

Plasma Genotyping in NSCLC: Layering in the liquid and future applications

Benjamin Levy, MD Associate Professor of Oncology, Johns Hopkins University Clinical Director, Sidney Kimmel Cancer Center at Sibley Memorial Washington DC

Biomarker Testing Demands and Targeted Therapy Options for Lung Adenocarcinoma Continue to Expand¹

Target	Approved Drugs
EGFR (common mutations)	Gefitinib, erlotinib, afatinib, dacomitinib, osimertinib, erlotinib/ramucirumab
EGFR (exon 20)	Amivantamab, mobocertinib
ALK	Crizotinib, ceritinib, alectinib, brigatinib, lorlatinib
ROS1	Crizotinib, entrectinib
RET	Selpercatinib, pralsetinib
NTRK1/2/3	Larotrectinib, entrectinib
BRAF V600E	Dabrafenib + trametinib
<i>MET</i> exon 14	Capmatinib, tepotinib
KRAS G12C	Sotorasib

Methods

- Retrospective, observational chart review
- Patients with mNSCLC initiating first-line (1L) systemic therapy between April 1, 2018 and March 31, 2020
- Data from practices within The US Oncology Network of community oncology practices that utilize a similar electronic health record

Presented By: Nicholas J. Robert, MD On behalf of the MYLUNG Consortium™ **#ASCO21** | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Patient Characteristics

	Overall	Nonsquamous
	N=3474	N=2820
Age at mNSCLC, years		
Median(Min, Max)	69 (23,90+)	69 (24,90+)
Gender, %		
Female	51.1	53.9
Male	48.9	46.1
Race, %		
White	65.3	64.4
Black Or African American	8.3	8.3
Other	5.8	6.0
Not documented	20.7	21.2
Practice region, %		
South	46.4	45.5
West	35.3	36.2
Midwest	11.6	12.1
Northeast	6.6	6.3

Presented By: Nicholas J. Robert, MD On behalf of the MYLUNG Consortium™ **#ASCO21** | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

NGS testing rates over time for the overall population

PAIN POINTS IN THE JOURNEY (ADVANCED-STAGE NONSQUAMOUS NCSLC)

© LUNGevity Foundation. All rights reserved.

CONFIDENTIAL

Plasma ctDNA "Liquid Biopsies": Rationale and Methods¹

- Capture of ctDNA via a simple noninvasive blood test
- Shedding of ctDNA is product of apoptosis and necrosis, two relevant processes in cancer
- New, more sensitive diagnostic platforms have the capability to genetically interrogate isolated DNA from the blood
- Circumvent the need for tissue biopsies

Technique	Sensitivity, %	Optimal Application
Sanger sequencing	>10	Tumor tissue
Pyrosequencing NGS Quantitative PCR	10 2 1	Tumor tissue Tumor tissue Tumor tissue
ARMS	0.10	Tumor tissue
BEAMing, PAP, digital PCR, TAm-Seq	≤0.01	ctDNA, rare variants in tumor tissue

Technologies for Detection of ct-DNA

Principles of Detection	Method Ex.	Notes
Quantitative PCR	Real-time PCR ARMS/Scorpion PCR Mutant allele-specific PCR	Lowest cost, ease of use
Digital PCR	BEAMing Droplet digital PCR (ddPCR) Microfluidic digital PCR	Highest sensitivity, limited genomic loci
Next-Generation Sequencing	Hybrid capture based NGS CAPP-Seq TAm-Seq	High sensitivity, broad range of genomic coverage

Adapted, Qin et al., Chinese Journal of Cancer 2016

Liquid Biopsy: Clinical Application

Liquid Biopsy: Clinical Application

Method comparison •

High PPV for NGS Panel¹

deletion

98%

- Real-world database •
- **7,000** consecutive samples
- Actionable driver mutations

insertion

100%

1,987 samples with submitted tissue testing reports

543 matched samples

92%

100%

4,961 without tissue genotyping reports

1,453 without actionable variants or tissue QNS

100%

98%

PPV ---->

100%

Clinical Implications of Plasma ctDNA Testing in Metastatic NSCLC¹

^a Patients were either enrolled at time of initial diagnosis or at disease progression.

1. Aggarwal C et al. JAMA Oncol. 2019;5:173-180.

NILE Study

Study Cohort

		Number	(%)
Conder	Female	153	54.3
	Male	129	45.7
Median Age at diagr	nosis (range) in years	69 (26	– 100)
	Asian	17	6.0
	Black or African American	18	6.4
Race	Native Hawaiian or other Pacific Islander	1	0.4
	White	231	<mark>81.9</mark>
	Other	8	2.8
	Unknown	7	2.5
Ethnicity	Hispanic	23	8.2
	Non-Hispanic	259	<mark>91.</mark> 8
	0	71	25.2
5000	1	151	53.5
enrollment	2	36	12.8
	3	12	4.3
	Unknown/missing	12	4.3
History of prior	Yes	45	16.0
chemotherapy for early stage NSCLC	No	237	84.0
Stage of NSCLC at	lllb	7	2.5
enrollment	IV	275	97.5
	Adenocarcinoma	271	96.1
enrollment	Large cell carcinoma	5	1.8
	Other*	6	2.2
	Non-smoker	61	21.4
Smoking History	Previous Smoker	153	54.4
	Current Smoker	61	21.7
	Unknown	7	2.5

Primary Objective

• Detection of guideline recommended biomarkers

Clinical follow-up at one year or at disease progression

Leighl N et al. AACR 2019. Abstract 4460.

NILE Study

Results – cfDNA Biomarker Detection Rate

 Primary endpoint of cfDNA non-inferiority was met, with physician discretion SOC tissue genotyping identifying 60 patients (21.3%) with a guideline recommended biomarker and cfDNA identifying 77 patients (27.3%) (p<0.0001 for non-inferiority)

Guideline-recommended biomarker positivity by sample type		Tissue				
		Positive	Negative	Total		
	Positive	48	29	77		
cfDNA	Negative	12	193	205		
	Total	60	222	282		

- Biomarker positive patients increased from 60 using tissue alone to 89 using tissue + cfDNA
 - cfDNA found biomarkers in patients with negative (N = 7), not assessed (N = 16), or insufficient tissue results (QNS; N = 6)
- When restricted to the 64 patients with guideline complete tissue genotyping attempted (N = 13) or completed (N = 51), tissue and cfDNA each identified 22 patients with a guideline recommended biomarker (19 concordant)
- cfDNA results were returned significantly faster than tissue results (median 9 vs 15 days; p<0.0001)

Leighl (Papadimitrakopoulou). 2019. American Association for Cancer Research Annual Meeting, Abstract #4460.

7

Patients with Advanced Treatment-naive NSCLC

Rolfo et al, JTO 2021 Oct;16(10):1647-1662

Is this cost effective?

Is this cost effective?

Poculto						IASIC	۲ -
Results							
Stage IV NSCLC	Targeted th	nerapy (n=82)	Non-	targeted thera	npy (n=48)		
Median PFS, months (95%CI)	11.4 (8.3 - r	not reached)	9.8 (4	1.4 – 19.5)			
Median OS, months (95% CI)	Not reached	d	19.5	(10.2 – 19.5)			
Testing strategy			•	OALY	leerope	untol	
resting strategy		COST (CAD)	QALT	cost (CA	AD\$)	
Liquid biopsy + Tumou biopsy	r tissue	1,305,524		7.17	Referen	се	
Tumour tissue biopsy a	lone	1,342,740		7.10	37,216		
IASLC 2021 World Conference on Lu	ng Cancer IRTUAL EVENT				{		\checkmark

Study Design: BFAST

Special considerations cfDNA: A Complex Biospecimen

OHNS HOPKINS

Special considerations

Sensitivities and Improving Pretest Probability

Abbosh C et al. Nature. 2017;545:446-451; Sacher AG et al. JAMA Oncol. 2016;1;2(8):1014-22; Chen CL et al. Sci Rep. 2016;6:21471.

Special Considerations: Germline

RELEVANT FOR THERAPY SELECTION	%CFDNA OR AMPLIFICATION	FDA APPROVED IN INDICATION	AVAILABLE FOR USE IN OTHER INDICATIONS	CLINICAL DRUG TRIALS
BRCA2 E1308*	32.3%	None	<u>Olaparib</u>	Trials Available
				Other Therapies
<u>TP53</u> Y220H	4.9%	None	None	Trials Available
				Other Therapies
EGFR Exon 19Deletion	3.3%	Erlotinib	None	Trials Available
		<u>Afatinib</u> <u>Gefitinib</u>		<u>Other Therapies</u>
MYC Amplification	+	None	None	<u>Trials Available</u> <u>Other Therapies</u>
<u>PIK3CA</u> Amplification	+	None	<u>Everolimus</u> <u>Temsirolimus</u>	<u>Trials Available</u> Other Therapies

Liquid Biopsy: Clinical Application

Castiglia M et al. *Biochim Biophys Acta*. 2014;1846(2):539-46

Early Prediction of Response to Tyrosine Kinase Inhibitors by Quantification of EGFR Mutations in Plasma of NSCLC Patients

30

days

20

25

55

50

60

65

Marchetti A et al. J Thorac Oncol . 2015;10(10):1437-43.

IOHNS HOPKINS

Early Prediction of Response to Tyrosine Kinase Inhibitors by Quantification of EGFR Mutations in Plasma of NSCLC Patients

Marchetti A et al. J Thorac Oncol . 2015;10(10):1437-43.

Abstract 9019: FLAURA plasma samples: [Platform: ddPCR; clearance]

vuilliber of pa	lients at i	ISK					
Non-detectat	ole 208	198	174	147	111	86	41
Detectoble	100	444	0.4	60	4.4	24	20

a) Clearance of plasma EGFRm at week 3

	Detectable EGFRm (n=126)	Non-detectable EGFRm (n=208)		
Events,n (maturity,%)	99 (79)	128 (62)		
mPFS, months (95% CI)	9.5 (7.0, 10.9)	13.5 (11.1, 15.2)		
HR (95% CI); p value	0.57 (0.4, 0.7) p<0.0001			
ORR, % (95% CI)	78 (69.5, 84.7)	87 (81.7, 91.3)		

b) Clearance of plasma EGFRm at week 6

	Detectable EGFRm (n=70)	Non-detectable EGFRm (n=258)		
Events,n (maturity,%)	57 (81)	165 (64)		
mPFS, months (95% CI)	8.2 (6.8, 10.9)	13.5 (11.1, 15.2)		
HR (95% CI); p value	0.51 (0.4, 0.7) p<0.0001			
ORR, % (95% CI)	73 (60.9, 82.8)	88 (83.4, 91.7)		

*Clearance refers to undetectable plasma EGFR mutations, where they were detectable at baseline, using ddPCR

CI, confidence interval; EGFR, epidermal growth factor receptor; EGFRm, EGFR-TKI sensitizing mutations (ex19del or L858R); EGFR-TKI; EGFR-tyrosine kinase inhibitor; HR, hazard ratio; mPFS, median progression-free survival

Non-detectable 258

Detectable

#ASCO19 Slides are the property of the author, permission required for reuse

≥ 50% 18

Thompson JC et al. JCO Precis Oncol. 2021;5:510-524..

11

ctDNA and TCR Dynamics-Sustained

W9

W23

Baseline

ctDNA trends of intratumoral variants Differentially abundant TCR clones at response

Anagnostou V et al. Cancer Res. 2019;79(6):1214-1225...

Moving Forward: Early Assessment

Moving Forward: Early Assessment

Moving ctDNA Toward Clinical Action

Osimertinib Alone or With Chemotherapy for EGFR-Mutant Lung Cancers Dr. Helena Yu, NCT04410796

Presented By:

Outstanding Question (A) JOHNS HOPKINS We will need to define what change in ctDNA is meaningful

Clearance?

Percentage Drop?

What time Point?

Moving Forward: Identifying early resistance

Does a therapeutic switch based on early detection of resistance or rise in sensitizing mutation prior to scans improve outcome?

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY:

Stable Disease: A wide spread

Slides are the property of the author,

PRESENTED BY:

Molecular-Radiologic Response Concordance

 Patients with radiographically stable disease (n=12) had differential responses to immune checkpoint blockade that were consistent with their molecular response pattern.

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY:

Anagnostou et al., Cancer Research, 2019

Liquid Biopsy: Clinical Application

Castiglia M et al. *Biochim Biophys Acta*. 2014;1846(2):539-46

High Sensitivity cfDNA to Detect Recurrence

- Cancer Personalized Profiling by deep sequencing (CAPP-seq)
 - 128 recurrently mutated genes
 - 188 kb total
 - Lower limit of detection 0.002%
- 40 patients undergoing curative intent therapy
 - 37 NSCLC, 3 SCLC
 - Stage IB (n=7)
 - Stage II/ III (n=33)

18% mutations deemed drivers

Chaudhuri AA et al. Cancer Discov. 2017;7(12):1394-1403.

Detecting Minimal Residual Disease

Detection of ctDNA preceded radiographic progression in **72% of patients** by median of **5.2 months.**

OHNS HOPKINS

Detecting Minimal Residual Disease: Stage III

Clinical Trial to Test Effect of Consolidation Immunotherapy in ctDNA MRD+ NSCLC

- Retrospective study of 62 patients with Stage III NSCLC
- In silico model of ctDNA-guided trial
- No differences in baseline characteristics between cohorts

Detecting Minimal Residual Disease: Stage III

ctDNA Clearance During Consolidation ICI is Associated With Improved Outcomes

E. Moding et al. Nature Cancer 2020

Detecting Minimal Residual Disease: Stage III

Outcomes in Patients with Undetectable ctDNA After CRT

E. Moding et al. Nature Cancer 2020

Phase III IMpower010 adjuvant study in resected NSCLC

Randomisation stratification factors: sex, stage (IB vs II vs IIIA), histology, PD-L1 tumour expression status per VENTANA SP142 assay (TC2/3 and any IC vs TC0/1 and IC2/3 vs TC0/1 and IC0/1)

Study endpoints

Primary endpoint

Investigator-assessed DFS (hierarchically tested)^a

Key secondary endpoints

- OS in ITT population^{a,b}
- DFS in PD-L1 TC ≥50% stage II-IIIA population^c

Exploratory endpoints

- DFS in additional subgroups defined by PD-L1
- DFS defined by baseline ctDNA status

Plasma collection for ctDNA analysis

ctDNA samples were collected on C1D1 of the enrolment phase (after surgery, prior to chemo) and retrospectively tested using the Natera Signatera assay

C1D1, cycle 1, day 1; IC, tumour-infiltrating immune cells; ^a Hierarchical statistical design: DFS tested in (1) PD-L1 TC \geq 1%^c stage II-IIIA patients; then if positive, (2) in all randomised stage II-IIIA patients; then if positive, (3) in the ITT population^b; then if positive, (4) OS tested C in the ITT population. ^b The ITT population includes the all-randomised stage IB-IIIA population. ^c Per SP263 assay.

Zhou et al. IMpower010 biomarkers. https://bit.ly/3F2KriO Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

S

ctDNA positivity was strongly prognostic, with DFS favouring atezo in both ctDNA+ and ctDNA– patients

Zhou et al. IMpower010 biomarkers. https://bit.ly/3F2KriO Content of this presentation is copyright and responsibility of the author. Permission is required for re-use. 9

Clinical cutoff: 21 January 2021. Unstratified HRs are shown.

Minimal Residual Disease Platforms

Rolfo et al. Nature Reviews clinical oncology May 2020

Minimal Residual Disease Platforms

	"Tumor naïve"	"Tumor informed"
Gene coverage	Large panel of commonly altered genes	<u>Limited panel</u> of genes personalized to the patient's tumor
Tissue sequencing required?	No	Yes
Key applications	 MRD Assess heterogeneity Detect actionable alterations Identify drivers of resistance Serial monitoring 	 Detect MRD Assess treatment response Serial recurrence monitoring
Screens out germline, CHIP alterations?	No*	Yes
Turnaround time	1-2 wks	First test: 2-3 wks (includes tissue WES profiling) Subsequent tests: 1 wk

What's the optimal trial design?

Chae et al. JCO 2018

Liquid Biopsy: Clinical Application

Detection and localization of surgically resectable cancers with a multi-analyte blood test

Science

Detection and localization of surgically resectable cancers with a multi-analyte blood test

Test Performance for cancer signal detection

- Genetic interrogation in paramount in optimizing front-line decision making and helping to select genotype-driven therapies in the resistant setting
- cfDNA has demonstrated promise in its ability to:
 - Serve as a molecular proxy in identifying genetic alterations in treatment naïve patients
 - Assess real-time monitoring as a predictor of response
- Studies evaluating cfDNA platforms in monitoring residual disease post curative intent therapy as well identification of early stage disease are promising