New Therapies for Squamous Cell and Small Cell Lung Carcinomas

Alberto Chiappori, MD Senior Member Department of Thoracic Oncology Moffitt Cancer Center

> 11th Annual Winter Cancer Symposium La Concha Renaissance Hotel San Juan, Puerto Rico March 4-6, 2022

Evolution of Therapy in Lung Cancer

NSCLC – Adenocarcinoma vs. Squamous Carcinoma

PD-L1 Expression Level

• Not 1 disease, but many

Cooper. Pathology. 2011;43:103. Langer. JCO. 2010;28:5311. Galon. Immunity. 2013;39:11.Pao. Lancet Oncol. 2011;12:175. Krigsfeld. AACR 2017. Abstr CT143. Hellmann. NEJM. 2018;378:2093.

Evolution of Therapy in Lung Cancer

Squamous Carcinoma – Molecular Targets

Li et al: J Clin Oncol 31:1039, 2013

- 20-30% of NSCLC
- Strongly associated with cigarette smoking
- Historically was treated like lung adenocarcinomas
- Despite advances in the personalized treatment of adenocarcinoma, effective targeted therapy for squamous cell has remained elusive
- Squamous cell lung cancer lacks druggable targets
- Most substantial impact in treatment has come from histology agnostic approaches

Squamous Cell Carcinoma

Treatment Evolution: Chemotherapy, moAbs, TKIs

Nivolumab

Phase III Squamous NSCLC – CM-017

Overall Survival

Progression-Free Survival

Presented By David Spigel at 2015 ASCO Annual Meeting

Single-Agent ICI for Advanced NSCLC

High PD-L1 Expression

Median OS,

Mo (95% CI)

CT (n = 98) 13.1 (7.4-16.5)

Median CS, Ma

(99% (1) 22.0 (15.4-24.9)

Median OL Me

(95%-00)

13.4 (1.7-18.2)

337 13.1 (\$1.0-54.0)

500 12.2 (10.4-14.2)

294

Ph.

338

Chemo-IO Combinations for Advanced NSCLC

Histology based

Trial	Comparison	Selection	ORR, %	PFS HR	OS HR
KEYNOTE-189 ^{1,2}	Pembro or placebo + carbo/pem	PD-L1 unselected; nonsq	48.3 vs 19.9	0.49	0.56
IMpower130 ³	Atezo + carbo/nab-pac vs CT alone	PD-L1 unselected; nonsq	49.2 vs 31.9	0.64	0.79
IMpower150 ^{4,5}	Atezo + carbo/pac + bev vs CT + bev	PD-L1 unselected; nonsq*	63.5 vs 48.0	0.62	0.80
KEYNOTE-407 ⁶⁻⁸	Pembro or placebo + carbo/pac or nab-pac	PD-L1 unselected sq	62.6 vs 38.8	0.59	0.71
IMpower131 ⁹	Atezo + carbo/nab-pac vs CT alone	PD-L1 unselected; sq		0.71	0.96

*WT population (excludes patients with *EGFR* or *ALK* alterations).

FDA approvals

- No EGFR or ALK alterations
- PD-L1 agnostic; OS benefit observed in all subgroups

Gandhi. NEJM. 2018;378:2078. 2. Rodríguez-Abreu. Ann Oncol. 2021;32:881. 3. West. Lancet Oncol. 2019;20:924. 4. Socinski. NEJM. 2018;378:2288. 5. Sociniski. AACR 2020. Abstr CT216. 6. Paz-Ares. NEJM. 2018;379:2040. 7. Paz-Ares. J Thorac Oncol. 2020;15:1657. 8. Robinson. ELCC 2021. Abstr 970.
 Presented By Robert Jotte at 2018 ASCO Annual Meeting

KEYNOTE-407:

Pembrolizumab + Chemotherapy

1. Paz-Ares. J Thorac Oncol. 2020;15:1657. 2. Gandhi. NEJM. 2018;378:2078.

IMpower 131

Atezolizumab + Chemotherapy

Atezolizumab 1200 mg IV q3w; carboplatin AUC 6 IV q3w; nab-paclitaxel 100 mg/m² IV qw; paclitaxel 200 mg/m² IV q3w.

Patients with a sensitising EGFR mutation or ALK translocation must have disease progression or intolerance to treatment with ≥ 1 approved targeted therapies. Testing for EGFR mutation or ALK translocation was not mandatory PD-L1 expression was evaluated using the VENTANA SP142 IHC assay.

INV-Assessed PFS in the ITT Population (Arm B vs Arm C)

Data cutoff: January 22, 2018. INV, investigator. * Stratified HR.

First Interim OS in the ITT Population (Arm B vs Arm C)

ICI Combinations

With and without Chemotherapy

CheckMate 227 First-line Nivolumab + Ipilimumab vs Chemotherapy Randomized, open-label, multipart phase III trial Stratified by histology (squamous vs nonsquamous) Up to 2 yr for immunotherapy Nivo 3 mg/kg Q2W + Ipi 1 mg/kg Q6W (n = 396) Dual primary endpoints Part 1a: for nivo + ipi vs CT istology-Based CT* Patients with PD-L1 21% stage IV or recurrent – PFS in high TMB (≥10) NSCLC without mut/Mb) population Nivo 240 mg Q2W known sensitizing (n = 396) — OS in PD-L1 ≥1% EGFR/ALK alterations, no previous systemic population treatment, Nivo 3 mg/kg Q2W + Ipi 1 mg/kg Q6W *Nonsquamous: pemetrexed + cisplatin or ECOG PS 0/1, (n = 187) carboplatin Q3W for s4 cycles with optional no untreated Part 1b: maintenance (pemetrexed after CT, or nivo + **CNS** metastases listology-Based CT* PD-L1 <1% pemetrexed after nivo + pemetrexed) (N = 1739) Squamous: gemcitabine + cisplatin or carboplatin Q3W for 54 cycles. Nivo 360 mg Q3W + Histology-Based CT* Paz-Ares. ASCO 2021. Abstr 9016. PD-L1 ≥50% CheckMate 227 Nivo + Ipi Nises (n=205) (n=214) (n=192) 4-Yr OS by PD-L1 Expression Median OS, mo. 21.2 18.1 14.0 HR for Nive + lpi vs CT: 0.66 (95% C): 0.52-0.84) PD-L1 ≥1% 43% 100-3620 8 Nivo + Ini Nivo CT (n = 396) (n = 396) (n = 397) 80 Median OS, mo 17.1 15.7 14.9 HR for Nivo + Ipi vs CT: 0.76 (95% CI: 0.65-0.90) 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 os (%) 33% PD-L1 <1% 29% 29% 21% Nivo + ipi Nivo + Ipi Nive + CT CT (n=187) (n=177) (n=186) Median OS, mo Nivo + CT 17.2 15.2 20 HR for Nive + Ipi vs CT: 0.64 (95% CI: 0.51-0.81) 贫 ст 8 4 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

10 33 36 39 42 45 48 51 54 57 60 63

9 12 15 18 21 24 2

Me

Paz-Ares. ASCO 2021. Abstr 9016

POSEIDON First-line Durvalumab ± Tremelimumab + Chemotherapy in NSCLC

. Open-label, multicenter, randomized phase III trial Stratified by PD-L1 (250% vs <50%), disease stage (IVA vs IVB), histology Durvalumab 1500 mg + Durvalumab 1500 mg Q4W + CT* Q3W (4 cycles) Pemetrexed Patients with stage IV NSCLC, no EGFR Durvalumab 1500 mg + or ALK alterations, Durvalumab 1500 mg Q4W + Tremelimumab 75 mg + ECOG PS 0/1, Tremelimumab 75 mg (Wk 16 only) + - Until PD CT* Q3W (4 cycles) treatment-naive for Pemetrexed¹ metastatic disease CT* Q3W (up to 6 cycles) (N = 1013) Pemetrexed¹

*Gem + carbo or cis (squamous), pernetrexed + carbo or cis (nonsquamous), or nah-pac + carboplatin (either histology). Maintenance pernetrexed only given to patients with nonsquamous NSCLC who received first-line pernetrexed.

- Primary endpoints: PFS by BICR, OS (D + CT vs CT)
- Key secondary endpoints: PFS by BICR, OS, OS in pts with bTMB ≥20 mut/Mb (D + T + CT vs CT)
- Other secondary endpoints: ORR, DoR, BOR by BICR; 12-mo PFS; HRQoL; safety/tolerability

Johnson, WCLC 2021. Abstr PL02.01.

POSEIDON

CheckMate 9LA

Nivolumab/Ipilimumab + Chemotherapy in Advanced NSCLC

DoR: 11.3 mo with nivolumab/ipilimumab + CT vs 5.6 mo with CT alone

Reck. ASCO 2021. Abstr 9000.

Immunotherapy Options for Advanced NSCLC

High PD-L1 Expression Across Histologies

Parameter	KEYNOTE-024: Pembrolizumab (n = 154) ¹	IMpower110: Atezolizumab (n = 107)²	EMpower-Lung 1: Cemiplimab (n = 283) ³	CheckMate 227: Nivo/Ipi (n = 205) ⁴	CheckMate 9LA: Nivo/Ipi + CT (n = 76) ⁵
PD-L1+ definition	TPS ≥50%*	TC3 or $IC3^{\dagger}$	TPS ≥50%*	TPS ≥50% [‡]	TPS ≥50% [‡]
ORR, %	46.1	40.2	39.0	45.4	50.0
Median DoR, mo	29.1	38.9	16.7	31.8	26.0
Median PFS, mo	7.7 (HR: 0.50)	8.2 (HR: 0.59)	8.2 (HR: 0.54)	6.7 (HR: 0.60)	7.5 (HR: 0.59)
Median OS, mo	26.3 (HR: 0.62)	20.2 (HR: 0.76)	NR (HR: 0.57)	21.2 (HR: 0.66)	18.9 (0.67)

*By PD-L1 22C3 IHC assay.

⁺Staining of ≥50% tumor cells (TC3) or ≥10% tumor-infiltrating immune cells (IC3) by PD-L1 SP142 IHC assay. ⁺PD-L1 28-8 IHC assay. 1. Reck. JCO. 2021;39:2339. 2. Jassem. J Thorac Oncol. 2021;[Epub]. 3. Sezer. Lancet. 2021;397:592. 4. Paz-Arez. ASCO 2021. Abstr 9016. 5. Reck. ASCO 2021. Abstr 9000.

Immunotherapy Options for Advanced NSCLC

PD-L1 Expression Negative Across Histologies

Outcome Across Histologies	CheckMate 227: Nivo/Ipi (n = 187) ¹	CheckMate 9LA: Nivo/Ipi + CT (n = 135) ²
ORR, %	27.3	31.1
Median DoR, mo	18.0	17.5
Median PFS, mo (HR)	5.1 (0.74)	5.8 (0.68)
Median OS, mo (HR)	17.2 (0.64)	17.7 (0.67)

OS for Nonsquamous	CheckMate 227: Nivo/Ipi ¹	CheckMate 9LA: Nivo/Ipi + CT ²	KEYNOTE-189: Pembro + CT ³
Median OS, mo (HR)	17.5 (0.69)	Not reported (0.75)	17.2 (0.51)
2-yr OS, %	25	38	39

OS for Squamous	CheckMate 227: Nivo/Ipi ¹	CheckMate 9LA: Nivo/Ipi + CT ²	KEYNOTE-407: Pembro + CT ⁴
Median OS, mo (HR)	15.9 (0.53)	Not reported (0.48)	15.0 (0.79)
2-Yr OS, %	22	33	30

1. Paz-Arez. ASCO 2021. Abstr 9016. 2. Reck. ASCO 2021. Abstr 9000.

3. Rodríguez-Abreu. Ann Oncol. 2021;32:881. 4. Paz-Ares. J Thorac Oncol. 2020;15:1657.

Evolution of Therapy in Lung Cancer

Small Cell Lung Cancer (SCLC)

PD-L1 Expression Level

• Not 1 disease, but many

Cooper. Pathology. 2011;43:103. Langer. JCO. 2010;28:5311. Galon. Immunity. 2013;39:11. Pao. Lancet Oncol. 2011;12:175. Krigsfeld. AACR 2017. Abstr CT143. Hellmann. NEJM. 2018;378:2093.

SCLC Pathology

Spectrum of Neuroendocrine Carcinomas (NEC)

- SCLC presents as malignant, epithelial, high-grade, neuroendocrine tumors^[1,2]
 - Markers of epithelial origin
 - Neuroendocrine and neural differentiation markers: synaptophysin, chromogranin A, CD56
- SCLC falls along spectrum of WHO classification of neuroendocrine lung tumors^[2,3]
- Potential therapeutic Implications

HPF View of SCLC Tumor^[1]

WHO Classification ^[2,3]	Mitoses/ 10 HPF	Necrosis	Cytologic Features
Typical carcinoid	< 2	None	
Atypical carcinoid	2-10	Generally punctate	
Small-cell carcinoma	> 10	Generally abundant	Small size, scant cytoplasm, finely granular chromatin, faint nucleoli
Large-cell neuroendocrine carcinoma	> 10	Generally abundant	Cytologic features opposite SCLC

1. Jackman DM, et al. Lancet. 2005;366:1385-1396. 2. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. 2015. 3. Rossi G, et al. Curr Opin Pulm Med. 2014;20:332-339.

SCLC Staging

The VALSG system classifies SCLC as either limited or extensive:²

- Or T3-4 owing to multiple lung nodules that are too extensive or have tumoural/nodal volume that is too large to be encompassed in a tolerable radiation plan4
- SCLC, small-cell lung cancer; TNM, tumour, node, metastasis; VALSG, Veterans Administration Lung Study Group
- Farago AF, et al. *Transl Lung Cancer Res* 2018;7:69–79; 2. Stahel RA, et al. *Lung Cancer* 1989;5:119–126; 3. National Cancer Institute. Small Cell Lung Cancer Treatment (PDQ®) Health Professional Version. Available at: https://www.cancer.gov/types/lung/hp/small-cell-lung-treatment-pdq (Accessed November 2020);
 National Comprehensive Cancer Network. Inc. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Small Cell Lung Cancer version 2.2020. Available at: https://www.nccn.org/professionals/physician_gls/pdf/sclc_blocks.pdf (Accessed November 2020)

SCLC Prognosis

Median survival time and 1-year, 2.5-year, and 5-year survival rate for each time-period³

	1986 to 1999 (N = 410)	2000 to 2008 (N = 593) ³	P-value ²
Median survival time, months (95% CI) I			
Overall	11.3 (10.5 – 12.7)	15.2 (13.6 – 16.6)	
By stage			
Limited	17.3 (15.7 – 20.6)	25.1 (21.1 - 28.8)	
Extensive	8.8 (7.9 – 9.8)	10.4 (9.2 – 11.6)	
Not classifiable	16.1 (10.0 - 38.2)	26.1 (20.0 - 32.9)	
1-year survival rate, %			
Overall	48.1	60.1	< 0.001
By stage			
Limited	72.6	82.0	0.022
Extensive	28.8	41.8	0.001
Not classifiable	65.0	81.8	0.172
2.5-year survival rate, %			
Overall	15.9	22.6	< 0.001
By stage			
Limited	31.1	40.7	0.009
Extensive	3.6	6.8	< 0.001
Not classifiable	30.0	44.6	0.162
5-year survival rate, %			
Overall	8.3	11.1	< 0.001
By stage			
Limited	17.1	19.9	0.032
Extensive	1.3	2.8	< 0.001
Not classifiable	15.0	26.1	0.178

Schabath MB. Lung Cancer. 2014 Oct;86(1):14-21

Extensive-Stage SCLC

First-line Chemotherapy

- SoC: cisplatin/carboplatin and etoposide for 4-6 cycles^[1]
 - Response rates: ~ 50% to 75%
 - 2-yr OS: < 5%
 - Median OS: 9-11 mos
- Cisplatin vs. Carboplatin
 - Meta-analysis (N = 663)^[2]
 - No differences in OS, PFS, ORR
- Irinotecan
 - superior to etoposide in Japan
 - Results not replicated in two US studies
- Pemetrexed
 - inferior to etoposide
- Inevitably, all patients progress: Recurrent Disease!

1. Bernhardt EB, et al. Cancer Treat Res. 2016;170:301-322. 2. Rossi A, et al. J Clin Oncol. 2012;30:1692-1698. 3. Noda K, et al. N Engl J Med. 2002;346:85-91. 4. Hanna N, et al. J Clin Oncol. 2006;24:2038-2043.

Historic Management of SCLC

- Improving systemic therapy
 - Alternating "non-cross resistant" regimens
 - Maintenance
 - Dose escalation
 - Dose-intense regimens
 - Hematopoietic GFS
 - Two vs. more drugs
 - Four vs. six (more) cycles
 - Cisplatin vs. Carboplatin
 - Combinations with new drugs

Extensive-Stage SCLC:

"First-line" Radiation – PCI, Consolidation XRT

- PCI is guideline-recommended for pts in CR or PR; however, its use remains controversial
 - 2007: reduction in risk of brain metastases, improvement in median OS and 1-yr OS^[1]
 - 2017: no improvement in OS with PCI vs observation^[2]

REMAINS CONTROVERSIAL

- Thoracic RT following PCI provides OS benefit at 2 yrs^[3]
 - 498 pts with response to first-line chemotherapy received PCI followed by randomization to TRT or no further therapy
 - 1-yr OS: 33% vs 28% (NS)
 - 2-yr: OS: 13% vs 3% (P = .001)

NOT WIDELY ADOPTED

1. Slotman B, et al. N Engl J Med. 2007;357:664-672. 2. Takahashi T, et al. Lancet Oncol. 2017;18:663-671. 3. Slotman BJ, et al. Lancet. 2015;385:36-42.

Genetic Alterations in SCLC

No Clear Targetable Oncogenic Driver

- Nearly all tumors have loss or inactivation of *TP53* and *RB1*^[1-4]
- MYC family member amplification is common^[1-4]
 - $MYC-L1 > N-MYC > C-MYC^{[1]}$
 - Recurrent *RFL-MYCL1* fusions have been described^[4]
- Additional alterations include:
 - FGFR1 amplification (6%)^[1]
 - SOX2 amplification (27%)^[4]
 - Recurrent point mutations in chromatin modifiers: CREBBP, EP300, MLL (~ 10-20%)^[1,2]
 - Inactivating mutations in NOTCH family genes (25%)^[2]
 - EZH2, regulator of chromatin remodeling implicated in acquired resistance^[3]

1. Peifer M, et al. Nat Genet. 2012;44:1104-1110. 2. George J, et al. Nature. 2015;524:47-53. 3. Sabari JK, et al. Nat Rev Clin Oncol. 2017;14:549-561. 4. Rudin CM, et al. Nat Genet. 2012;44:1111-1116.

Genetic Alterations in SCLC

No Clear Targetable Oncogenic Driver

Replication Stress, DDR and Genomic Instability

- Rapidly dividing tumor under immense replicative stress
- Dependence on robust DNA damage response (DDR) to maintain survival
- High level of genomic instability

Immunotherapy and SCLC

PD-L1 expression and TMB

Hellmann MD, et al. ASCO 2017. Abstract 8503. Peifer. Nat Genet. 2012;44:1104. Alexandrov. Nature. 2013;500:415.

SCLC Systemic Therapy

Current Areas of Advances

ES-SCLC Immunotherapy

New First Line Standard

First-Line Treatment: IMpower133 Study Design

Note: Atezolizumab, 1200 mg IV, Day 1; Carboplatin, AUC 5 mg/mL/min IV, Day 1; Etoposide, 100 mg/m 2 IV, Days 1–3. *Only patients with treated brain metastases were eligible. Horn L, et al. *N Engl J Med*. 2018;379:2220-2229; Reck M, et al. ESMO 2019. Presentation 1736O.

First-Line Treatment: CASPIAN Study Design

*EP consists of etoposide 80–100 mg/m² with either carboplatin AUC 5-6 or cisplatin 75-80 mg/m², 'Patients could receive an additional 2 cycles of EP (up to 6 cycles total) and PCI at the investigator's discretion; [‡]Patients received an additional dose of tremelimumab post-EP. Paz-Ares L, et al. *Lancet.* 2019;394:1929-1939; Paz-Ares L, et al. WCLC 2019. Presentation PL02.11.

ES-SCLC Chemo-Immunotherapy

New First Line Standard

First-Line Treatment: IMpower133

Updated Results

First-Line Treatment: CASPIAN Updated OS

Paz-Ares L, et al. ASCO[®] 2020. Presentation 9002.

Reck M, et al. ESMO 2019. Presentation 1736O.

Maintenance Ipi-Nivo

CheckMate 451

Management of Relapsed SCLC

Second-Line Topotecan

- Single-arm phase II study of secondline IV topotecan (N = 92)^[1]
 - Overall median OS: 5.4 mos

 Randomized phase III trial of BSC ± oral topotecan in pts with relapsed SCLC (N = 141)^[2]

1. Ardizzoni A, et al. J Clin Oncol. 1997;15:2090-2096. 2. O'Brien ME, et al. J Clin Oncol. 2006;24:5441-5447.

CheckMate 331

Nivolumab vs Topotecan/Amrubicin in Relapsed SCLC

Lurbinectidin (Phase II Basket Trial)

Lurbinectedin^[a,b]

- Synthetic analog of trabectedin used to treat soft-tissue sarcoma
- Selective inhibitor of oncogenic transcription
 - Covalently binds CG-rich sequences mainly located near promoters; inhibits RNA Pol II associated to DNA and leads to its specific degradation
- May also influence the TM via processes, including suppression of immune cells (eg, TAMs)

Antitumor	Activity
-----------	----------

	Overall (n=105)
ORR, %	35.2
(95% CI)	(26.2-45.2)
Best response	n (%)
- PR (confirmed)	37 (35.2) #
- SD	35 (33.3)
- PD	28 (26.7)
- NE* (non- evaluable)	5 (4.8)
Disease Control Rate,%	68.6
(95% CI)	(58.8-77.3)

5 of 8 patients who failed prior immunotherapy had confirmed response

* Treatment discontinuation without any tumor assessment performed

	Resistant CTFI< 90 days (n=45)	Sensitive CTFI ≥ 90 days (n=60)
ORR, %	22.2	45.0
(95% CI)	(11.2-37.1)	(32.1-58.4)
Best response (confirmed)	n (%)	n (%)
- PR	10 (22.2) "	27 (45.0) #
- SD	13 (28.9)	22 (36.7)
- PD	18 (40.0)	10 (16.7)
- NE* (non- evaluable)	4 (8.9)	1 (1.7)
Disease Control Rate), %	51.1	81.7
(95% CI)	(35.8-66.3)	(69.6-90.5)

3 of 5 patients with resistant disease and 2 of 3 patients with sensitive disease who failed prior immunotherapy had confirmed response

* Treatment discontinuation without any tumor assessment performed

PRESENTED BY: Dr. Luis Paz Ares

Phase III ATLANTIS Trial

OS and PFS

	Number of	of patients a	at risk									
1.Lurbinectedin	00x 307	247	188	138	91	62	43	25	14	10	9	5
2.Control	306	244	168	111	77	62	42	24	15	8	6	4

	Lurbinectedin+DOX (N=307)	Control (N=306)	Parameter	p-value
Events, n (%)	268 (87.3)	254 (83.0)		
Censored, n (%)	39 (12.7)	52 (17.0)		
Median OS (95% CI), months	8.6 (7.1, 9.4)	7.6 (6.6, 8.2)	HR : 0.967 (0.815, 1.148)	0.7032
Mean OS, months	10.6	9.9		

IASLC WCLC 2021 Plenary

Cumulative probability 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (months) (p-value=0.0437) Number of patients at risk

n/D0X 307

198 134 72 52

2.Control 306 196 119	60 32 11 7	3 3 1	1 1	
	Lurbinectedin+DOX (N=307)	Control (N=306)	Parameter	p-value
Events, n (%)	244 (79.5)	234 (76.5)		
Censored, n (%)	63 (20.5)	72 (23.5)		
Median PFS (95% CI), months	4.0 (2.8, 4.2)	4.0 (3.0, 4.1)	HR: 0.831 (0.693, 0.996)	0.0437
Mean PFS, months	5.9	4.6		
PFS (%) at 6 months (95% CI)	31.3 (25.8, 36.9)	24.4 (19.1, 30.1)		0.0851
PFS (%) at 12 months (95% CI)	10.8 (7.1, 15.3)	4.4 (2.1, 8.1)		0.0129

21

12 11 9

6 5

Trilaciclib

Randomized Trials – Pooled data

Trilaciclib, a First-in-Class Myelopreservation Agent, Proactively Reduces Risks Associated with Myelosuppressive Chemotherapy

Study	Patient Population	Treatment Schedule		Primary Endpoint			<i>P</i> < .0001		
		Trilaciclib 240 mg/m ² IV QD prior to chemotherapy on days 1-3 of each 21-day E/P/A		Severe (G4) neutropenia		11.4			52.9
G1T28-05	Newly diagnosed	IV cycle for up to four cycles, followed by atezolizumab monotherapy (without trilaciclib) Q21D	ndary oints: ophils	Febrile neutropenia	3.3 9.2	P = .089			
(10103041311)	(1151-1118) E3-30E0	Placebo IV QD prior to chemotherapy on days 1-3 of each 21-day E/P/A IV cycle for up to four cycles, followed by atezolizumab monotherapy (without placebo) Q21D	Seco Endp Neutr	G-CSF administration			28.5 P < .00	01	56.3
		Trilaciclib 240 mg/m ² IV QD prior to chemotherapy on days 1-3	≥ö	G3/4 anemia		20.3	9 31.9	= .028	
G1T28-02	Newly diagnosed	of each 21-day E/P IV cycle	condai Ipoint RBCs	RBC transfusion on/after week 5		14.6	P = .025		
(NCT02499770) ² (first-line) ES-SCLC	Placebo IV QD prior to chemotherapy on days 1-3 of each 21-day E/P IV cycle	Sec	ESA administration	3.3	<i>P</i> = .025 11.8				
	Deviation	Trilaciclib 240 mg/m ² IV QD prior to topotecan 1.5 mg/m ² IV QD on days 1-5	dary ints: ets	G3/4 thrombocytopenia		19.5	36.	<i>P</i> = .0067	
G1T28-03 (NCT02514447) ³	Previously treated (second-/third-line) ES-SCLC	of each 21-day cycle Placebo IV QD prior to topotecan 1.5 mg/m² IV QD on days 1-5 of each 21-day cycle	Second Endpoi Platel	Platelet transfusion	8.1 9.2 0 10	P=.96	 Trilaciclib pr Placebo pric 30 	ior to chemotherap or to chemotherapy 40 50	y (n = 123) (n = 119) 60

1. https://clinicaltrials.gov/ct2/show/NCT03041311. 2. https://clinicaltrials.gov/ct2/show/NCT02499770. 3. https://clinicaltrials.gov/ct2/show/NCT02514447.

1. Weiss J et al. Clin Lung Cancer. 2021 Mar 26 [Epub ahead of print].

Veliparib +/- Temozolomide: ORR and OS in Pts With SLFN11 Expression

Significantly better ORR
 with veliparib (*P* = .016)

- No significant difference in 4-mo PFS, mPFS, or mOS between arms
- Greater incidence of hematologic toxicities with veliparib combination
- SLFN11, a DDR protein, is aberrantly expressed in SCLC
- Veliparib: Trend toward better OS with higher tumor SLFN11 expression

Pietanza MC, et al. ASCO 2016. Abstract 8512.

ATR inhibitor (M6620) – Study Design and ORR

Cancer Cell. 2021;39(4):566-579.

Alisertib + Paclitaxel vs Paclitaxel - PFS (ITT) and by c-Myc Expression

DLL3 - NOTCH Ligand

Antibody Drug Conjugate (ADC): Rova-T

AMG 757

Half-life Extended DLL3-Directed Bispecific Antibody (BiTE)

Figure 2. AMG 757 Is a Half-life Extended BiTE® Immuno-oncology Therapy

C_H, heavy chain constant domain; C_L, light chain constant domain; HLE BiTE[®], half-life extended bispecific T-cell engager; CD, cluster of differentiation; DLL3, delta-like ligand 3; Fc, crystallizable fragment.

AMG 757 in Relapsed SCLC

Antitumor Activity

PR**, unconfirmed PR; SD^, initial PR not confirmed on subsequent scan; NE, PD in post-baseline scan and went off study without confirmation scan. *Step dosing. [†]Includes those treated with \geq 1 dose of AMG 757 and with follow-up \geq 8 wks. [‡]At target dose of 30 mg.

Response per mRECIST v1.1	Patients (n = 51 ⁺)
Confirmed PR, n (%)	7 (14)
Confirmed PR by target dose, n/N (%) • 0.3 mg • 1.0 mg • 3.0 mg • 10.0 mg	1/12 (8) 1/8 (13) 3/9 (33) 2/10 (20)
Unconfirmed PR, n (%)	1 (2) [‡]
SD, n (%)	11 (22)
DCR, %	37

Antitumor activity observed with AMG 757 during dose exploration

Molecular subtypes of SCLC

Potential Therapeutic Implications

Figure 3. Diagram of the relative abundance, MYC status, and NE character of the four molecular subtypes of SCLC, each identified by their key transcriptional regulator. These subtypes may exhibit distinct targetable vulnerabilities, which are represented in the table beneath the pie chart. Proportions of each subtype are as follows: ASCL1 (0.70, 95% CI: 0.60-0.79), NEUROD1 (0.11, 95% CI: 0.06-0.20), YAP1 (0.02, 95% CI: 0.01-0.09), POU2F3 (0.16, 95% CI: 0.10-0.26). ASCL1, achaete-scute homolog 1; AURKA/B, Aurora kinase A/B; BCL2, B-cell lymphoma 2; CREBBP, CREB-binding protein; CHK1, checkpoint kinase 1; DLL3, delta-like ligand 3; IMPDH, inosine-5' monophosphate dehydrogenase; IGF-R1, insulin-like growth factor 1 receptor; IO, immuno-oncology; LSD1, lysine-specific histone demethylase 1; NE, neuroendocrine; NEUROD1, neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; YAP1, yes-associated protein 1.

Data on molecular heterogeneity of SCLC holds promise for biomarker driven personalized therapeutic approaches

Preclinical studies suggest distinct therapeutic vulnerabilities in the novel marker-defined subtypes of SCLC

Clinical studies

- Retrospective
- Not prospective yet

Molecular subtypes of SCLC

Potential Biomarkers Implications

- Four subtypes with unique molecular features and therapeutic vulnerabilities
 - Differential expression of ASCL1, NEUROD1, and POU2F3 defines SCLC subtypes
 - An inflamed, mesenchymal, subtype (SCLC-I) has low expression of ASCL1, NEUROD1, and POU2F3
- SCLC-I experiences greatest benefit from the addition of anti-PD-L1 to chemotherapy
- Subtypes with specific genomic alterations
 - All subtypes with similar mutational landscape (including TP53 and RB1)
- Phenotype (genomic, transcriptomic, proteomic)
 - SCLC-A: highly NE, epithelial, TTF-1+
 - SCLC-N: highly NE, largely TTF-1-
 - SCLC-P: non-NE, low EMT
 - SCLC-I: non-NE, high EMT
- Intratumoral subtype switching accompanies acquired resistance to platinum chemotherapy

Gay et al. Cancer Cell 2021; 39:346-360

Notch Signaling in SCLC

Determinant of response to ICI

Notch signaling and efficacy of PD-1/PD-L1 blockade in relapsed small cell lung cancer

- Immunogenomic profiling of relapsed SCLC tumors treated with Immune Checkpoint Blockade (ICB).
- Tumors deriving clinical benefit from ICB exhibited cytotoxic T-cell infiltration, high expression of antigen processing and presentation machinery (APM) genes, and low neuroendocrine (NE) differentiation.
- Notch signaling, (correlates positively with low NE differentiation), most significantly predicts clinical benefit to ICB.
- Activation of Notch signaling (overexpression of NOTCH1 intracellular domain) in a (high) NE human SCLC cell line induces transition to a low NE phenotype
 - marked by increased expression/upregulation of APM genes
- Mechanistic link between Notch activation, low NE differentiation and increased intrinsic tumor immunity.

Roper, et al. Nat Commun. 2021 Jun 23;12(1):3880.

Table 2 Notch signaling gene set is the most significant predictor of clinical benefit to immune checkpoint blockade across relapsed SCLC cohorts.

Variable	Estimatea	t value ^a	p value ^a	FDRb
Hallmark Notch signaling	0.25	4.31	9.8 × 10 ⁻⁴	5.9 × 10-4
Immune signature	0.13	2.06	0.047	0.14
NE score	-0.07	-1.82	0.08	0.16
MYC expression	-0.04	-0.83	0.41	0.62
EZH2 expression	-0.03	-0.56	0.58	0.62

Outcome dependent variable = clinical benefit to immune checkpoint blockade. ^aEstimates, *t* and *p* values calculated using multivariable logistic regression. ^bFalse discovery rate was calculated using the Benjamini–Hochberg procedure.

Table 1 Association between transcriptional subtypes and clinical benefit to immune checkpoint blockade across relapsed SCLC cohorts.

Transcriptional subtype	Clinical benefit (# of tumors)	No clinical benefit (# of tumors)	p value ^a	
ASCL1	2	22	0.11	
NEUROD1	3	9	0.40	
POU2F3	1	0	0.17	
YAP1	2	8	0.78	