

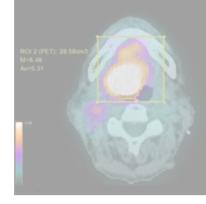
PROGRAM DIRECTORS: William Caceres, MD Luis E. Raez, MD, FACP, FCCP Edgardo S. Santos Castillero, MD, FACP

MARCH 4–6, 2022 La Concha Renaissance Hotel San Juan, Puerto Rico

Targeted Therapy & Immunotherapy in HNSCC

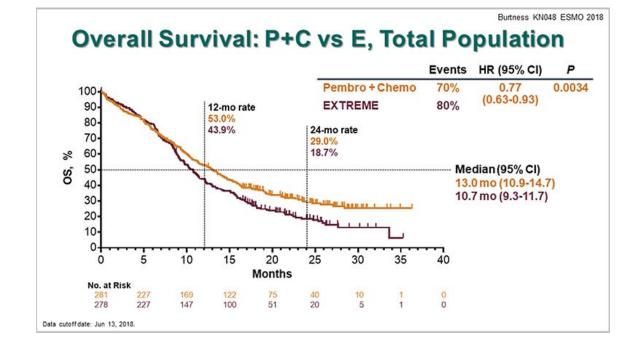
Cesar A. Perez, M.D. Director of Drug Development Sarah Cannon Research Institute Florida Cancer Specialists Associate Professor of Medicine University of Central Florida

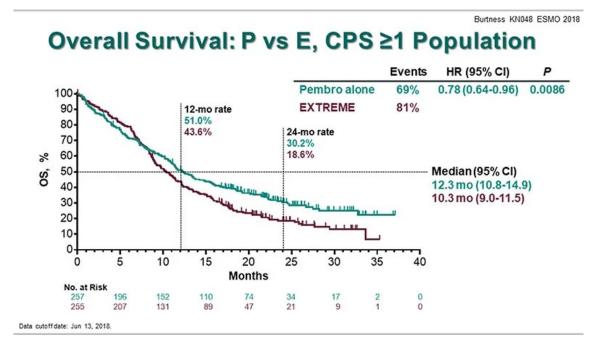
Edgardo S. Santos, M.D., FACPMedical Director of Research ServicesFlorida Precision Oncology/a Division of Genesis CareClinical Affiliate Associate Professor of MedicineCharles E. Schmidt College of MedicineFlorida Atlantic University



A Division of Genesis Care

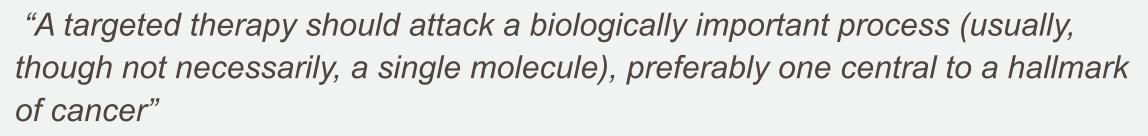
Head and Neck Cancer




- About 4% of all cancers in the United States.
 - Estimated 66,630 people (48,740 men and 17,890 women) will develop head and neck cancer.
- Aprox. 14,620 deaths (10,640 men and 3,980 women) from head and neck a year in US.

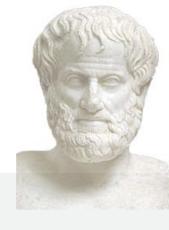
Head and Neck Cancer

A decade of advances, so much more to do...

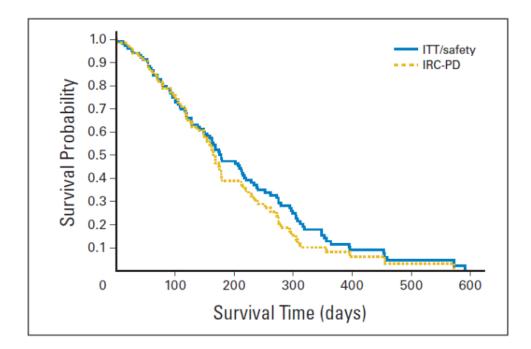


Targeted Therapy in Head & Neck Cancer

Targeted Therapy???


Sledge 2005:

→ Is **Methotrexate** a targeted therapy, since it only inhibits dihydrofolate reductase?


 \rightarrow Are Aromatase inhibitors targeted therapies?

Peters GJ. From 'Targeted Therapy' to Targeted Therapy. Anticancer Res. 2019 Jul;39(7):3341-3345

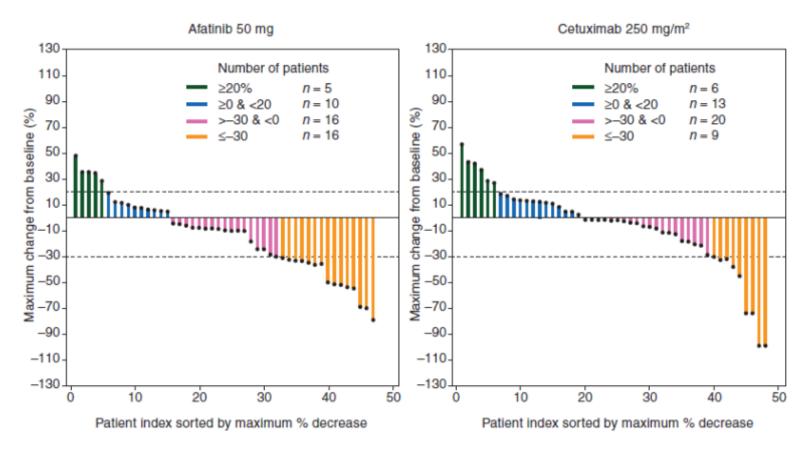
Head and Neck Cancer

A decade of advances, so much more to do...

Cetuximab in platinum-refractory SCCHN. • ORR 13%

J Clin Oncol 2007 25:2171-2177.

- Cetuximab is only "targeted therapy" currently approved for FDA
- Low single agent ORR and DOR



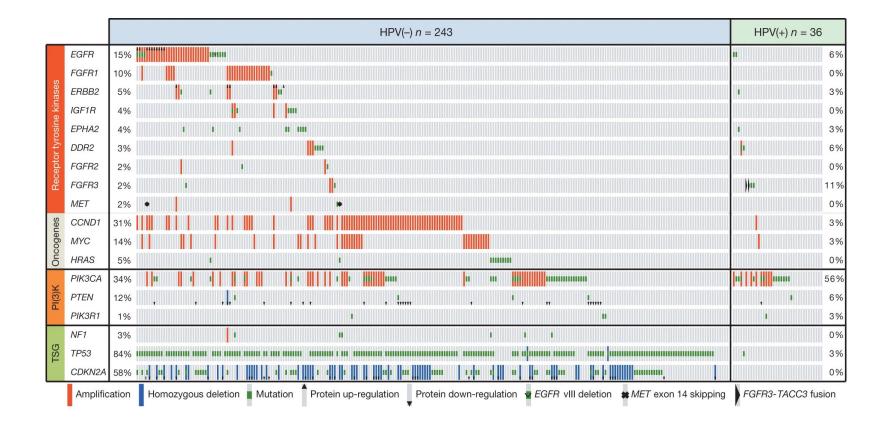
Afatinib vs cetuximab in unselected R/M SCCHN

ORR 16.1% with Afat vs 6.5% with Cetux. (Investigator reported)

DRAEs leading to Tx discontinuation

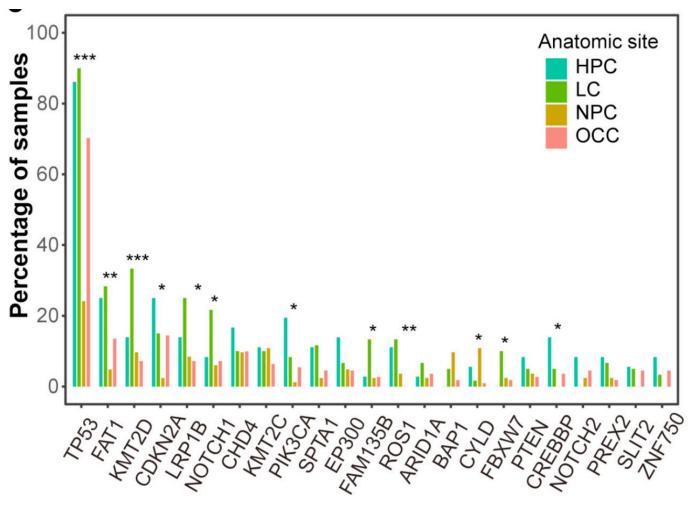
23% with Afat vs 5% with Cetux

Annals of Oncology 25: 1813–1820, 2014



Head and Neck Cancer So what are the targets?

- Primarly of tumors from the oral cavity (62%)
- Only 13% HPV-related
- Most male and heavy smokers


Results:

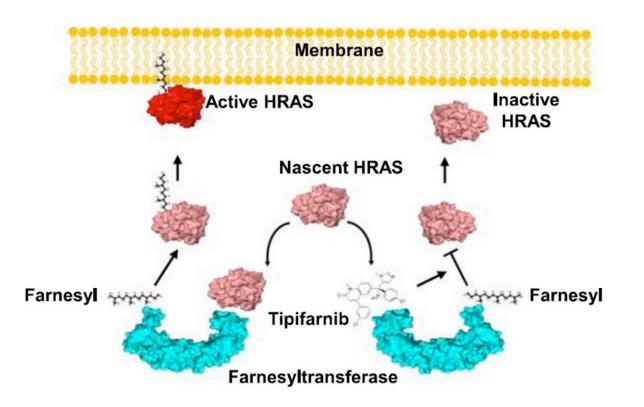
- TP53 (84%)
- CDKN2A (58%)
- CCDN1 (31%)
- HRAS 5%
- PIK3CA (34%)

The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature* **517**, 576–582 (2015).

Genomic Landscape of Head and Neck Squamous Cell Carcinoma Across Different Anatomic Sites in Chinese Population

Front Genet 2021 Jun 14;12:680699

HRAS and Farnesyltransferase inhibitors in SCCHN

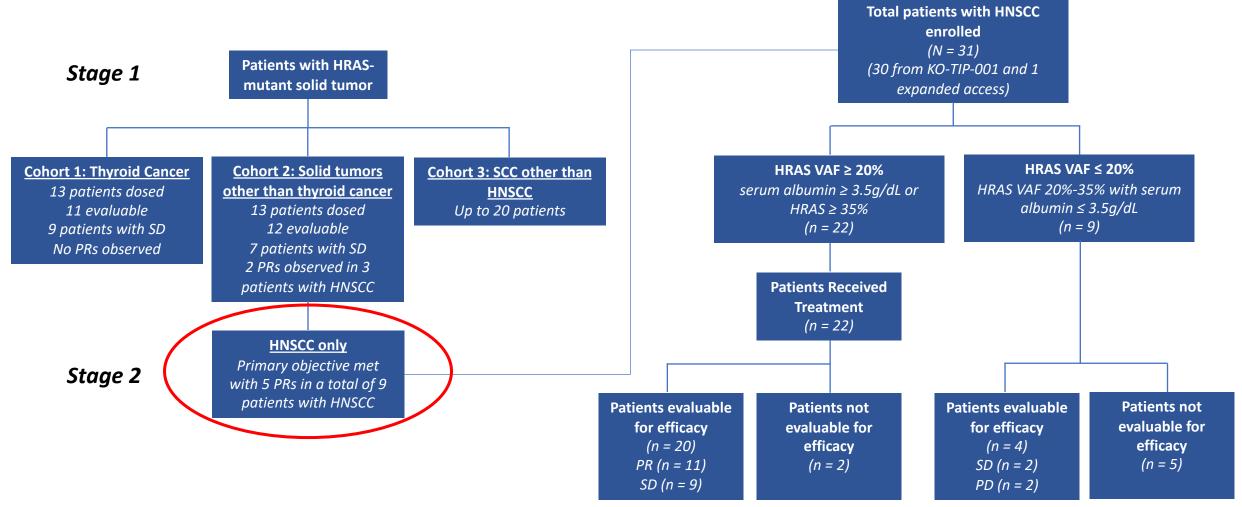

RAS proteins require posttranslational modifications to associate with intracellular membranes

HRAS is only dependent on farnesylation for its membrane localization

Overral 3-5% of SCCHN have HRAS mutation

Tipifarnib is a farnesyltransferase inhibitor (FTI)

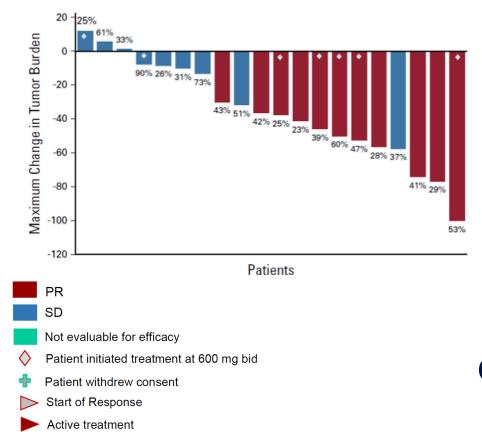
Mol Cancer Ther 2020 Sep;19(9):1784-1796.



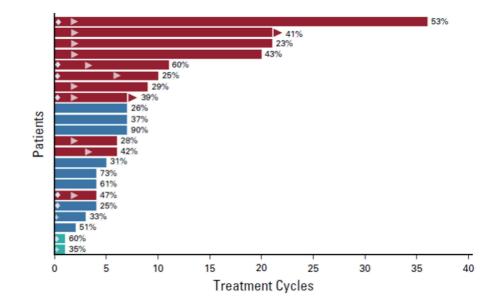
Tipifarnib in HRAS+ SCCHN

Cohort Expansion

Cohort expanded to further characterize safety and tolerability in indication(s) of interest



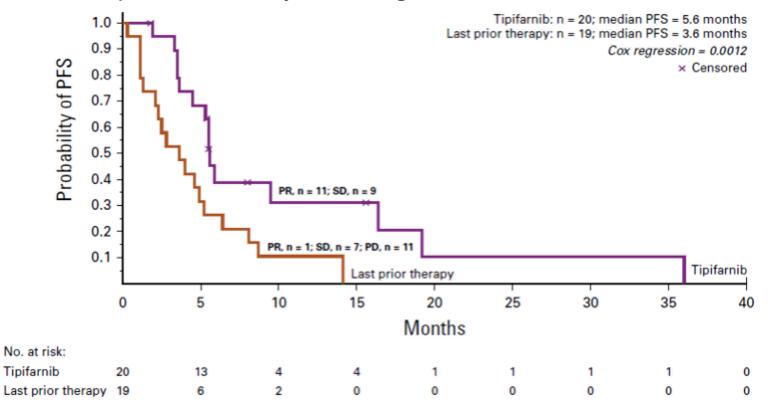
VAF, variant allele frequency


¹Ho AL, Brana I, Haddad R, et al. Tipifarnib in Head and Neck Squamous Cell Carcinoma With *HRAS* Mutations. *J Clin Oncol*. 2021;39(17):1856-1864. doi:10.1200/JCO.20.02903.

Tipifarnib in Head and Neck Squamous Cell Carcinoma With HRAS Mutations

Maximal change in tumor size

Duration of response to treatment



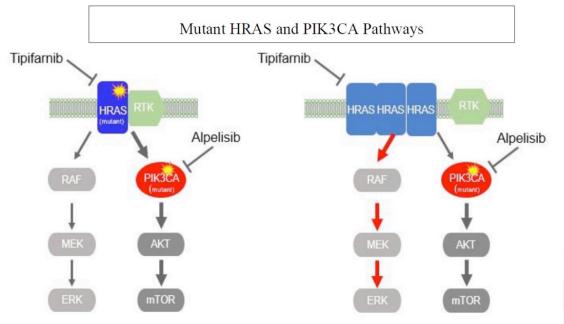
ORR in pts VAF > 20: 55%

% Numbers at the end of bars represent VAF for each patient

Tipifarnib in Head and Neck Squamous Cell Carcinoma With HRAS Mutations - PFS

Kaplan-Meier analysis of Progression-Free Survival

Ho AL, et al. Tipifarnib in Head and Neck Squamous Cell Carcinoma With *HRAS* Mutations. *J Clin Oncol*. 2021;39(17):1856-1864.


Tipifarnib in Head and Neck Squamous Cell Carcinoma- HRAS Mutation. Toxicity

n = 30

Blood and lymphatic system disorders	15 (50%)	Metabolism and nutrition disorders 9 (30%)
• Anemia	11 (37%)	• Hypercalcemia 3 (10%)
 Neutropenia 	3 (10%)	• Hypokalemia 3 (10%)
 Lymphopenia 	4 (13%)	 Hypophosphatemia 3 (10%)
 Leukopenia 	3 (10%)	
Respiratory, thoracic, and mediastinal disorders	9 (30%)	Gastrointestinal disorders 6 (20%)
Pneumonia	3 (10%)	• Nausea 3 (10%)

Ho AL, et al. Tipifarnib in Head and Neck Squamous Cell Carcinoma With *HRAS* Mutations. *J Clin Oncol*. 2021;39(17):1856-1864.

A Phase 1/2 of tipifarnib and alpelisib in patients with HRAS overexpressing and/or PIK3CA-mutated and/or -amplified recurrent/metastatic head and neck squamous cell carcinoma (the Kurrent trial)

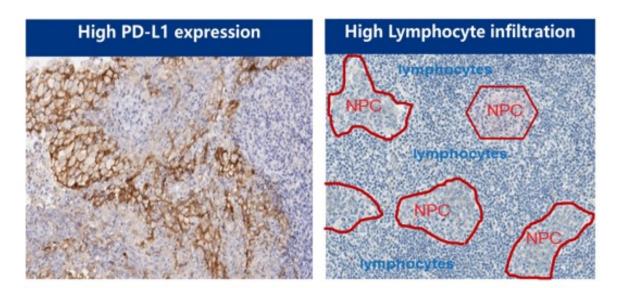
- Two cohorts:
 - PIK3CA mutant
 - HRAS overexpressed

PIK3CA cohort ongoing

Simultaneous Dosing: 28 Day Cycle				
Week 1	Week 2	Week 3	Week 4	
Tipifarnib	Rest	Tipifarnib	Rest	
Alpelisib	Alpelisib	Alpelisib	Alpelisib	

Immunotherapy in Head & Neck Cancer → NPC → SCC

CAPTAIN-1ST: CAMRELIZUMAB VERSUS PLACEBO IN COMBINATION WITH GEMCITABINE AND CISPLATIN AS FIRST-LINE TREATMENT FOR RECURRENT OR METASTATIC NASOPHARYNGEAL CARCINOMA: A MULTICENTER, RANDOMIZED, DOUBLE-BLIND, PHASE 3 TRIAL

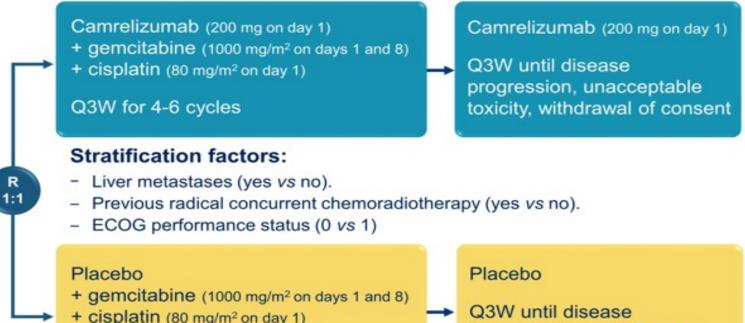

Li Zhang, MD

Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.

June 7, 2021

Background

- Standard first-line treatment for recurrent or metastatic NPC (R/M-NPC) is platinum-based chemotherapy.
 - Gemcitabine + cisplatin (GP): ORR, 64%; median PFS, 7.0 months; median OS, 29.1 months.³
- Endemic NPC tumors are characterized by high PD-L1 expression and intensive infiltration of non-malignant lymphocytes.⁴
- First-line camrelizumab plus GP showed encouraging anticancer activity (ORR, 91%; 12-month PFS rate, 61.4%).⁵
- Objective: This multicenter, randomized, double-blind, phase 3 study was conducted to investigate camrelizumab plus GP vs placebo plus GP for R/M-NPC in the first-line setting.

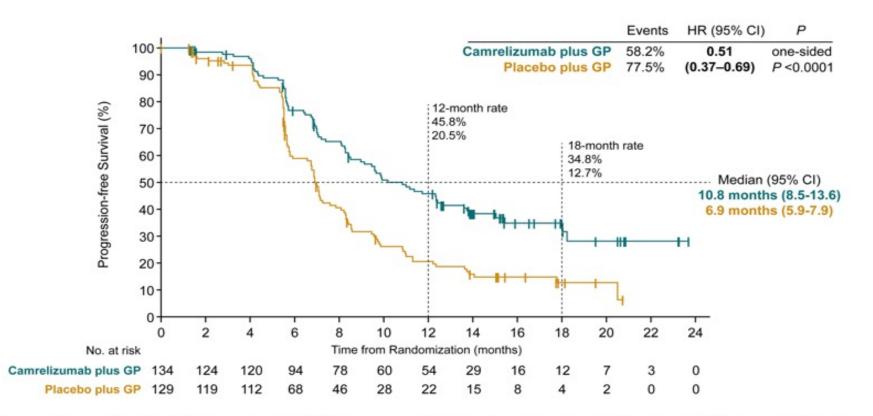


Zhang L, et al. Lancet 2016; 388:1883-92; 4. Larbcharoensub N, et al. Am J Clin Oncol 2018; 41:1204-10; 5. Fang W, et al. Lancet Oncol 2018; 19:1338-50.
 Abbreviations: ORR, objective response rate; PFS, progression-free survival; OS, overall survival.

Study Design (NCT03707509)

- Aged 18-75 years;
- Pathologically confirmed R/M-NPC;
- Had not received previous systemic therapy for R/M-NPC (disease progression at least 6 months after induction, adjuvant, or concurrent chemoradiotherapy were eligible);
- ECOG performance status of 0 or 1;
- At least one measurable lesion according to RECIST version 1.1;

Q3W for 4-6 cycles


Q3W until disease progression, unacceptable toxicity, withdrawal of consent

- Primary endpoint: independent review committee (IRC)-assessed PFS
- Secondary endpoints: investigator-assessed PFS, ORR, DCR, DoR, OS and safety

ECOG, Eastern Cooperative Oncology Group; RECIST, Response Evaluation Criteria in Solid Tumors; DCR, disease control rate; DoR, duration of response

PFS per IRC

Camrelizumab plus GP improved PFS compared with placebo plus GP, with a 49% lower risk of disease progression or death.

Data cutoff on Dec 31, 2020

Response Summary

	Camrelizumab plus GP (N = 134)	Placebo plus GP (N = 129)
Best overall response, n (%)		
CR	7 (5.2)	2 (1.6)
PR	111 (82.8)	102 (79.1)
SD	11 (8.2)	18 (14.0)
PD	2 (1.5)	4 (3.1)
NA	3 (2.2)	3 (2.3)
ORR		
% (95% CI)	88.1 (81.3–93.0)	80.6 (72.7-87.1)
Treatment difference, % (95% CI)	7.4 (-1.3–16.2); <i>P</i> = 0.1063	
DCR		
% (95% CI)	96.3 (91.5–98.8)	94.6 (89.1–97.8)
Treatment difference, % (95% CI)	1.7 (-3.4–6.8); <i>P</i> = 0.5469	
DoR		
Median (95% CI), months	9.9 (7.7–12.5)	5.7 (5.2-6.9)
Hazard ratio (95% CI)	0.48 (0.34–0.68); <i>P</i> < 0.0001	

> Camrelizumab plus GP showed superior DoR than placebo plus GP.

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; NA, not assessable.

Data cutoff on Dec 31, 2020. Assessed by IRC.

Overall Survival

	Camrelizumab plus GP (N = 134)	Placebo plus GP (N = 129)
Events, n (%)	28 (20.9)	38 (29.5)
Median (95% CI), months	NR (NR-NR)	22.6 (19.2-NR)
Hazard ratio (95% CI)	0.67 (0.41-1.11); <i>P</i> = 0.0576	
12-month rate, % (95% CI)	85.0 (77.7-90.1)	83.4 (75.6-88.8)
24-month rate, % (95% CI)	70.0 (53.9-81.4)	NR (NR-NR)

Although the OS was immature in both groups, a trend of survival benefit was observed in the camrelizumab plus GP group.

NR, not reached.

Data cutoff on Dec 31, 2020.

2021 ASCO ANNUAL MEETING

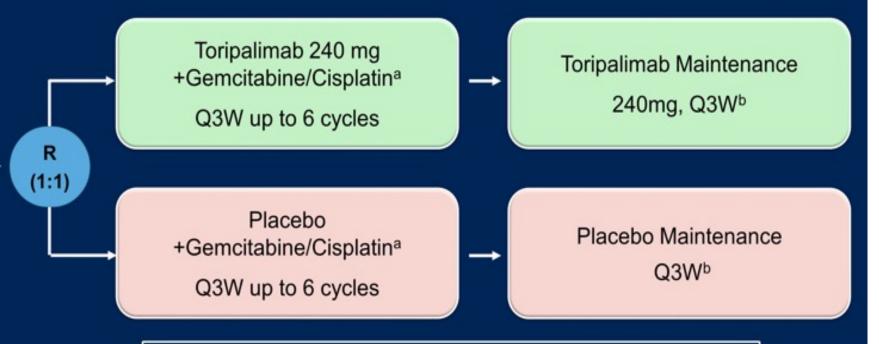
JUPITER-02:

The randomized, double-blind, phase 3 study of toripalimab or placebo plus cisplatin and gemcitabine as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (NPC)

Rui-Hua Xu^{1, *}, Hai-Qiang Mai², Qiu-Yan Chen² Dongping Chen³, Chaosu Hu⁴, Kunyu Yang⁵, Jiyu Wen⁶, Jingao Li⁷, Ying-Rui Shi⁸, Feng Jin⁹, Ruilian Xu¹⁰, Jianji Pan¹¹, Shenhong Qu¹², Ping Li¹³, Chunhong Hu¹⁴, Yi-Chun Liu¹⁵, Yi Jiang¹⁶, Xia He¹⁷, Hung-Ming Wang¹⁸ and Wan-Teck Lim¹⁹, Coherus Biosciences and Shanghai Junshi Biosciences.

¹Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; ² Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center; ³Affiliated Cancer Hospital & Institute of Guangzhou Medical University. Guangzhou, China; ⁴Fudan University Cancer Center, Shanghai, China; ⁶Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, China; ⁶Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; ⁷Jiangxi Cancer Hospital, Nanchang, China; ⁸Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China; ⁹Guizhou Cancer Hospital of Guizhou Medical University, Guiyang China; ¹⁰Shenzhen People's Hospital, Shenzhen, China; ¹¹Fujian Provincial Cancer Hospital, Fuzhou, China; ¹²The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China; ¹³West China Hospital of Sichuan University, Changsha, China; ¹⁵Taichung Veterans General Hospital, Taichung, Taiwan; ¹⁶Cancer Hospital of Shantou University Medical College, Shantou, China; ¹⁷Jiangsu Cancer Hospital, Nanjing, China; ¹⁸Chang Gung Memorial Hospital, Taoyuan, Taiwan; ¹⁹National Cancer Centre, Singapore City, Singapore

JUPITER-02: Study Design (ClinicalTrials.gov identifier: NCT03581786)

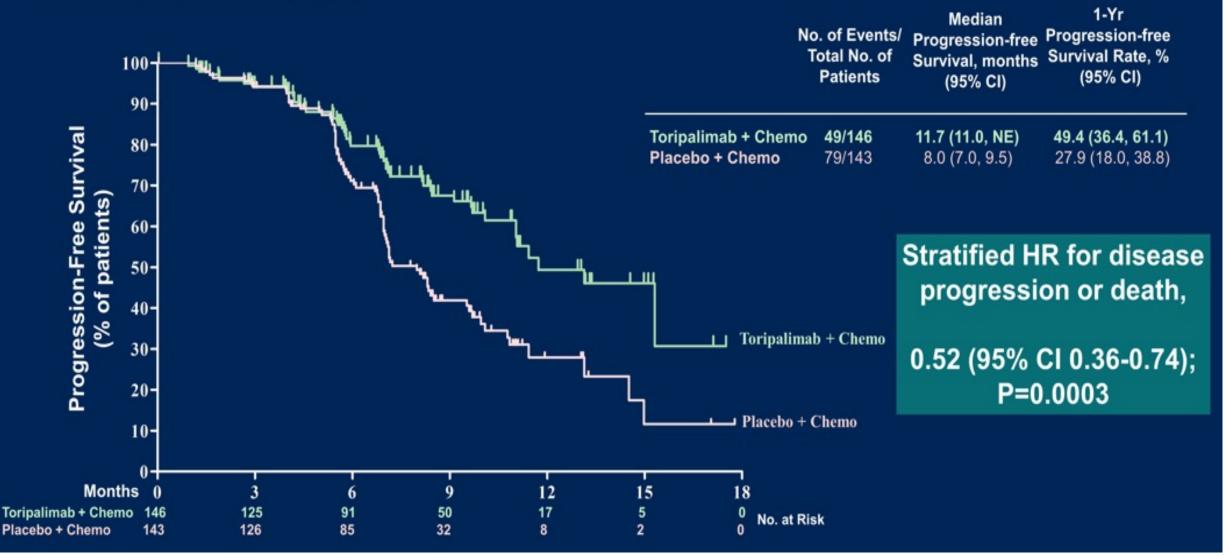

Key Eligibility Criteria

- Primary metastatic NPC or recurrent NPC after curativeintent therapy
- Treatment naïve for recurrent or metastatic (R/M) disease
- •ECOG 0-1
- •18-75 yrs
- Measurable disease per RECIST v1.1

Stratification Factors

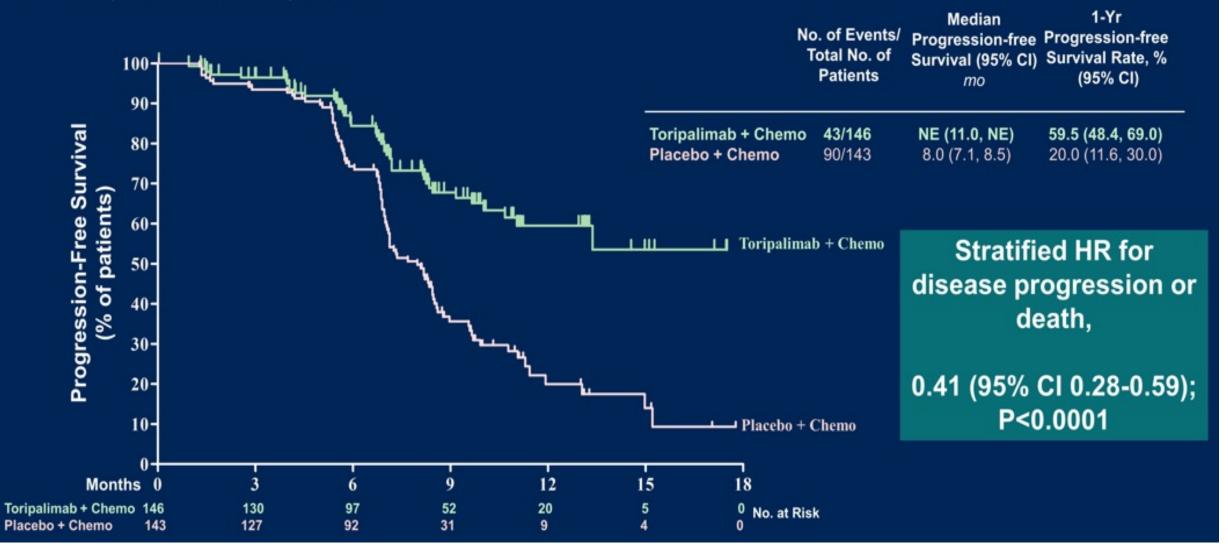
 Recurrent vs Primary metastatic

•ECOG PS 0 vs 1

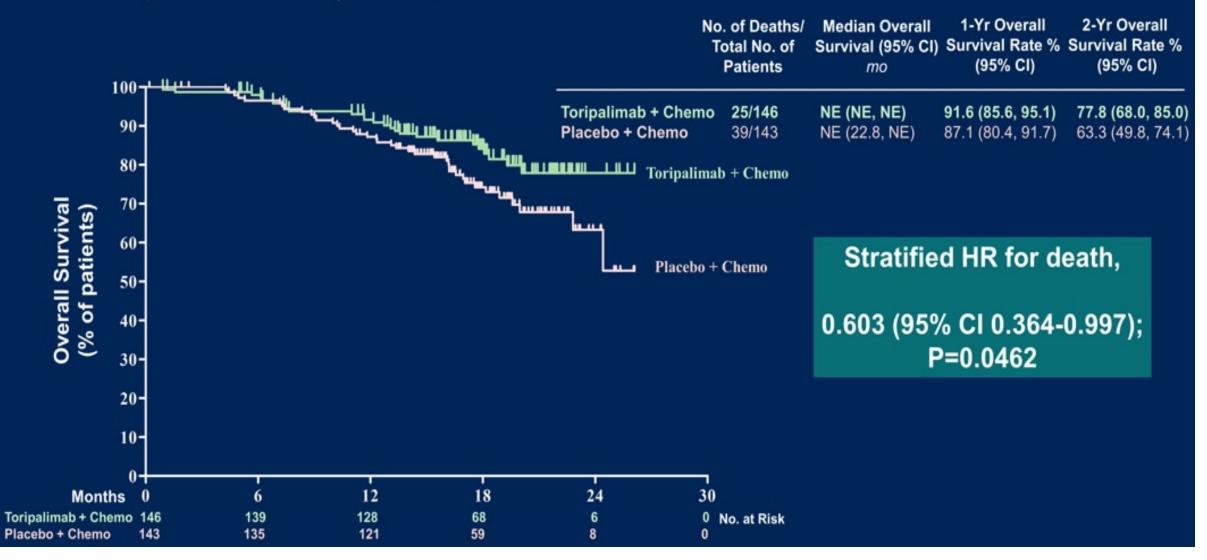

- <u>Primary endpoint</u>: PFS by a blinded independent review committee (BIRC) per RECIST v1.1
- <u>Secondary endpoints</u>: PFS by the Investigator, ORR, DoR, DCR, OS, and PFS & OS 1-year and 2-year rates

"Gemcitabine 1000mg/m² D1,8 +Cisplatin 80mg/m² D1

^b Until progressive disease, excessive toxicity, withdrawal of consent or investigator's judgement or a maximum treatment of 2 years.


Progression-Free Survival by BIRC per RECIST v1.1

Interim Analysis Data cut-off Date: May 30, 2020


Progression-Free Survival by PI per RECIST v1.1

Interim Analysis Data cut-off Date: May 30, 2020

Overall Survival Update

Nine-month OS update after PFS Interim Analysis on Feb 18, 2021

Conclusions

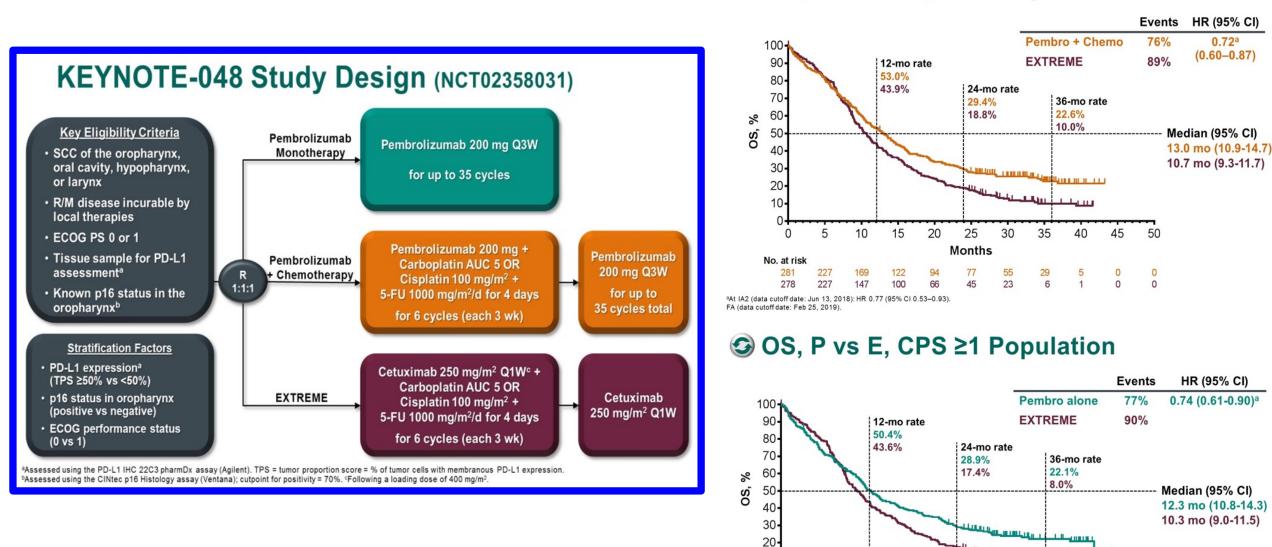
- The addition of toripalimab to GP as a first-line treatment for R/M NPC patients provided superior PFS, OS, ORR and DoR than GP alone.
 - Significant improvement in PFS: mPFS 11.7 vs. 8.0 months, HR=0.52 (95%CI: 0.36-0.74), p=0.0003
 - Although mOS was not mature in either arm, a 40% reduction in risk of death was observed in the toripalimab arm over the placebo arm.
 - A second interim OS analysis will be performed at pre-specified final PFS analysis followed by the final OS analysis
- · No new safety signals were identified with toripalimab added to GP.
- Toripalimab plus GP represents a new standard of care as 1st line therapy for patients with R/M NPC.

Squamous Cell Carcinoma of the Head & Neck (SCCHN):

□ Novel IO Agents:

- CTLA-4 (Ipi + Nivo vs EXTREME)
- HPV+ malignancies (TGF-β/PD-L1 + HPV16 vaccine +NHS/IL-12)
- LAG3 + Pembro (all HNCa)

Neoadjuvant Immunotherapy (Pembro)



Nivolumab + ipilimumab vs EXTREME regimen as first-line treatment for recurrent/metastatic squamous cell carcinoma of the head and neck: final results of CheckMate 651

<u>Athanassios Argiris</u>,^{1,2} Kevin Harrington,³ Makoto Tahara,⁴ Robert L. Ferris,⁵ Maura Gillison,⁶ Jerome Fayette,⁷ Amaury Daste,⁸ Piotr Koralewski,⁹ Ricard Mesia,¹⁰ Nabil F. Saba,¹¹ Milena Mak,¹² Miguel Angel Álvarez Avitia,¹³ Alexander Guminski,¹⁴ Urs Müller-Richter,¹⁵ Naomi Kiyota,¹⁶ Mustimbo Roberts,¹⁷ Tariq Aziz Khan,¹⁷ Karen Miller-Moslin,¹⁷ Li Wei,¹⁷ Robert Haddad¹⁸

¹Hygeia Hospital, Marousi, Greece; ²Thomas Jefferson University, Philadelphia, PA, USA; ³Royal Marsden Hospital/The Institute of Cancer Research, London, UK; ⁴National Cancer Center Hospital East, Kashiwa, Japan; ⁵UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ⁶The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁷Centre Léon Bérard, Lyon, France; ⁸Hôpital Saint-André, Bordeaux, France; ⁹Wojewodzki Szpital Specjalistyczny im. Ludwika Rydygiera w Krakowie, Krakow, Poland; ¹⁰Catalan Institut of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; ¹¹Winship Cancer Institute of Emory University, Atlanta, GA, USA; ¹²Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; ¹³Instituto Nacional De Cancerología, Mexico City, Mexico; ¹⁴Royal North Shore Hospital, Sydney, Australia; ¹⁵University Hospital Würzburg, Bavarian Cancer Research Center (BZKF), Würzburg, Germany; ¹⁶Kobe University Hospital, Kobe, Japan; ¹⁷Bristol Myers Squibb, Princeton, NJ, USA; ¹⁸Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

S OS, P+C vs E, Total Population

aAt IA2 (data cutoff date: Jun 13, 2018): HR 0.78 (95% CI 0.64-0.96). FA (data cutoff date: Feb 25, 2019).

Months

No. at risk

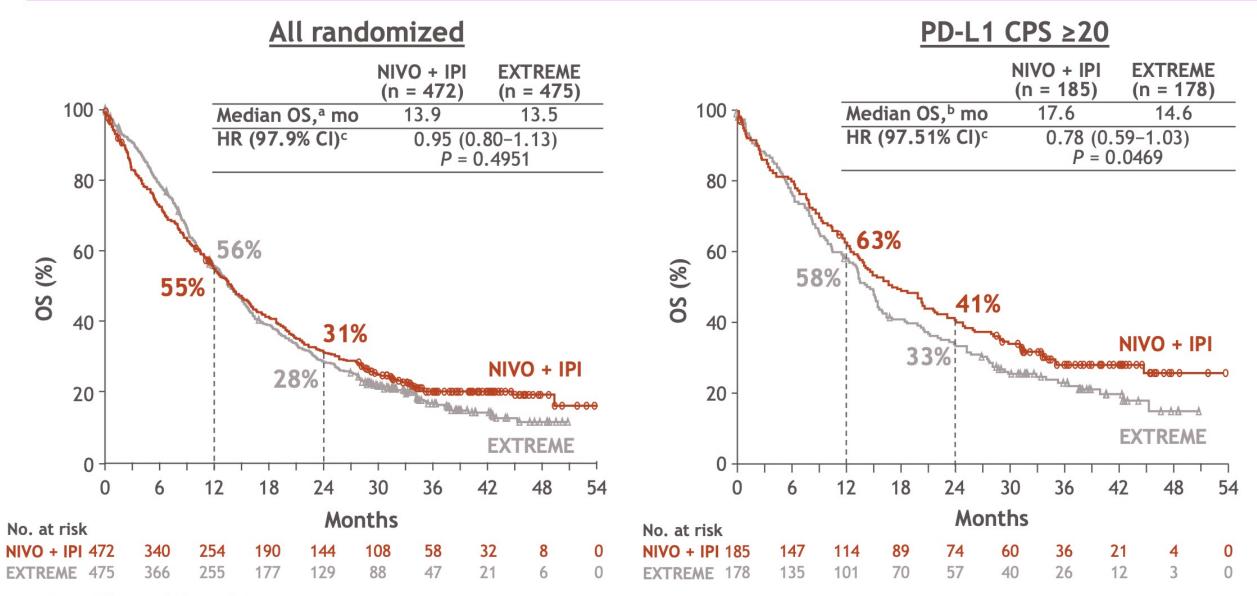
CheckMate 651 study design

Key eligibility criteria

- R/M SCCHN (oral cavity, oropharynx, hypopharynx, or larynx)
- No prior treatment for R/M disease
- Prior chemotherapy for LAD permitted if progression-free ≥6 months post-treatment

• ECOG PS 0-1

Stratified by: p16 expression (OPC p16+ vs p16-/non-OPC) Tumor PD-L1^a status (<1% vs ≥1%) Prior chemotherapy (yes vs no)



Primary endpoints (independently tested)Secondary endpoints• OS in all randomized• OS in PD-L1 CPS ≥1d• OS in PD-L1 CPSa ≥20• ORR/DOR by BICR (all randomized, PD-L1 CPS ≥20	
---	--

NCT02741570. Database lock: June 21, 2021; minimum / median follow-up: 27.3 months / 39.1 months.

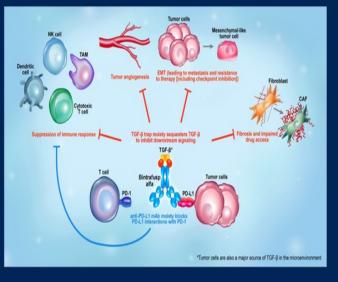
^aDetermined by the PD-L1 IHC 28-8 pharmDx assay (Dako); ^bInitial cetuximab dose of 400 mg/m² once only, then cetuximab 250 mg/m² Q1W plus cisplatin 100 mg/m² or carboplatin AUC 5 on day 1, plus fluorouracil 1000 mg/m²/d for 4 days for 6 cycles (Q3W); ^cCetuximab 250 mg/m² Q1W; Q2W maintenance was allowed per local prescribing information; ^dPart of statistical testing hierarchy. BICR, blinded independent central review; CPS, combined positive score; DOR, duration of response; LAD, locally advanced disease; OPC, oropharyngeal cancer; ORR, objective response rate.

Primary endpoints: OS with NIVO + IPI vs EXTREME

Minimum follow-up: 27.3 months.

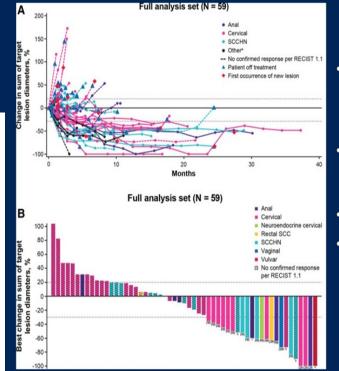
^a95% CI = 12.1-15.8 (NIVO + IPI) and 12.6-15.2 (EXTREME); ^b95% CI = 13.8-22.0 (NIVO + IPI) and 12.3-16.0 (EXTREME); ^cConfidence intervals are adjusted based on the final α levels for each primary endpoint. CPS, combined positive score.

2021 ASCO ANNUAL MEETING


PHASE II EVALUATION OF THE TRIPLE COMBINATION OF PDS0101, M9241, AND BINTRAFUSP ALFA IN PATIENTS WITH HPV 16 POSITIVE MALIGNANCIES

<u>Julius Strauss</u>¹, Charalampos S. Floudas², Houssein Abdul Sater², Michell Manu³, Elizabeth Lamping², Deneise C Francis², Lisa M Cordes², Jenn Marte², Renee N Donahue¹, Caroline Jochems¹, Jason Redman², Ravi A Madan², Marijo Bilusic², Fatima Karzai², Scott Norberg², Christian S. Hinrichs², Lauren V Wood⁴, Frank K Bedu-Addo⁴, Jeffrey Schlom¹, James L Gulley²

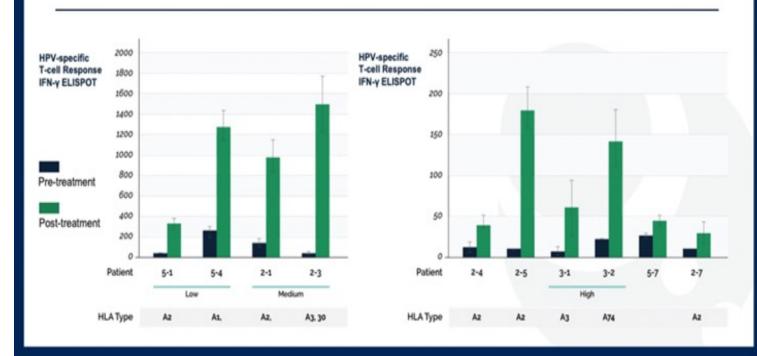
¹Laboratory of Tumor Immunology and Biology, NCI; ²Genitourinary Malignancies Branch, NCI; ³Leidos Biomedical Research, Inc.; ⁴PDS Biotechnology, Princeton, NJ


Abstract No. 2501. Presented at the 2021 ASCO Annual Meeting, June 4–8, 2021; Virtual. Presentation No.

Bintrafusp alfa: a TGF-β and PD-L1 Inhibitor

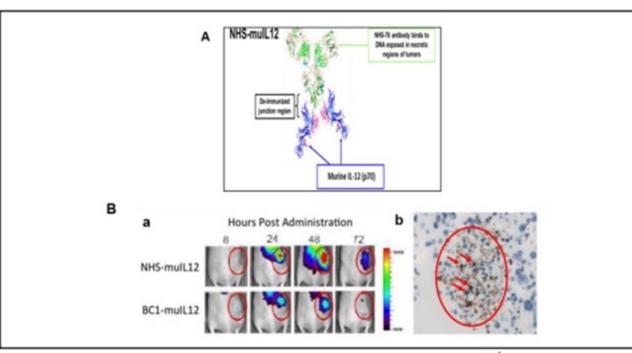
- Bintrafusp alfa is an innovative first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor (a TGF-β "trap") fused to a human IgG1 mAb blocking PD-L1
- In a phase 1 study, bintrafusp alfa was well tolerated and produced durable responses in several solid tumor types ¹⁻³

1.Strauss J, et al. J Immunother Cancer. 2020 Dec;8(2):e001395.


- 79 patients with advanced HPV-associated cancers (59 checkpoint naïve and 20 checkpoint refractory) received bintrafusp alfa IV every 2 weeks until disease progression or intolerance¹
- Side effect profile similar to standard anti-PD(L)1 inhibitors with the addition of keratoacanthomas & mucosal bleeding
- ORR was 30.5% in checkpoint naïve disease
- ORR was 10% in checkpoint refractory disease

1.Strauss J. et al. Clin Cancer Res. 2018;24:1287–95; 2. Paz-Ares L. et al. J Clin Oncol. 2018;36(Suppl):Abstract 9017; 3. Cho BC. et al. Ann Oncol. 2018;29(Suppl):Abstract 10480.

PDS0101


(PDS0101) Phase 1 Clinical Trial: Confirmation of unique potential to induce <u>rapid</u> and strong CD4 and CD8 T-cell responses against a viral target (HPV16) <u>14 days post-vaccination</u>

- Micellar multi-peptide based therapeutic vaccine targeting HPV 16 E6/ E7 (HPV 16 is the genotype responsible for majority of HPVrelated cancers worldwide)
- PDS0101 contain the cationic lipid R-DOTAP which upregulates type I IFNs and promotes antigen cross-presentation
- In a phase I trial patients with cervical intraepithelial neoplasia developed strong HPV-specific CD4+ and CD8+ T cell immune responses¹
- Was well tolerated with mild transient site reactions and minimal systemic toxicity

M9241 (NHSIL12)

NHS-IL12 Immunocytokine. (A) NHS76 is a fully human 2nd generation TNT antibody bound to 2 murine IL-12 (p70) molecules. (B) a: Specific tumor targeting of transplanted lung carcinoma by the MAb NHS-IL12(mu). Control MAb BC1-IL12(mu). b: NHS-IL12 tumor targeting of nuclear DNA histones.

- Tumor targeting IL12 immunocytokine
- Composed of two IL12 heterodimers fused to NHS76 antibody which binds to histones on free DNA fragments found in areas of tumor necrosis
- In phase 1 trial in patients with advanced solid tumors the most frequently observed AEs included flu like symptoms and asymptomatic lab abnormalities (e.g. mild cytopenias and liver enzyme elevations)¹
- M9241 treatment resulted in increased T cell infiltration in the TME

1.Strauss J, et al. Clin Cancer Res. 2019 Jan 1;25(1):99-109

Study Design

- Patients with advanced HPV-related cancers received the combination of bintrafusp alfa at 1200 mg flat dose i.v. q 2wks, M9241 at 16.8 mcg/kg s.c. q 4 wks and PDS0101 given as two separate 0.5 ml s.c. injections q 4 wks [NCT04287868]
- Dose reductions of M9241 to 8 mcg/kg were allowed as well as skipped doses of agent(s) for toxicities
- HPV genotyping was done with PCR based assays (BD Onclarity or Molecular MD) if testing not already done

Treatment until confirmed progression, unacceptable toxicity, or any criteria for withdrawal; treatment past progression was allowed

Results

	All patient s N=25	HPV 16+ N=18	HPV 16+ CPI Naïve N=6	HPV 16+ CPI Refractory N=12	•
BOR, n (%) Complete response (CR) Partial response (PR)	2 (8) 8 (32)	2 (11.1) 8 (44.4)	1 (16.7) 4 (66.7)	1 (8.3) 4 (33.3)	
ORR (CR+PR), n (%)	10 (40)	10 (55.6)	5 (83.3)	5 (41.7)	
Disease Reduction, n (%)	13 (52)	12 (66.7)	5 (83.3)	7 (58.3)	
Ongoing response, n/n (%)	8/10 (80)	8/10 (80%)	4/5 (80%)	4/5 (80%)	
Overall Survival, n/n (%)*	20/25 (80)	16/18 (88.9)	6/6 (100)	10/12 (83.3)	

* Median 8 months of follow up

Patient Outcomes

- ORR 55.6% (tumor reduction 66.7%) in HPV 16+ disease
- ORR 83.3% in CPI <u>naïve</u> HPV 16+ disease

ORR 41.7% (tumor reduction 58.3%) in CPI *refractory* HPV 16+ disease

After a median 8 months of follow up:

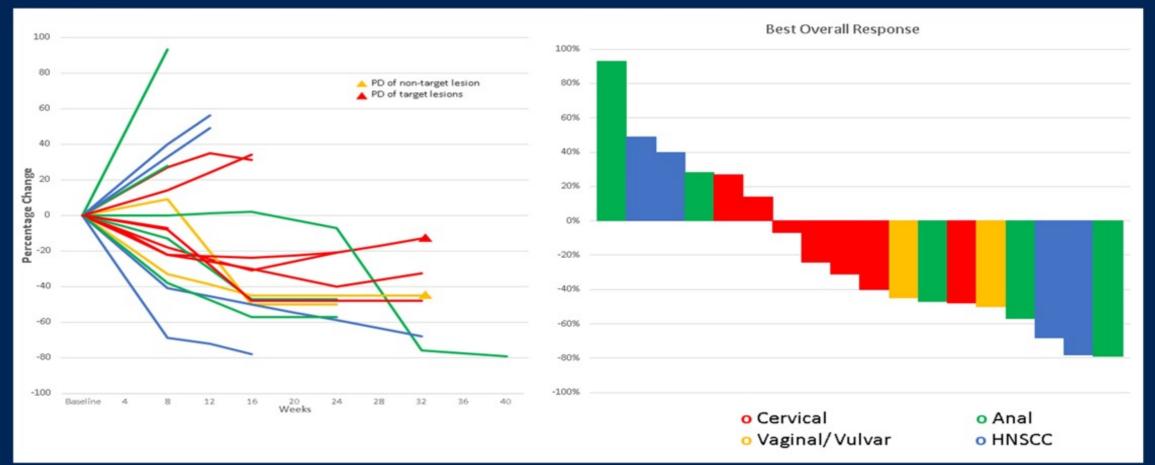
- 80% of responses are ongoing
- 6/6 (100%) pts with HPV 16+ CPI naïve disease remain alive (historical median OS is 7-11 mo)¹⁻⁶
- 10/12 (83.3%) pts with HPV 16+ CPI refractory disease remain alive (historical median OS is 3-4 mo)⁷

1. Bauml J, et al. J Clin Oncol 2017;35:1542–49; 2. Ott PA, et al. Ann Oncol. 2017;28:1036–41; 3. Mehra R, et al. Br J Cancer. 2018;119:153–59; 4. Ferris RL, et al. N Engl J Med. 2016;375:1856–67; 5. Morris VK, et al. Lancet Oncol. 2017;18:446–53; 6. Chung HC, et al. J Clin Oncol 2019;37: 1470-8; 7. Strauss J, et al. J Immunother Cancer. 2020 Dec;8(2):e001395

11

Results

	All patients N=25		
	Grade ≥2		
Treatment-related adverse events (TRAEs)	23 (92)		
TRAEs leading to discontinuation of ≥ 1 drug(s)	5 (20)		
Treatment-related serious AEs	7 (28)		
TRAEs in ≥5% of patients			
Anemia	12 (48)		
Lymphocyte decrease	7 (28)		
Flu like symptoms	6 (24)		
Injection site reactions	5 (20)		
Hematuria	4 (16)		
AST/ ALT/ Alk phos elevation	4 (16)		
Keratoacanthomas	4 (16)		
Leukocyte decrease	3 (12)		
Maculopapular rash	3 (12)		
Pruritis	3 (12)		
Nausea/ vomiting	3 (12)		
Mucositis	3 (12)		
Hypothyroidism	3 (12)		
Peripheral motor neuropathy	2 (8)		
Fatigue	2 (8)		
1. Hemophagocytic lymphohistiocytosis			


Safety summary

- Grade 3 TRAEs occurred in 10 (40%) patients
 - anemia due to hematuria (n=4), AST/ALT elevation (n=2); flu like symptoms (n=1), nausea/ vomiting (n=1), leukopenia (n=1), lymphopenia (n=2), HLH¹ (n=1)
- All four patients with grade 3 hematuria had cervical ca with prior pelvic RT + brachytherapy
- One patient with transient grade 3 leukopenia and lymphopenia also had transient grade 4 neutropenia
- 4 patients who originally had grade 3 toxicities with the triple combo including M9241 at 16.8 mcg/kg tolerated the triple combo with M9241 at 8 mcg/kg w/o any further grade ≥3 toxicities
- No treatment-related deaths occurred

. Hemophagocytic lymphohistiocytosis

Results

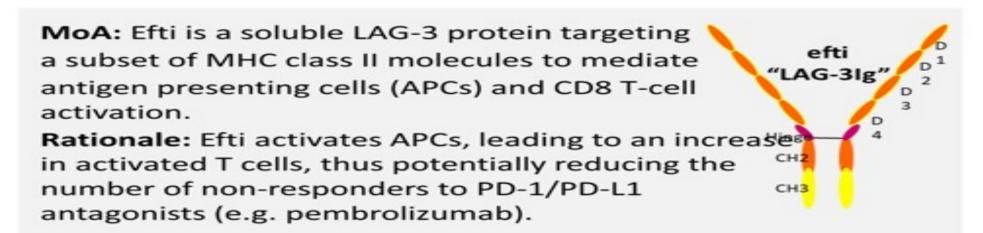
• Responses in HPV 16+ disease occurred irrespective of tumor type

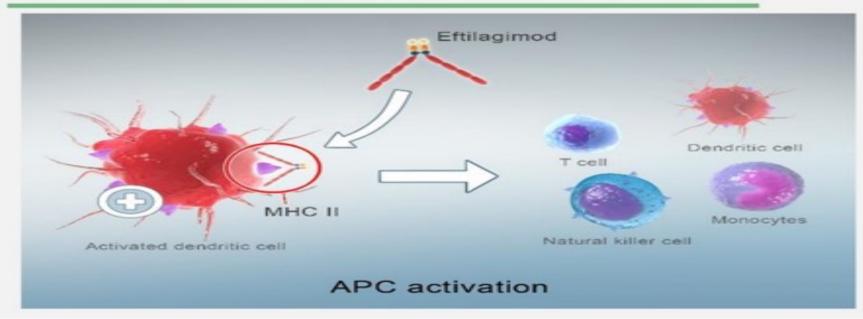
Conclusions

- Triple combination of PDS0101, M9241 and bintrafusp alfa appears to have a manageable safety profile along with early evidence of notable clinical activity for pts with advanced HPV 16+ malignancies
- Clinical activity noted irrespective of tumor type or CPI status
- ORR was 55.6% (tumor reduction 66.7%) in all pts with advanced HPV 16+ disease
- ORR was 83.3% in patients with CPI <u>naive</u> HPV 16+ disease
- ORR was 41.7% (tumor reduction 58.3%) in patients with CPI *refractory* HPV 16+ disease
- After a median 8 months of follow up:
 - 80% of responses are ongoing
 - 6/6 (100%) pts with HPV 16+ CPI naïve disease remain alive
 - 10/12 (83.3%) pts with HPV 16+ CPI refractory disease remain alive
- Accrual is ongoing to the triple combination [NCT04287868]

Results from a Phase II study of eftilagimod alpha (soluble LAG-3 protein) and pembrolizumab in patients with PD-L1 unselected metastatic 2nd line squamous head and neck carcinoma

Presenting Author: Dr. Irene Braña


Authors: I Braña¹, M Forster², A Lopez Pousa ³, B Doger⁴, P Roxburgh⁵, P Bajaj⁶, D Urueta⁷, V Quiroga⁸, M Krebs⁹, C Muelller¹⁰, F Triebel¹¹


Affiliates: ¹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ² UCL Cancer Institute / University College London Hospitals NHS Foundation, London, UK; ³ Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; ⁴ START Madrid- Fundación Jiménez Diaz, Madrid, Spain; ⁵Institute of Cancer Sciences, University of Glasgow and The Beatson West of Scotland Cancer Centre, Glasgow, UK; ⁶ Tasman Oncology, Queensland, Australia; ⁷ Oncology Consultants, P.A., Houston, USA; ⁸ Catalan Institute of Oncology Badalona-Hospital Germans Trias i Pujol, B-ARGO group; Badalona, Spain; ⁹ Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK; ¹⁰ Clinical Development, Immutep GmbH, Berlin, Germany; ¹¹ Research & Development, Immutep S.A.S., Orsay, France

Study Identifiers:

Sponsor: IMP321-P015; MSD: Keynote-PN798; EudraCT: 2018-001994-25; Clinicaltrials.gov: NCT03625323 Corresponding author: Frederic Triebel, frederic.triebel@immutep.com

Eftilagimod alpha (efti) MoA

"PUSHING THE ACCELERATOR ON IMMUNE RESPONSES"

TACTI-002 TRIAL DESIGN & INTRODUCTION

- Phase II, multinational, open label, PD-L1 all-comer, multiple indications
- Up to 183 pts in a Simon's optimal two-stage design (NCT03625323)
- Sponsored by Immutep and in collaboration with MSD

Legend: 1 cycle = 3 weeks; q2w - every 2 weeks, q3w every 3 weeks

Following patients are eligible to part C (2nd line HNSCC):

patients <u>unselected for PD-L1</u> with recurrent HNSCC disease unamenable to curative treatment with local or systemic therapy, or metastatic (disseminated) disease incurable by local therapies, who progressed on or after 1st line platinum-based therapy

- 39 patients were enrolled to stage 1 + 2 (LPI in Jan 2021)
- Primary objective: Overall Response Rate acc. to iRECIST
- Secondary objectives include PFS, OS, PK, biomarker, PD, safety and tolerability
- Data cut-off: 16th April 2021 (interim data)

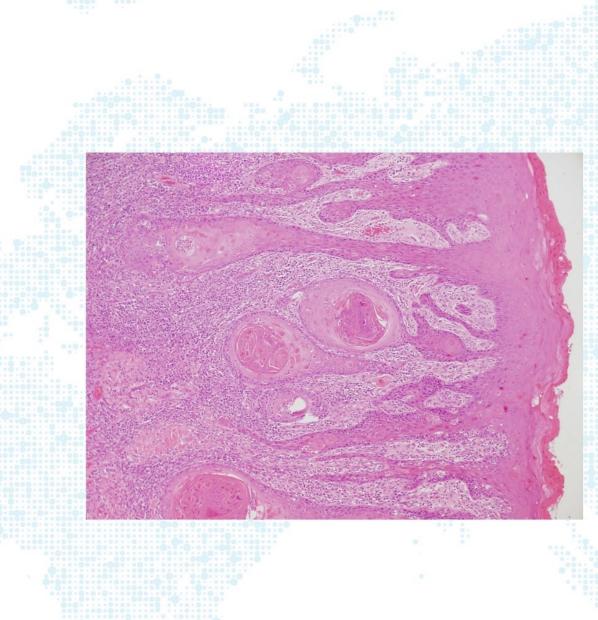
Conclusions (Efti + Pembro 2 Line HNSCC-Part C)

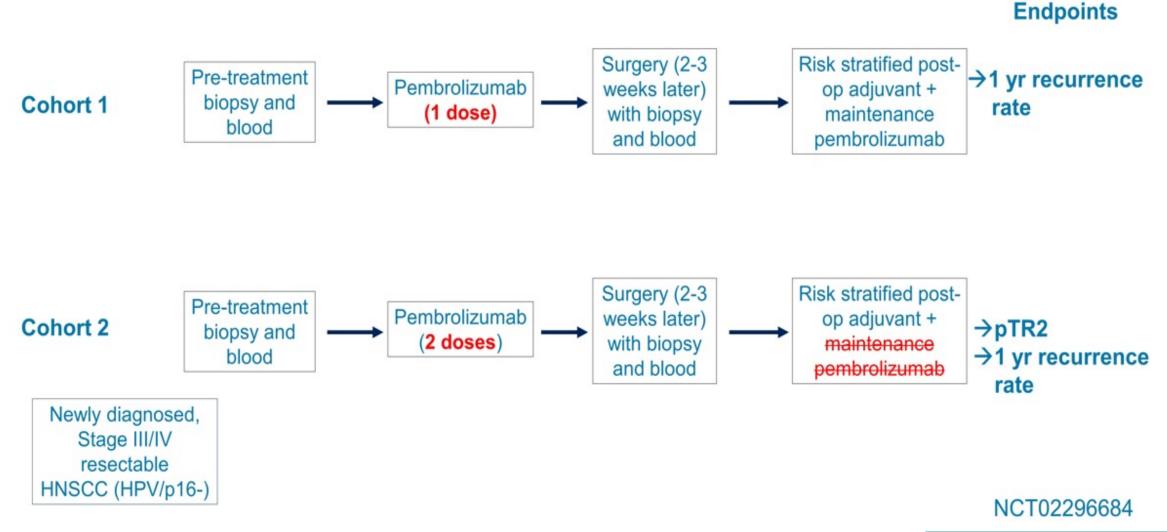
SAFETY

- Treatment with efti plus pembrolizumab is welltolerated with no new safety signals
- Majority of most frequent adverse events are mild to moderate
- Safety profile compares well to KN-040 (pembrolizumab monotherapy)

EFFICACY

- Encouraging ORR (30 % acc. to iRECIST) in patients unselected for PD-L1
- 13.5 % complete responses observed
- Responses were durable with median DOR not yet reached
- In pts with PD-L1 CPS ≥1, ORR was 45.8 % (95 % Cl 25.6-67.2), median PFS of 4.1 months and median OS of 12.6 months
- Efficacy in PD-L1 CPS ≥1 encouraging compared to KN-040 (PIII, randomized trial)

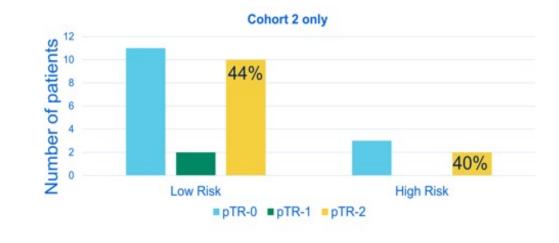

The combination of efti plus pembrolizumab is well-tolerated and shows encouraging signs of activity supporting further clinical investigation. A study in 1st line HNSCC patients has been initiated (NCT04811027).


2021 ASCO ANNUAL MEETING

ENHANCED PATHOLOGIC TUMOR RESPONSE WITH TWO CYCLES OF NEOADJUVANT PEMBROLIZUMAB IN SURGICALLY RESECTABLE, LOCALLY ADVANCED HPV-NEGATIVE HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC)

Ravindra Uppaluri, MD/PhD Dana-Farber/ Brigham and Women's Cancer Center *Douglas Adkins, MD* Siteman Cancer Center/ Washington University in St. Louis June 7, 2021

Schema for Cohort 2



Post-surgery findings

Characteristic	Cohort 2 (N=28)*	
pTR Category**		
pTR-0	14	50.0%
pTR-1	2	7.1%
pTR-2	12	42.9%
Pathologic disease Stage, N (%)		
1-11	5	17.9%
III	5	17.9%
IVA-IVB	18	64.3%
Pathologic risk category (positive margins/ENE)		
High risk	5	17.9%
Intermediate/low risk	23	82.1%

*1 patient enrolled but withdrew from trial- did not have surgery **3 samples with prelim pTR, pending central review for pTR

- Any pTR was seen in 14/28 (50%) of patients
- pTR-2 was seen in 42.9% of patients -higher than Cohort 1
- pTR-1 rates (7.1%) were lower than Cohort 1
- pTR distributions were similar across risk categories

Conclusions of NeoAdj Pembro study...

- Neoadjuvant pembrolizumab (two doses) was safe and did not delay surgery
- pTR-2 rates were doubled with two versus one dose of neoadjuvant pembrolizumab
 - Possible explanation includes timing (3 versus 6 weeks) or 2 doses of drug
 - 1-year OS and PFS were excellent
- Further studies are needed to define optimal dosing/timing and relevance of pTR to clinical outcome

Thank You ! @EdgardoSantosMD edgardo_ny@hotmail.com edgardo.santos@usa.genesiscare.com

Conclusions

- HRAS and PIK3CA mutations/amplifications are potential targets in HNSCC.
- Tipifarnib is promising for HRAS mutant SCCHN, moreover if VAF >20%.
- PIK3CA mutations continue to be targeted, both monotherapy (irreversible PIK3CAi) and combination (with FTI).
- Nasopharyngeal carcinoma: IO + Gem/Cis is emerging as SOC first line.
- SCCHN:
 - Novel IO agents promising: <u>Bintra/PDS/IL-12</u> for HPV+; LAG3 – <u>eftilagimod</u>.
- SCCHN neoadjuvant studies showed promising results (longer with chemo, with CRT?)

A Division of Genesis Care