	SFT	Toulmonde, 2018
Pembrolizumab + Eribulin	5.3	2.8	LMS	Nathenson, 2020
Pembrolizumab + Axitinib	25	4.7	ASPS 54.5 ; non-ASPS 9.5	Wilky, 2019
Nivolumab	5	1.7	ASPS, LMS	D'Angelo, 2018
Nivolumab + Sunitinib	9.3	5.9	AS, ESMC, SS, ASPS	Martin-Broto, 2019
Nivolumab + Ipilimumab + Trabectedin	22	NR	Multiple	Chawla, 2019

ASCO 2020

- Doxorubicin + Pembrolizumab (Livingston, et al)
 - 30 pts
 - multiple histologies
 - RR 36% (LPS 2/7, LMS 4/10, 3/3 UPS), 1 CR
 - mPFS 6.9 m, OS 12 m
 - Gr 3/4 AE 33%
 - Compares favorably with single agent Doxorubicin activity: 16%
- Ipi + Nivo + Trabectedin, SAINT regimen (Gordon, et al)
 - 41 pts, first line
 - RR 19.5% (3 CR); 2/8 LMS, 1/8 LPS, 3/6 UPS, 1/3 SS, 1/1 clear cell sarcoma
 - 6m PFS 56%, OS >12.5m
 - Gr 3 AE 54%
- Ipi + Nivo (Zer, et al)
 - 15 pts, prior treated
 - Classic Kaposi's sarcoma
 - ORR 71%, independent of TMB and PDL-1 status

Conclusions

- Immunotherapy demonstrates consistent low-level activity in heterogeneous populations of soft tissue sarcoma patients
- Response appears histology specific
 - UPS, ddLPS
 - ASPS
- IO/IO results in higher response rates associated with increased toxicity
- At present efforts to increase immunogenicity have had limited effect
 - IO/doxorubicin compares favorably with single agent doxorubicin
- Predictors of response include
 - Baseline tumor immune status: tlLs, PDL-1 expression
 - Sarcoma Immune Classification (SIC) gene profile
 - Immune-related adverse events (irAE)

Thank You!!