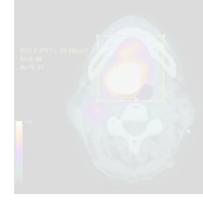
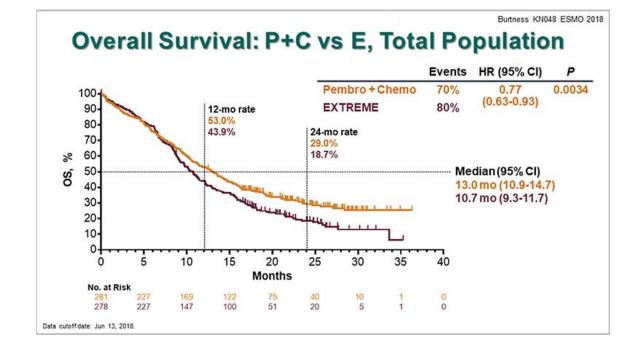
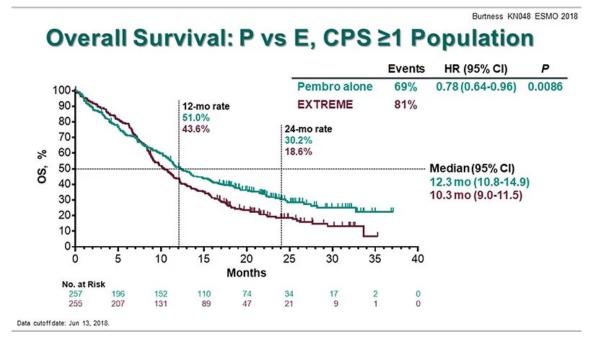
Targeted therapy for HNSCC & Thyroid Cancer


Cesar A. Perez, M.D.

Director of Drug Development Sarah Cannon Research Institute Florida Cancer Specialists Associate Professor of Medicine University of Central Florida


Head and Neck Cancer



- About 4% of all cancers in the United States.
 - Estimated 66,630 people (48,740 men and 17,890 women) will develop head and neck cancer.
- Aprox. 14,620 deaths (10,640 men and 3,980 women) from head and neck a year in US

Head and Neck Cancer

A decade of advances, so much more to do...

Targeted Therapy???

Sledge 2005:

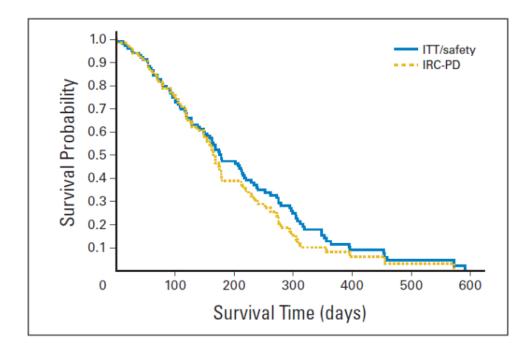
"A targeted therapy should attack a biologically important process (usually, though not necessarily, a single molecule), preferably one central to a hallmark of cancer"

→ Is **Methotrexate** a targeted therapy, since it only inhibits dihydrofolate reductase?

 \rightarrow Are Aromatase inhibitors targeted therapies?

Peters GJ. From 'Targeted Therapy' to Targeted Therapy. Anticancer Res. 2019 Jul;39(7):3341-3345

Targeted Therapy???


NCI...

"Targeted therapies act on specific molecular targets, were designed to interact with their target, and are often cytostatic (block proliferation), while standard conventional chemotherapy is cytotoxic"

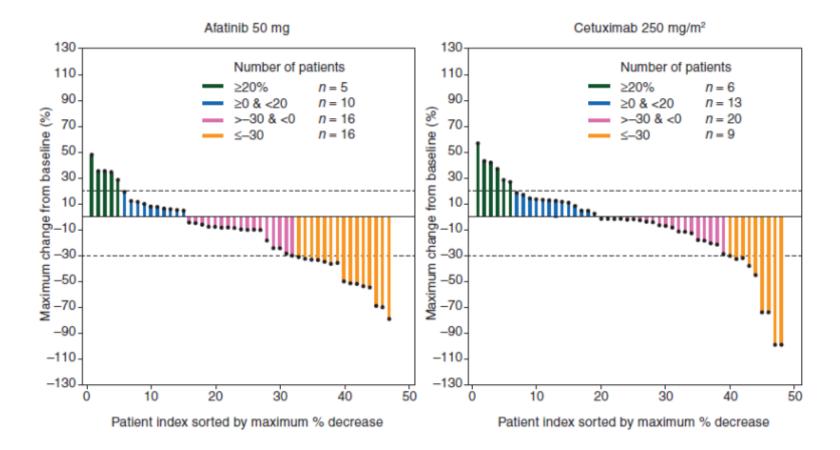
Imatinib \rightarrow first targeted therapy?

Head and Neck Cancer

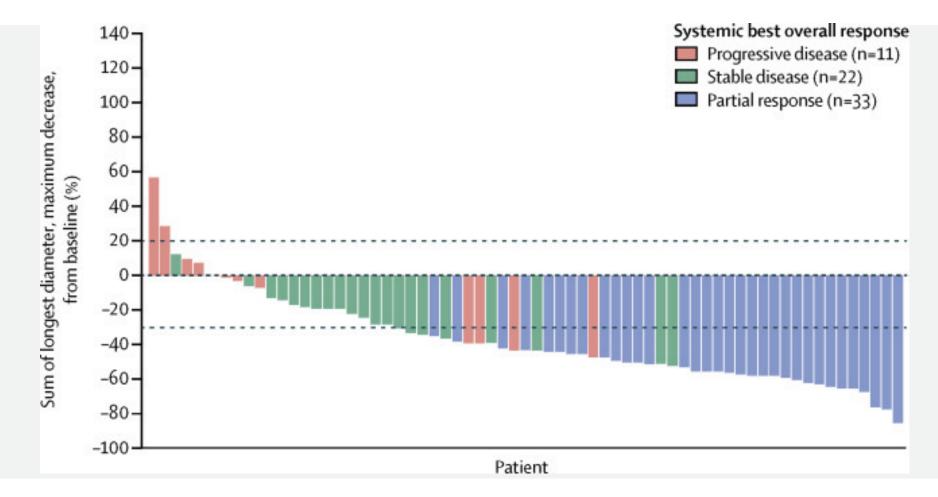
A decade of advances, so much more to do...

Cetuximab in platinum-refractory SCCHN. • ORR 13%

J Clin Oncol 2007 25:2171-2177.


- Cetuximab is only "targeted therapy" currently approved for FDA
- Low single agent ORR and DOR

Afatinib vs cetuximab in unselected R/M SCCHN

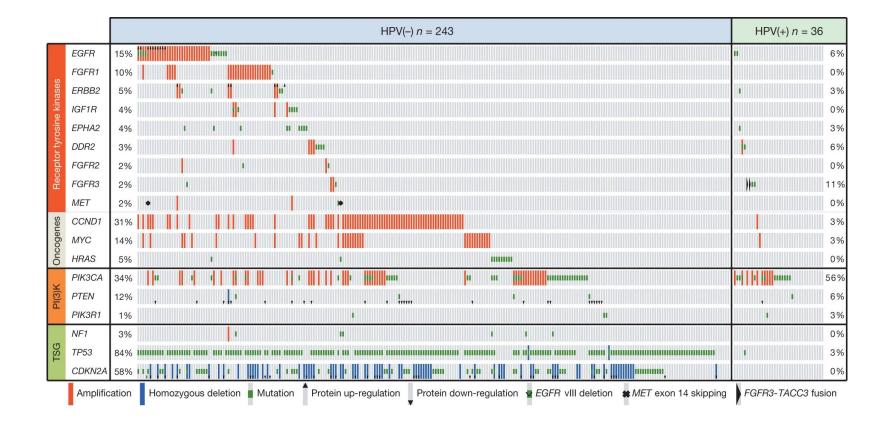

ORR 16.1% with Afat vs 6.5% with Cetux. (Investigator reported)

DRAEs leading to Tx discontinuation

23% with Afat vs 5% with Cetux

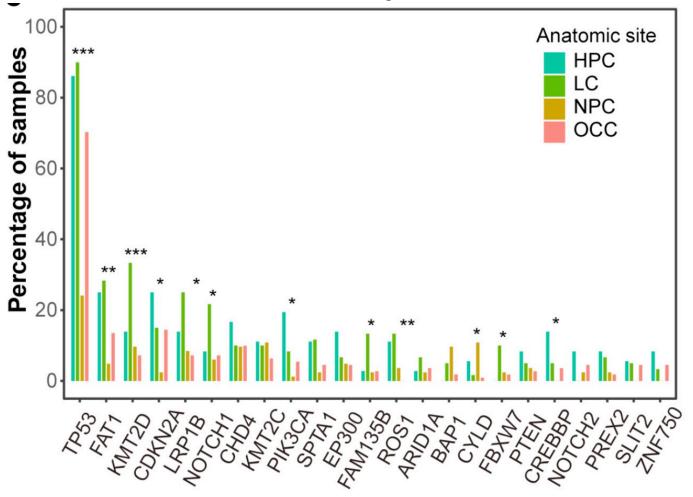
Targeted Therapy, to achieve good results, should have a predictive marker!

Shaw AT et al. Alectinib in crizotinib resistant ALK NSCLC – Lancet 2016


Head and Neck Cancer

So what are the targets?

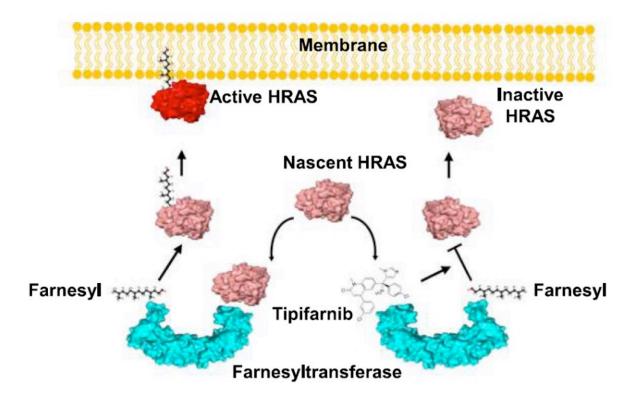
- Primarly of tumors from the oral cavity (62%)
- Only 13% HPV-related
- Most male and heavy smokers


Results:

- TP53 (84%)
- CDKN2A (58%)
- CCDN1 (31%)
- HRAS 5%
- PIK3CA (34%)

The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature* **517**, 576–582 (2015).

Genomic Landscape of Head and Neck Squamous Cell Carcinoma Across Different Anatomic Sites in Chinese Population

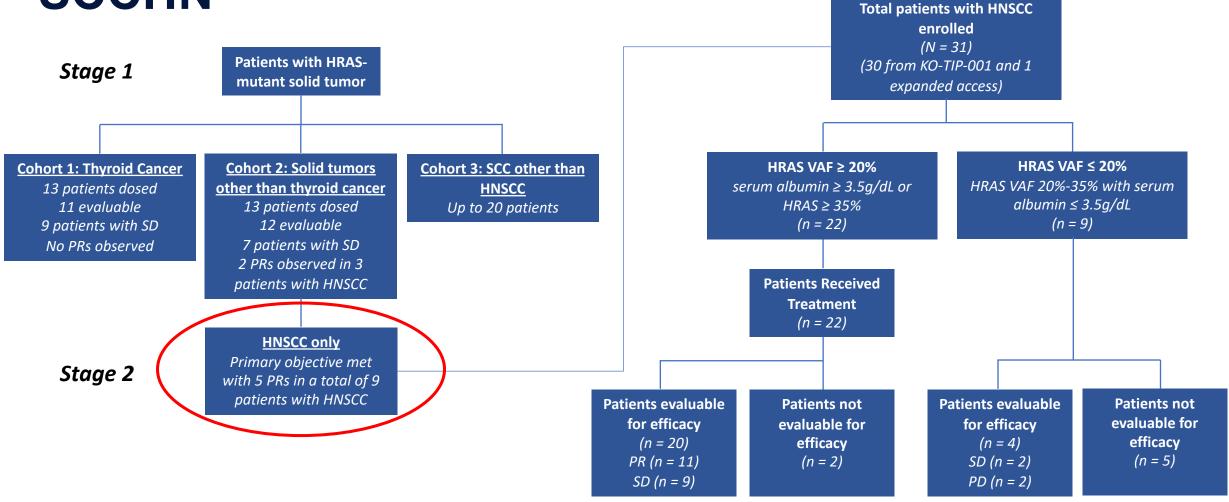

HRAS and Farnesyltransferase inhibitors in SCCHN

RAS proteins require posttranslational modifications to associate with intracellular membranes

HRAS is only dependent on farnesylation for its membrane localization

Overral 3-5% of SCCHN have HRAS mutation

Tipifarnib is a farnesyltransferase inhibitor (FTI)



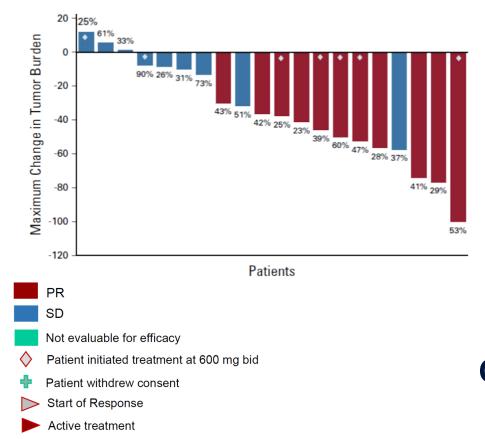
Mol Cancer Ther 2020 Sep;19(9):1784-1796.

Tipifarnib in HRAS+ SCCHN

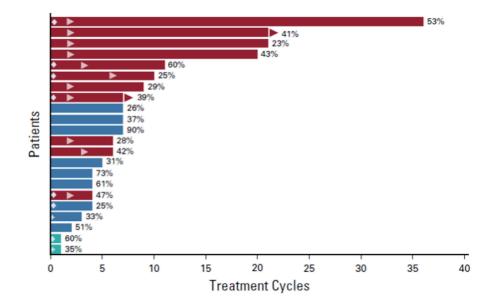
Cohort Expansion

Cohort expanded to further characterize safety and tolerability in indication(s) of interest

VAF, variant allele frequency


¹Ho AL, Brana I, Haddad R, et al. Tipifarnib in Head and Neck Squamous Cell Carcinoma With *HRAS* Mutations. *J Clin Oncol*. 2021;39(17):1856-1864. doi:10.1200/JCO.20.02903.

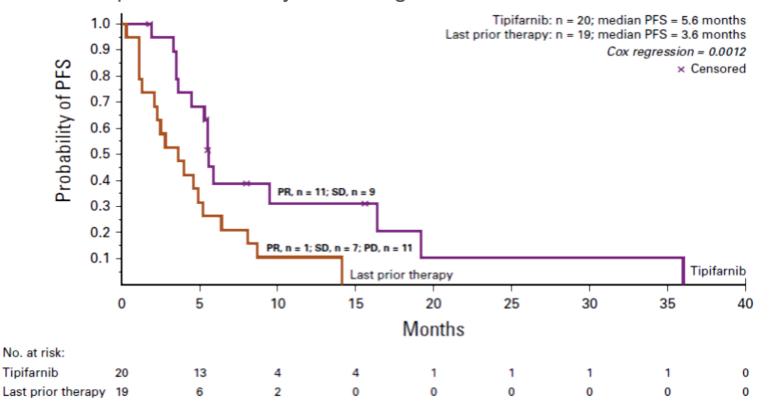
Demographics of Patients with High-VAF HNSCC


Characteristic	%
Patients enrolled	22
Patients evaluable for efficacy	90.1%
Age (years), median (range)	63 (20-89)
Male	68.2%
Site of primary tumor	
Oral cavity	45.5%
Pharynx	18.2%
Larynx	13.6%
Other	22.7%
No. of prior anticancer regimens	
Median (min, max)	2 (0, 6)
Type of prior anticancer therapy	
Platinum	90.9%
Immunotherapy	63.6%
Cetuximab	50.0%
HPV status available	61.9%
HPV Positive (of 13)	30.7%
HPV Negative (of 13)	69.2%

Tipifarnib in Head and Neck Squamous Cell Carcinoma With HRAS Mutations

Maximal change in tumor size

Duration of response to treatment

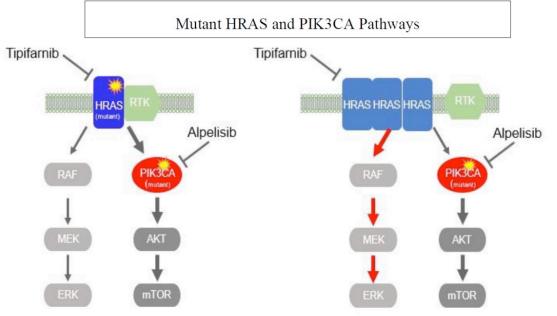


ORR in pts VAF > 20: 55%

% Numbers at the end of bars represent VAF for each patient

Tipifarnib in Head and Neck Squamous Cell Carcinoma With HRAS Mutations - PFS

Kaplan-Meier analysis of Progression-Free Survival



Ho AL, et al. Tipifarnib in Head and Neck Squamous Cell Carcinoma With *HRAS* Mutations. *J Clin Oncol*. 2021;39(17):1856-1864.

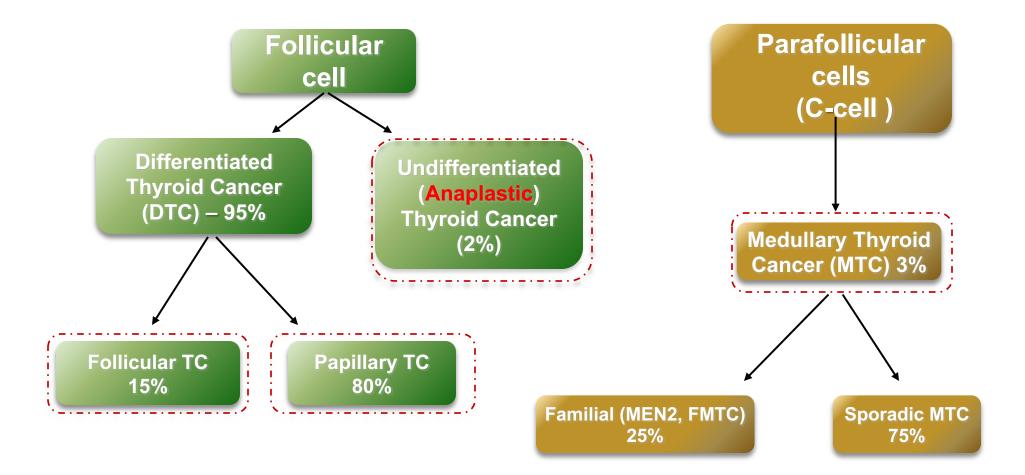
Blood and lymphatic system disorders	15 (50%)	Metabolism and nutrition disorders 9 (30%)
• Anemia	11 (37%)	• Hypercalcemia 3 (10%)
 Neutropenia 	3 (10%)	• Hypokalemia 3 (10%)
 Lymphopenia 	4 (13%)	 Hypophosphatemia 3 (10%)
 Leukopenia 	3 (10%)	
Respiratory, thoracic,		Gastrointestinal
and mediastinal disorders	9 (30%)	disorders 6 (20%)
Pneumonia	3 (10%)	• Nausea 3 (10%)

Ho AL, et al. Tipifarnib in Head and Neck Squamous Cell Carcinoma With *HRAS* Mutations. *J Clin Oncol*. 2021;39(17):1856-1864.

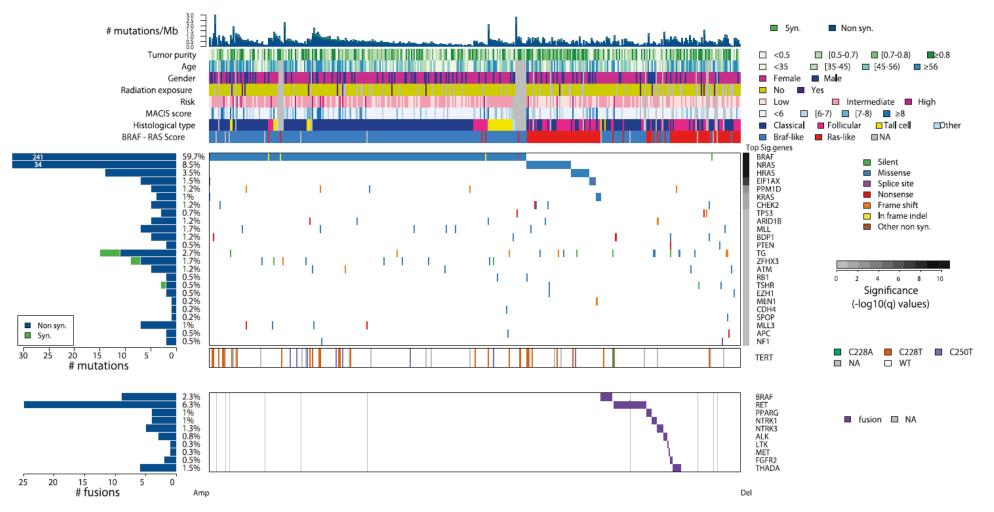
A Phase 1/2 of tipifarnib and alpelisib in patients with HRAS overexpressing and/or PIK3CA-mutated and/or -amplified recurrent/metastatic head and neck squamous cell carcinoma (the Kurrent trial)

- Two cohorts:
 - PIK3CA mutant
 - HRAS overexpressed

PIK3CA cohort ongoing


Simultaneous Dosing: 28 Day Cycle					
Week 1	Week 2	Week 3	Week 4		
Tipifarnib	Rest	Tipifarnib	Rest		
Alpelisib	Alpelisib	Alpelisib	Alpelisib		

So whats going on at the Thyroid Cancer arena?



Refractory Thyroid Cancer Subtypes

Papillary Thyroid Cancer Genomic characterization

Integrated genomic characterization of papillary thyroid carcinoma. Cancer Genome Atlas Research Network. Cell. 2014 Oct 23;159(3):676-90.

Recurrent Thyroid Cancer Genomic characterization

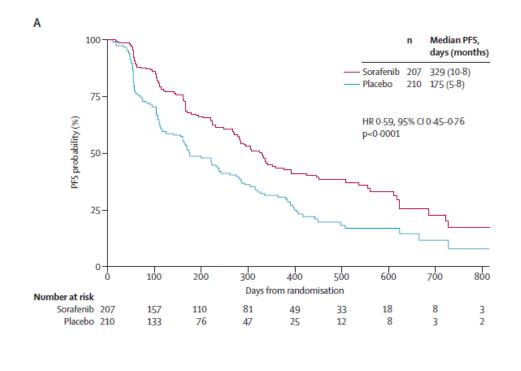
Altered Gene	PTC	FTC	ATC	MTC
RET	-	-	-	80%
RET/PTC	6.3%	-	-	-
BRAF	59%	-	20%	-
HRAS	4%	18%	3%	
NTRK1,3	0.8%	-	-	-
B-catenin		-	-	-
PAX8:PPARy		35%	-	-
TP53	1.2%	1.0%	65%	-
other	20%	20%	25%	19%

PTC: Papillary Thyroid Cancer ATC: Anaplastic Thyroid Cancer FTC: Follicular Thyroid Cancer MTC: Medullary Thyroid Cancer

Clin Cancer Res 2018 Jul 1;24(13):3059-3068.

Refractory Thyroid Cancer Medullary vs. Differentiated

Medullary (3%)	Differentiated (95%)
RAI resistant	RAI-avid (initially)
+ RET Mutation	+ BRAF and RET/PTC
85% 10-year OS	95% 10-year OS
SM: CEA and Calcitonin	SM: Thyroglobulin


RAI Refractory Thyroid Cancer

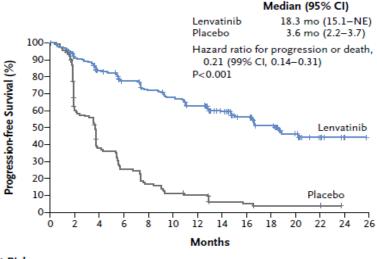
RAI Refractory Differentiated Thyroid Cancer (DTC) DECISION Trial

Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial

- Sorafenib \rightarrow MKI of VEGFRs 1, 2, and 3, PDGFR β , Raf-1, RET, and BRAF
- 207 pts on sorafenib and 210 on placebo
- Crossover allowed at progression

Lancet. 2014 Jul 26;384(9940):319-28.

PFS 10.8 vs 5.8 months
ORR 20%, Clinical Benefit 54%


RAI Refractory Differentiated Thyroid Cancer (DTC) SELECT Trial

ORIGINAL ARTICLE

Lenvatinib versus Placebo in Radioiodine-Refractory Thyroid Cancer

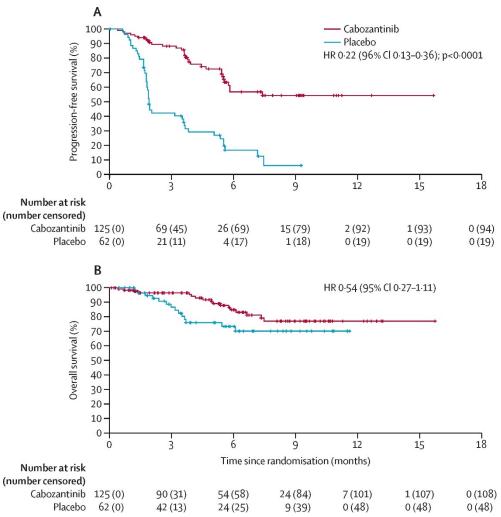
- Lenvatinib is an oral MKI of VEGFRs
 1, 2, and 3, FGFRs 1 through 4,
 PDGFR α, RET, and KIT
- 261 pts in **lenvatinib**, 131 with placebo
- Crossover allowed at progression

N Engl J Med. 2015 Feb 12;372(7):621-30

No.	at Risk	
	1 A A A A A A A A A A A A A A A A A A A	

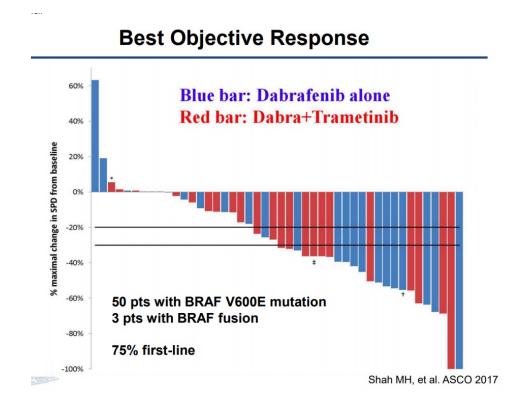
Lenvatinib	261	225	198	176	159	148	136	92	66	44	24	11	3	0
Placebo	131	71	43	29	19	13	11	5	4	2	2	2	0	0

Figure 2. Kaplan–Meier Estimate of Progression-free Survival in the Intention-to-Treat Population.


- PFS 18.3 vs 3.6 months
- ORR 64.8%, Clinical Benefit 81%

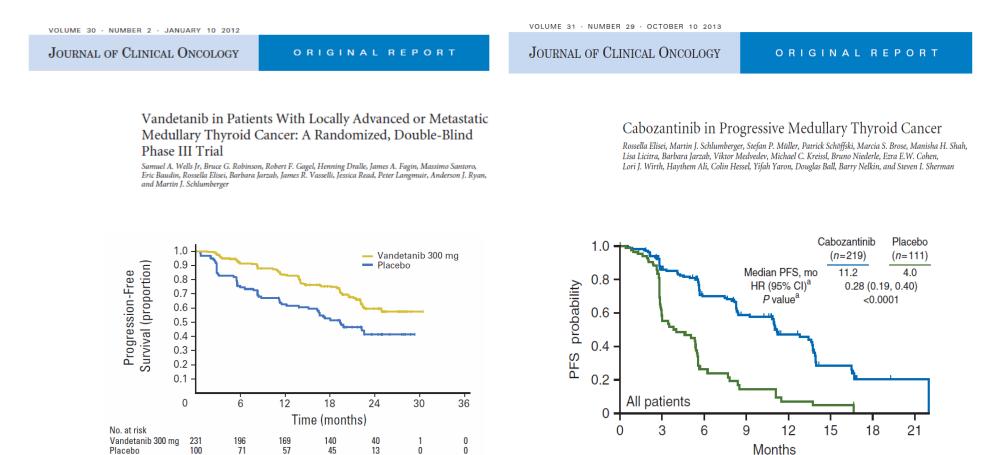
RAI Refractory Differentiated Thyroid Cancer (DTC) SELECT and DECISION Trials

- Sorafenib
 - Treatment-Related Serious AE's in 20% of pts
 - HTN, hand-foot syndrome, dyspnea, diarrhea
 - ORR 20%, PFS 11 months
 - FDA approved for RAI refractory DTC in *Nov 2013*
- Lenvatinib
 - Treatment-Related Serious AE's in 30%
 - HTN, proteinuria, QT prolongation (8%), diarrhea
 - ORR 65%, PFS 18.3 months
 - FDA approved for RAI refractory DTC in *Feb 2015*


Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebocontrolled, phase 3 trial

- RAI refractory pts (progressed on Lenvatinib or sorafenib) randomized 2:1 to cabozantinib (60 mg once daily) or matching placebo
- PFS significantly improved compared to placebo (96% CI 5.7–NE) vs. 1.9 months (1.8– 3.6); HR 0.22
- ORR in the cabozantinib 15% (99% CI 5.8– 29.3) of 67 patients in the cabozantinib group versus 0% (0–14.8) in the placebo (p=0.028)

Results of randomized phase II trial of dabrafenib versus dabrafenib plus trametinib in BRAF-mutated papillary thyroid carcinoma. *Journal of Clinical Oncology 35, no. 15_suppl 6022-6022.*


•.

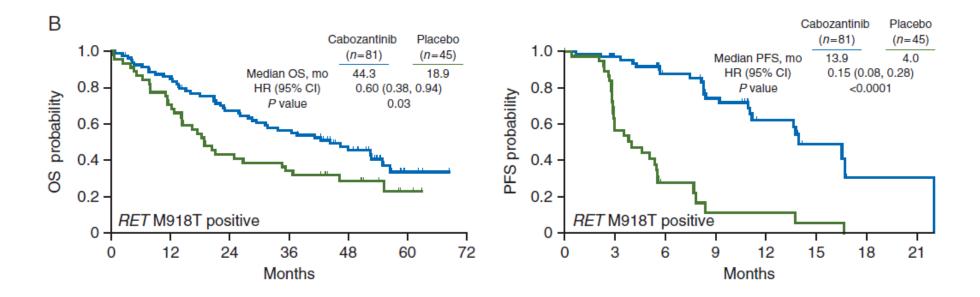
Metastatic Medullary Thyroid Cancer

Metastatic Medullary Thyroid Cancer MTC-ZETA and EXAM Trials

Placebo

0

0



ORIGINAL ARTICLE

Annals of Oncology 28: 2813–2819, 2017 doi:10.1093/annonc/mdx479 Published online 22 September 2017

Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma

M. Schlumberger^{1*}, R. Elisei², S. Müller³, P. Schöffski^{4,5}, M. Brose⁶, M. Shah⁷, L. Licitra^{8,9}, J. Krajewska¹⁰, M. C. Kreissl^{11†}, B. Niederle¹², E. E. W. Cohen¹³, L. Wirth¹⁴, H. Ali¹⁵, D. O. Clary¹⁶, Y. Yaron¹⁶, M. Mangeshkar¹⁶, D. Ball¹⁷, B. Nelkin¹⁷ & S. Sherman¹⁸

Medullary Thyroid Cancer MTC - ZETA and EXAM Trials

- Treatment only in patients with progression within 6 months
- Two drugs approved by FDA
 - Vandetanib
 - Cabozatinib
 - ✓ Both with improved PFS

Severe AE's in 1-8%, AE's in 30-40%

Medullary Thyroid Cancer RET mutations

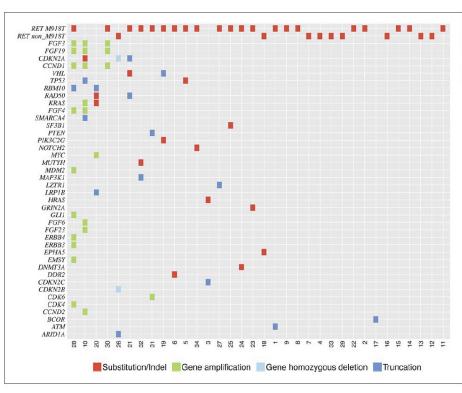
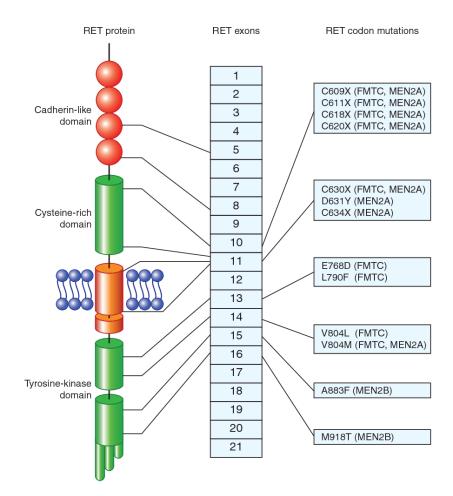
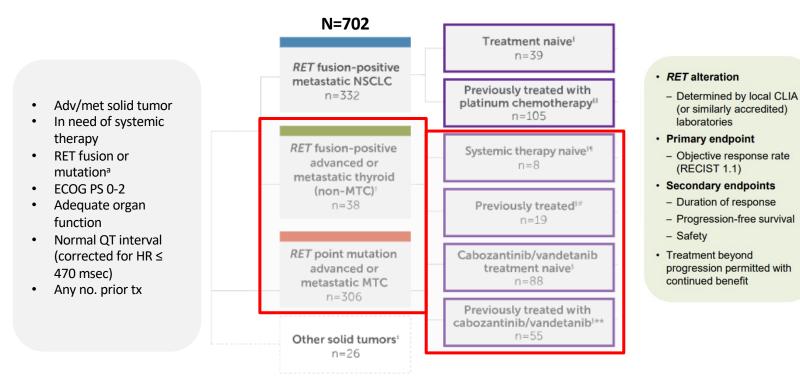




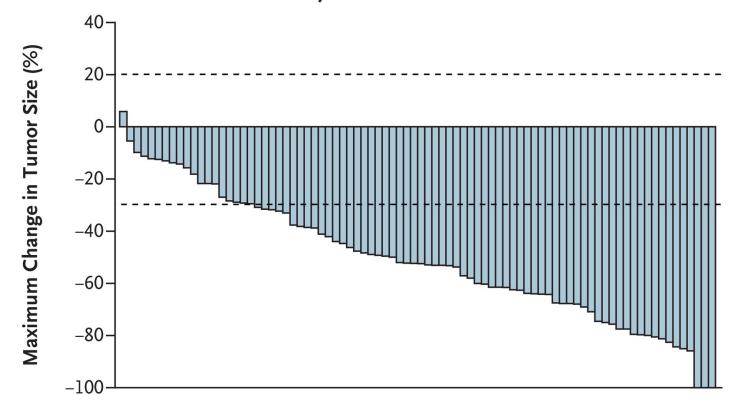
Fig. 1. Tile plot of genomic alterations identified by comprehensive genomic profiling in 34 cases of advanced MTC.

Andreas M. Heilmann AM et al. Comprehensive Genomic Profiling of Clinically Advanced Medullary Thyroid Carcinoma. Oncology 2016.

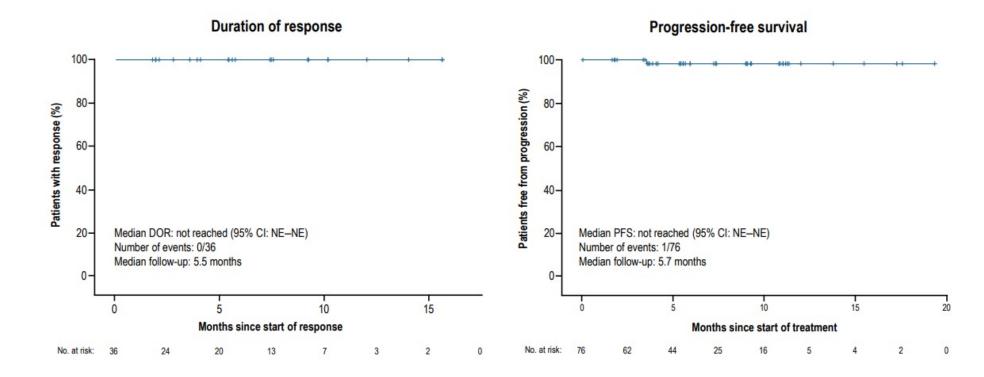
Phase I/II LIBRETTO-001: Selpercatinib in RET-Mutant MTC and RET Fusion–Positive Thyroid Cancer

• For this analysis, had to have either RET-mutant MTC or RET fusion(+) thyroid ca of any histology

Wirth LJ, et al. N Engl J Med. 2020;383:825-835.


Phase I/II LIBRETTO-001: Efficacy

				Not Previously
Response	RET-Mutant MTC Previously Treated	RET-Mutant MTC Not Previously Treated	Previously Treated RET Fusion–Positive Thyroid Cancer	Treated RET Fusion– Positive Thyroid Cancer
	IND-REV (N=55)	IND-REV (N=88)	IND-REV (N=19)	IND-REV (N=8)
Objective response, no. (%)	38 (69)	64 (73)	15 (79)	8 (100)
CR	9	11	5	12.5
PR	60	61	74	88
SD	25	23	21	
Median DOR, mo (95% CI)	NE (19.1–NE)	22.0 (NE-NE)	18.4 (7.6–NE)	NE
mPFS, mo (95% CI)	NE (24.4–NE)	23.6 (NE-NE)	20.1 (9.4–NE)	

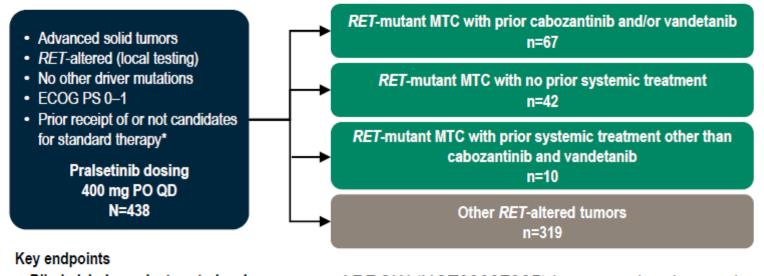

Wirth LJ, et al. N Engl J Med. 2020;383:825-835

Phase I/II LIBRETTO-001: Tumor Response—RET Mutated, No Prior TKI

B RET-Mutant MTC Not Previously Treated with Vandetanib or Cabozantinib

Phase I/II LIBRETTO-001: Durability of Benefit— Cabozantinib-/Vandetanib-Naïve

Wirth LJ, et al. ESMO 2019. Abstract LBA93. Wirth LJ, et al. N Engl J Med. 2020;383:825-835.


Phase I/II LIBRETTO-001: TRAEs in 162 Patients with RET-Mutant MTC or RET Fusion–Positive Thyroid Cancer Who Received Selpercatinib (≥15%)

AE	Tre	atment-Related AEs, N	(%)
	Grade 3	Grade 4	Any Grade
Any AE	45 (28)	3 (2)	153 (94)
Dry mouth	0	0	63 (39)
Hypertension	19 (12)	0	49 (30)
Diarrhea	4 (3)	0	27 (17)
Fatigue	1 (1)	0	41 (25)
Increased aspartate aminotransferase level	12 (7)	1 (1)	45 (28)
Nausea	0	0	25 (15)
Constipation	0	0	26 (16)
Increased alanine aminotransferase level	16 (10)	1 (1)	42 (26)
Peripheral edema	0	0	29 (18)

Of 531 patients who received selpercatinib:

- Dose reduction due to TRAE: 160 (30%)
- Discontinuation due to TRAE: 12 (2%); most common: elevated ALT (n = 2), drug hypersensitivity (n = 2)

Phase 1/2 ARROW Trial of Pralsetinib for RET-Mutant Medullary Thyroid Cancer—Study Design

- Blinded, independent central review ORR and DOR per RECIST v1.1
- · Safety

ARROW (NCT03037385) is an ongoing, international multicenter phase 1/2 study across 84 sites in 11 countries

*Until protocol amended in July 2019 to allow enrollment of treatment-naïve, standard therapy-eligible patients. Data cutoff February 13, 2020.

ECOG PS, Eastern Cooperative Oncology Group performance score; DOR, duration of response; NSCLC, non-small cell lung cancer; ORR, overall response; PO, orally; QD, once daily; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

Phase 1/2 ARROW: Efficacy in MTC

Efficacy	RET-Mutant MTC After CAB or VAN (N = 55)	CAB- and VAN-Naïve RET-Mutant MTC (N = 29)
ORR	60% (95% CI: 46-73)	66% (95% CI: 46-82)
Complete response	1.8%	10%
Partial response	58%	55%
Median DOR	NR (95% CI: 15.1 mo-NE) (n = 33)	NR (NE, NE) (N = 19)
DOR ≥ 6 mo ^a	79%	84%

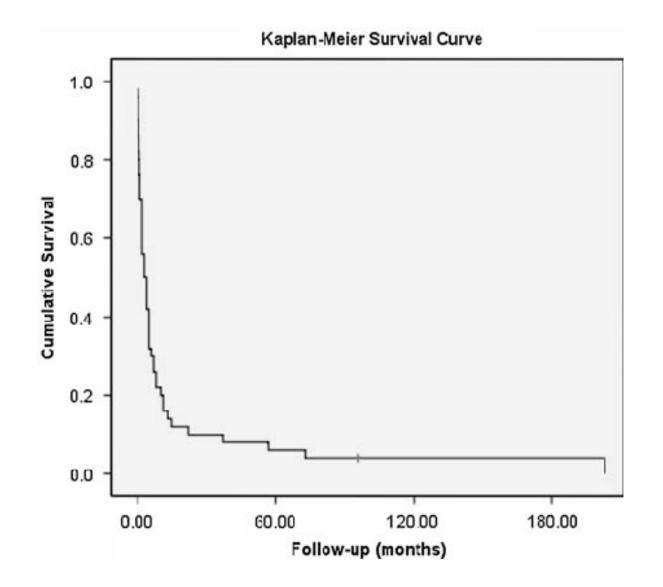
a Calculated using the proportion of responders with an observed DOR \geq 6 mo.

CAB, cabozantinib; DOR, duration of response; ORR, confirmed overall response rate by BICR; NE, not

estimable; NR, not reached; VAN, vandetanib.

Pralsetinib. Prescribing Information. Blueprint. 2020.

Anaplatic (Undifferentiated) Thyroid Cancer


All Considered Stage IV

Chemo and RadioTx resistant

• 5-year relative survival rate around 7%

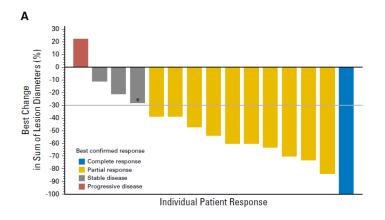
• 15-20% have BRAF mutation

Anaplastic (Undifferentiated) Thyroid Cancer

Anaplatic (Undifferentiated) Thyroid Cancer – BRAFi

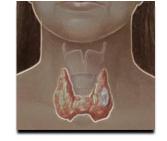
VOLUME 36 · NUMBER 1 · JANUARY 1, 2018

JOURNAL OF CLINICAL ONCOLOGY


RAPID COMMUNICATION

Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic *BRAF* V600–Mutant Anaplastic Thyroid Cancer

Vivek Subbiah, Robert J. Kreitman, Zev A. Wainberg, Jae Yong Cho, Jan H.M. Schellens, Jean Charles Soria, Patrick Y. Wen, Christoph Zielinski, Maria E. Cabanillas, Gladys Urbanowitz, Bijoyesh Mookerjee, Dazhe Wang, Fatima Rangwala, and Bhumsuk Keam


- ATC cohort of a 9-cohort trial (BRF117019) in patients with BRAF V600E mutation.
- 26 patient with ATC enrolled, median age was 70 years
- ORR in 23 evaluable patients 61%
- The duration of response was ≥ 6 months in 64% of responders.

*Granted Accelerated approval by FDA on may 4th 2018

Updated results Ann Oncol. 2022 Jan 10

- ORR 56%
- 12-month DOR 50%
- OS 14.5

Targeted therapy for thyroid cancer

• All patients with thyroid cancer should have NGS done when RAI refractory, metastatic, progressive disease is seen (STAT for ATC)

• Lenvantinib is effective for 1st line RAI-refractory DTC

• Cabozatinib for second line DTC

 BRAF inhibitors could be used for BRAF positive DTC, good tolerability but maybe less ORR

Targeted therapy for thyroid cancer

- Know the RET mutation status of your patient with MTC once metastatic!
- Selpercatinib and Praseltinib are very effective in RET+ MTC
- •
- Vandetanib and Cabozatinib are approved for refractory, progressive, unselected MTC
- Dabrafenib/Trametinib effective in BRAF-mutant Anaplastic TC

Targeted Head and Neck Cancer

- HRAS and PIK3CA mutations/amplifications are potential targets
- Tipifarnib is promising for HRAS mutant SCCHN, moreover if VAF >20%
- PIK3CA mutations continue to be targeted, both with monotherapy with irreversible PIK3CAi as in combination with FTI
- We might finally have a "targeted therapy" for SCCHN!