

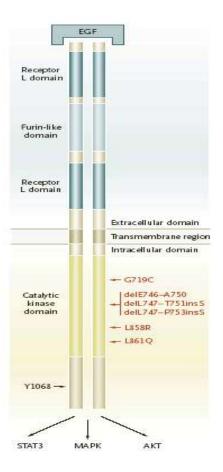
EGFR and ALK Inhibitors for Mutated Lung Cancer Tumors

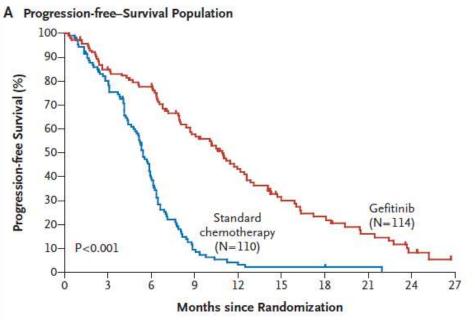
Miguel A. Villalona-Calero, MD, FACP, FAAAS

Overview

- 1. Discovery and Tumor Association
- 2. Diagnostics
- 3. First Line
- 4. Resistance and Treatments Focused on Resistance
- 5. Utility of Cell Free DNA

Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib


Thomas J. Lynch, M.D., Daphne W. Bell, Ph.D., Raffaella Sordella, Ph.D., Sarada Gurubhagavatula, M.D., Ross A. Okimoto, B.S., Brian W. Brannigan, B.A., Patricia L. Harris, M.S., Sara M. Haserlat, B.A., Jeffrey G. Supko, Ph.D., Frank G. Haluska, M.D., Ph.D., David N. Louis, M.D., David C. Christiani, M.D., Jeff Settleman, Ph.D., and Daniel A. Haber, M.D., Ph.D.


Report

EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy

J. Guillermo Paez,^{1,2*} Pasi A. Jänne,^{1,2*} Jeffrey C. Lee,^{1,3*} Sean Tracy,¹ Heidi Greulich,^{1,2} Stacey Gabriel,⁴ Paula Herman,¹ Frederic J. Kaye,⁵ Neal Lindeman,⁶ Titus J. Boggon,^{1,3} Katsuhiko Naoki,¹ Hidefumi Sasaki,⁷ Yoshitaka Fujii,⁷ Michael J. Eck,^{1,3} William R. Sellers,^{1,2,4†} Bruce E. Johnson,^{1,2†} Matthew Meyerson^{1,3,4†}

Response	Gefitinib (N=114)	Carboplatin–Paclitaxe (N=114)			
	number of patients (percent)				
Complete response	5 (4.4)	0			
Partial response	79 (69.3)	35 (30.7)			
Complete or partial response†	84 (73.7)	35 (30.7)			
Stable disease	18 (15.8)	56 (49.1)			
Progressive disease	11 (9.6)	16 (14.0)			
Response that could not be evaluated	1 (0.9)	7 (6.1)			

N ENGL J MED 362;25 NEJM.ORG JUNE 24, 2010

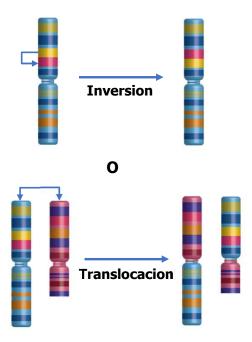
Fusion of a Kinase Gene, ALK, to a Nucleolar Protein Gene, NPM, in Non-Hodgkin's Lymphoma

SCIENCE • VOL. 263 • 4 MARCH 1994

Stephan W. Morris,* Mark N. Kirstein, Marcus B. Valentine, Kristopher G. Dittmer, David N. Shapiro, David L. Saltman, A. Thomas Look

The 2;5 chromosomal translocation occurs in most anaplastic large-cell non-Hodgkin's lymphomas arising from activated T lymphocytes. This rearrangement was shown to fuse the *NPM* nucleolar phosphoprotein gene on chromosome 5q35 to a previously unidentified protein tyrosine kinase gene, *ALK*, on chromosome 2p23. In the predicted hybrid protein, the amino terminus of nucleophosmin (NPM) is linked to the catalytic domain of anaplastic lymphoma kinase (ALK). Expressed in the small intestine, testis, and brain but not in normal lymphoid cells, ALK shows greatest sequence similarity to the insulin receptor subfamily of kinases. Unscheduled expression of the truncated ALK may contribute to malignant transformation in these lymphomas. Vol 448 2 August 2007 doi:10.1038/nature05945

nature



Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer

Manabu Soda^{1,2}, Young Lim Choi¹, Munehiro Enomoto^{1,2}, Shuji Takada¹, Yoshihiro Yamashita¹, Shunpei Ishikawa⁵, Shin-ichiro Fujiwara¹, Hideki Watanabe¹, Kentaro Kurashina¹, Hisashi Hatanaka¹, Masashi Bando², Shoji Ohno², Yuichi Ishikawa⁶, Hiroyuki Aburatani^{5,7}, Toshiro Niki³, Yasunori Sohara⁴, Yukihiko Sugiyama² & Hiroyuki Mano^{1,7}

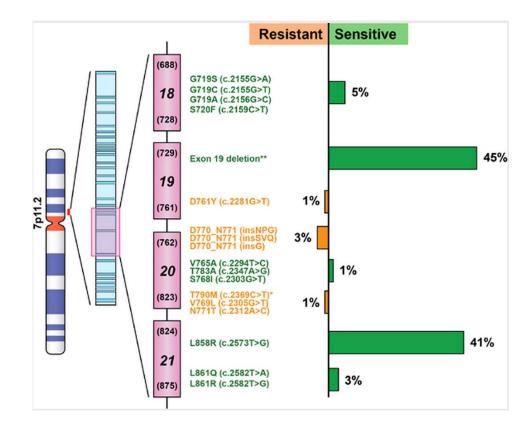
Improvement in the clinical outcome of lung cancer is likely to be achieved by identification of the molecular events that underlie its pathogenesis. Here we show that a small inversion within chromosome 2p results in the formation of a fusion gene comprising portions of the echinoderm microtubule-associated protein-like 4 (*EML4*) gene and the anaplastic lymphoma kinase (*ALK*) gene in non-small-cell lung cancer (NSCLC) cells. Mouse 3T3 fibroblasts forced to express this human fusion tyrosine kinase generated transformed foci in culture and subcutaneous tumours in nude mice. The *EML4–ALK* fusion transcript was detected in 6.7% (5 out of 75) of NSCLC patients examined; these individuals were distinct from those harbouring mutations in the epidermal growth factor receptor gene. Our data demonstrate that a subset of NSCLC patients may express a transforming fusion kinase that is a promising candidate for a therapeutic target as well as for a diagnostic molecular marker in NSCLC.

Re-arrangements of ALK in NSCLC

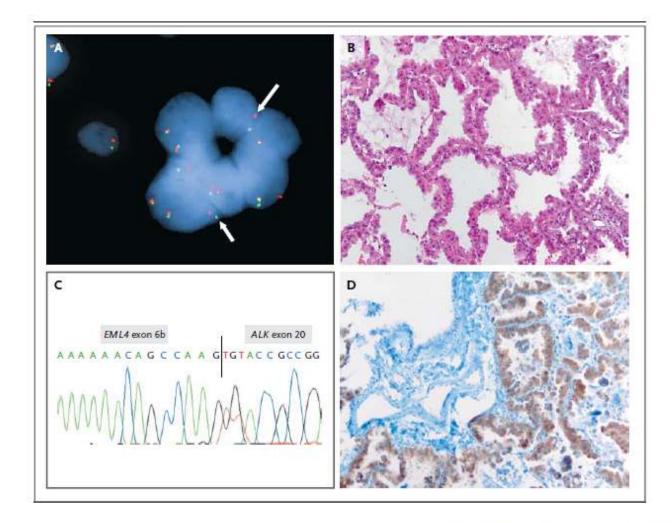
Shaw AT, et al. J Clin Oncol 29:15s, 2011 (suppl; abstr 7507)

Overview

- 1. Discovery and Tumor Association
- 2. Diagnostics
- 3. First Line
- 4. Resistance and Treatments Focused on Resistance
- 5. Utility of Cell Free DNA


- 1.1a: Recommendation: EGFR molecular testing should be used to select patients for EGFR-targeted TKI therapy, and patients with lung adenocarcinoma should not be excluded from testing on the basis of clinical characteristics.
- 1.1b: Recommendation: ALK molecular testing should be used to select patients for ALK-targeted TKI therapy, and patients with lung adenocarcinoma should not be excluded from testing on the basis of clinical characteristics.

Ways to do Molecular Testing


- PCR
- FISH
- IHC
- NGS
 - Limited
 - Extensive Panels

Complete Exon Sequencing vs. Hotspot Testing - EGFR

Testing for the Two Most Common Hotspots Misses 15% of the Targets

Cheng et al. 2012 Modern Pathology. Note that *EGFR* T790M is 1% of the total but after TKIs may be 50% of the total.

N ENGLJ MED 363;18 NEJM.ORG OCTOBER 28, 2010

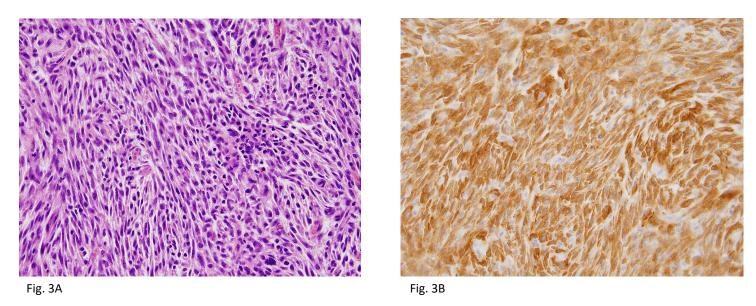


Figure 3. (A) H&E of inflammatory myofibroblastic tumor. Streaming fascicles of spindle cells admixed with few lymphocytes. (B) ALK antibody clone 5A4 from Leica Biosystems – at 1:100 with pressure cooker antigen retrieval. Diffuse cytoplasmic positivity

Memorial Hospital For Cancer & Allied Diseases

Molecular Diagnostics Service, Department of Pathology

1275 York Avenue New York, NY, 10065

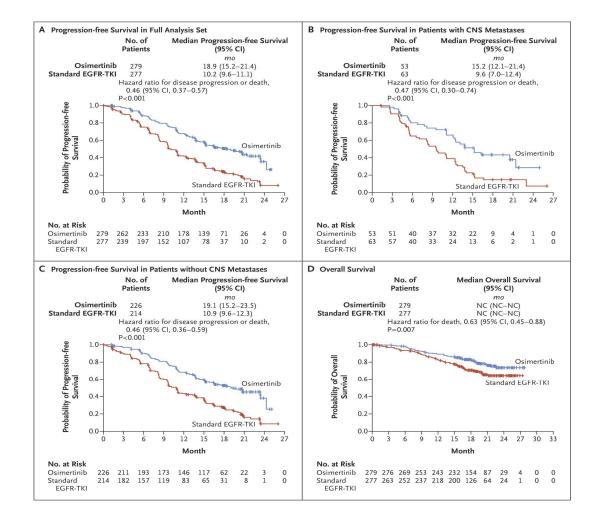
Tel: (212) 639-8280 | Fax: (212) 717-3515 MSK-IMPACT Testing Report

/1999 Date of Birth Accession # Gender Female Left pleural biopsy #3 **Specimen Submitted Tumor Type** Lung Adenocarcinoma Surgical Path. # -Ref. Physician - M.D. Account # Date of Receipt 6/21/2018 Date of Report 7/13/2018 12:46 **Date of Procedure** 6/21/2018

Summary	no mutations, no copy number alterations, 1 structural variant detected. 1 alteration has an OncoKB treatment interpretation.
MSI Status	MICROSATELLITE STABLE (MSS). See MSI note below. ⁶
Tumor Mutation Burden	Tumor mutation burden (TMB) for this sample is 0 mutations per Megabase. ⁷
Comments	Low tumor content (approximately 20% or less). Negative mutation, copy number and structural variant results, as well as low (stable) MSIsensor scores, should be interpreted with caution.

Somatic alte	rations detected in t	his sample:			
Gene	Туре	Alteration	Location	Additional Information	
Structu	ral Variants				
EML4-ALK	Fusion	c.1490-288:EML4_c.3172+830:ALKi nv	EML4 exons 1-12 and ALK exons 20-29	1 💿 a	

Memorial Sloan Kettering Cancer Center...

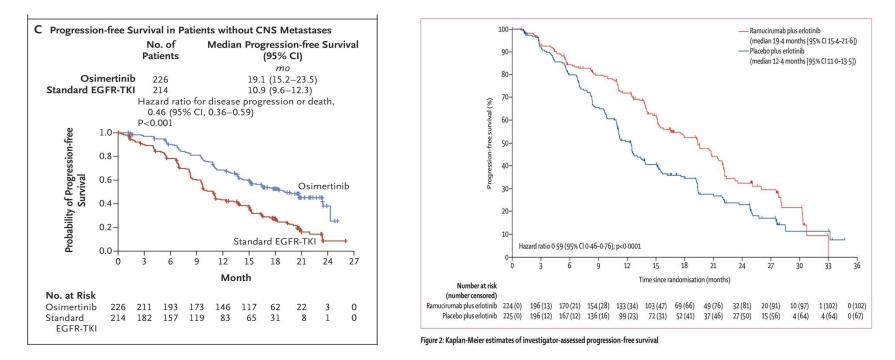

Overview

- 1. Discovery and Tumor Association
- 2. Diagnostics
- 3. First Line
- 4. Resistance and Treatments Focused on Resistance
- 5. Utility of Cell Free DNA

Available EGFR TKIs

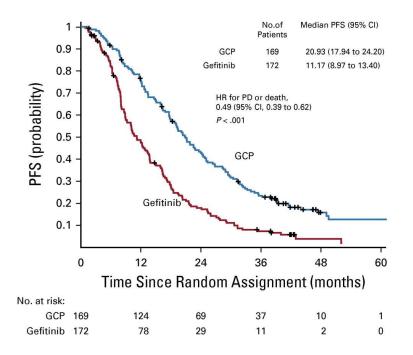
- Gefitinib
- Erlotinib
- Afatinib
- Dacomitinib
- Osimertinib

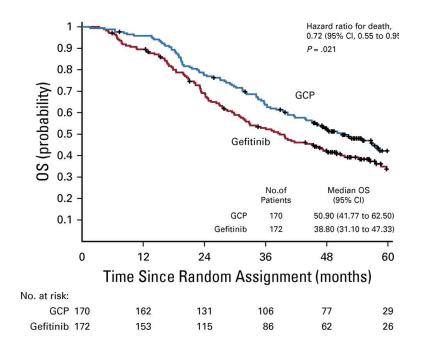
Osimertinib vs. 1st Generation TKI



N Engl J Med 2018; 378:113-125

Alternatives to Osimertinib as First Line

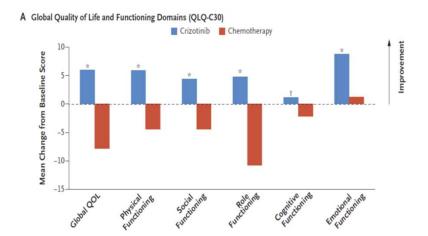

- Sequencing
 - EGFR 1st or 2nd generation TKI followed by osimertinib if T790m+ or by chemo if T790 neg.
- Combination with VEGF inhibition
 - 1st generation TKI + Bevacizumab
 - 1st generation TKI + Ramucirumab
- Combination with Chemotherapy
 - 1st generation TKI + Pemetrexed/Carbo

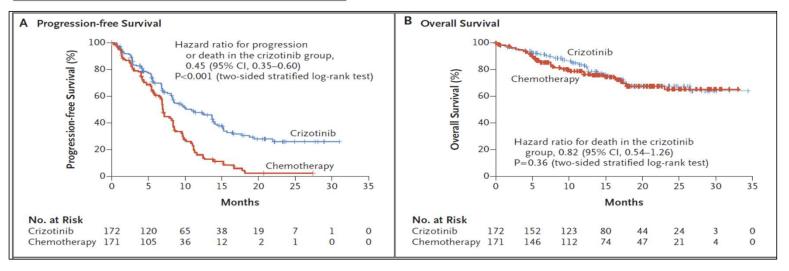

Ramucirumab Plus Erlotinib

www.thelancet.com/oncology Vol 20 December 2019

Gefinitib Plus Chemotherapy

Journal of Clinical Oncology38, no. 2 (January 10, 2020) 115-123.


Available ALK TKIs

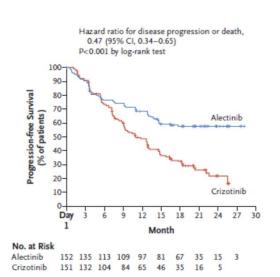

- Crizotinib
- Ceritinib
- Alectinib
- Brigatinib
- Lorlatinib

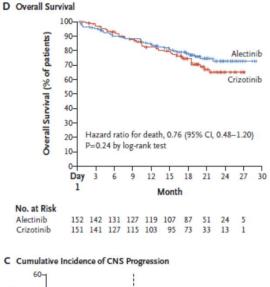
First-Line Crizotinib versus Chemotherapy in *ALK*-Positive Lung Cancer

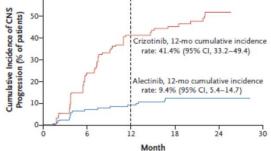
N Engl J Med 2014;371:2167-77. DOI: 10.1056/NEJMoa1408440

Response	Crizotinib (N=172)	Chemotherapy (N=171)	
Type of response — no. (%)			
Complete response	3 (2)	2 (1)	
Partial response	125 (73)	75 (44)	
Stable disease	29 (17)	63 (37)	
Progressive disease	8 (5)	21 (12)	
Could not be evaluated †	7 (4)	10 (6)	
Objective response rate — % (95% CI)‡	74 (67-81)	45 (37-53)	
Time to response — mo§			
Median	1.4	2.8	
Range	0.6-9.5	1.2-8.5	
Duration of response — mo¶			
Median	11.3	5.3	
95% CI	8.1-13.8	4.1-5.8	

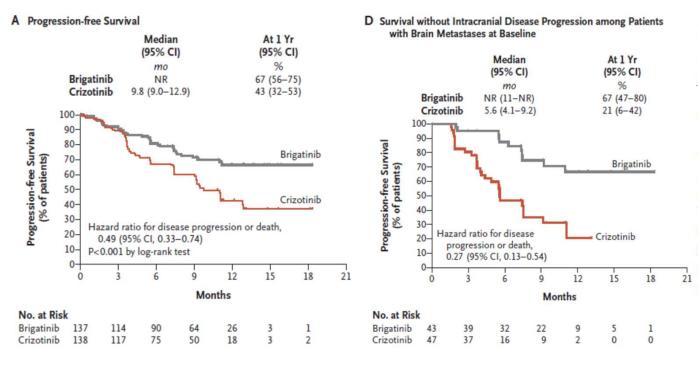
The NEW ENGLAND JOURNAL of MEDICINE


N Engl J Med 2017;377:829-38.


DOI: 10.1056/NEJMoa1704795


ORIGINAL ARTICLE

Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer



Adverse events that occurred at a higher incidence with alectinib than with crizotinib by 5 percentage points or more were anemia (20% vs. 5%), myalgia (16% vs. 2%), increased blood bilirubin (15% vs. 1%), increased weight (10% vs. 0%), musculoskeletal pain (7% vs. 2%), and photosensitivity reaction (5% vs. 0%) (Table 3). Adverse events that were more common with crizotinib included nausea (48% vs. 14% with alectinib), diarrhea (45% vs. 12%), and vomiting (38% vs. 7%)

The NEW ENGLAND JOURNAL of MEDICINE N Engl J Med 2018;379:2027-39. DOI: 10.1056/NEJMoa1810171

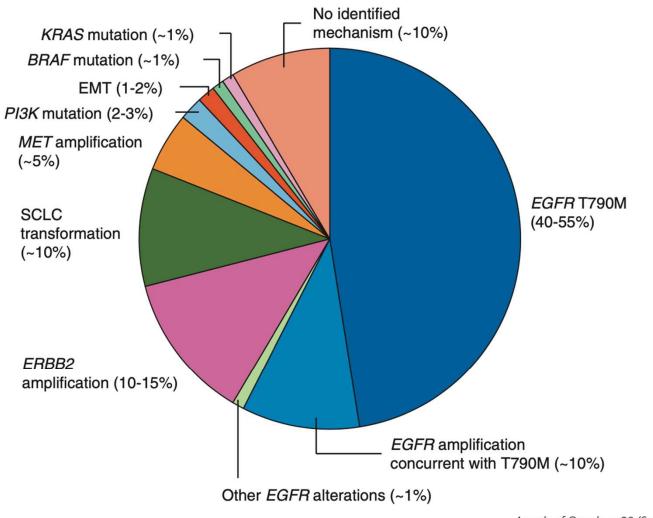
ORIGINAL ARTICLE

Brigatinib versus Crizotinib in ALK-Positive Non–Small-Cell Lung Cancer

Adverse events that occurred at a higher incidence by more than 5 percentage points with brigatinib than with crizotinib included an increased creatine kinase level (brigatinib [39%] vs. crizotinib [15%]), cough (25% vs. 16%), hypertension (23% vs. 7%), and an increased lipase level (19% vs. 12%). Adverse events that were more common with crizotinib than with brigatinib included nausea (crizotinib [56%] vs. brigatinib [26%]), diarrhea (55% vs. 49%), constipation (42% vs. 15%), peripheral edema (39% vs. 4%), vomiting (39% vs. 18%), an increased alanine aminotransferase level (32% vs. 19%), decreased appetite (20% vs. 7%), photopsia (20% vs. 1%), dysgeusia (19% vs. 4%), and visual impairment (16% vs.

Preferences for First Line

• EGFR mutant

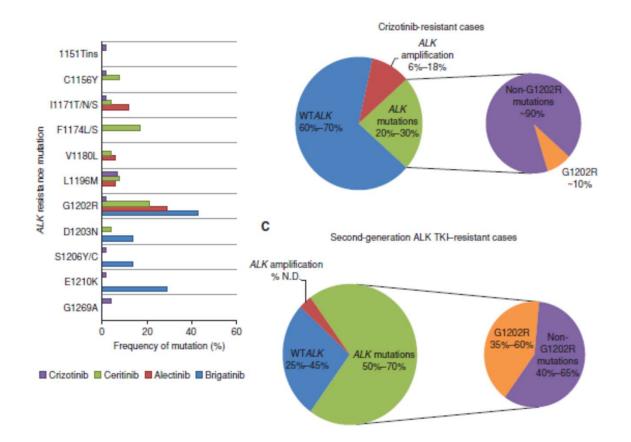

- Osimertinib
- Afanitib for rare EGFR mutations
- 1st generation TKI + Chemo or + Bev if osimertinib not available

• ALK Rearranged

- Alectinib
- Alternative Brigatinib

Overview

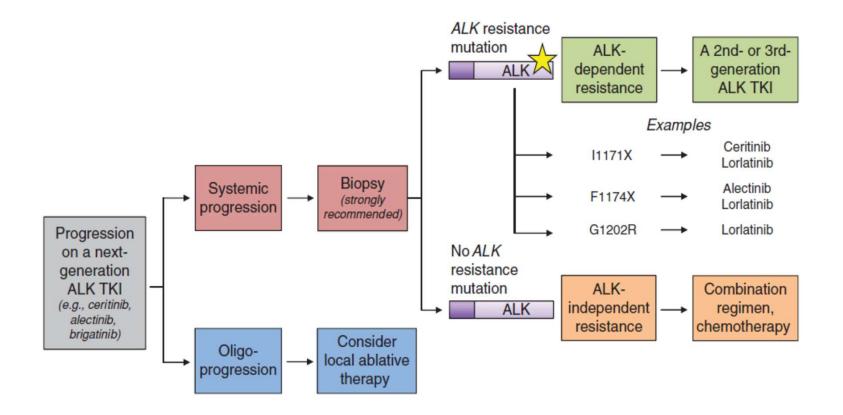
- 1. Discovery and Tumor Association
- 2. Diagnostics
- 3. First Line
- 4. Resistance and Treatments Focused on Resistance
- 5. Utility of Cell Free DNA



Annals of Oncology 29 (Supplement 1): i10–i19, 2018 doi:10.1093/annonc/mdx703

Preferences for Second Line and Beyond in EGFR mutants

- Biopsy of a Progressive Site, Highly recommended
- If no TKIs were previously used, add a TKI. Osimertinib preferred, especially if brain mets or T790m.
- If 1st or 2nd generation TKI used in first line, osimertinib is recommended if T790m present or brain mets are only progressing site. Otherwise, either add chemo to the TKI or use chemo alone.
- Adding a VEGF interacting agent can be considered if above fails.
- Chemo as per small cell, if small cell transformation.


Resistance to ALK Inhibitors

Cancer Discovery 7(2); 1-19, 2017

ALKTKI	Crizotinib (PF-02341066)	Ceritinib (LDK378)	Alectinib (RO/ CH5424802)	Brigatinib (AP26113)	Lorlatinib (PF-06463922)	Entrectinib (RXDX-101)	Ensartinib (X-396)
Manufacturer	Pfizer	Novartis	Genentech	Ariad	Pfizer	Ignyta	Xcovery
Targets other than ALK	ROS1 MET	ROS1 IGF1R IR	GAK LTK RET	ROS1	ROS1	NTRK1 NTRK2 NTRK3 ROS1	ROS1 MET AXL
Resistance mutations known to be targeted by TKI	L1198F	I1171T/N L1196M S1206C/Y G1269A/S	L1152P/R C1156Y/T F1174C/L/V L1196M S1206C/Y G1269A/S	11151Tins L1152P/R C1156Y/T F1174C/L/V L1196M G1202R ^a G1269A/S	I1151Tins L1152P/R C1156Y/T I1171T/N/S F1174C/L/V L1196M G1202R ^b S1206C/Y E1210K G1269A/S	C1156Y/T L1196M	C1156Y/T L1196M
Reported resistance	I1151Tins	I1151Tins	11171T/N/S	G1202Rª	L1198F + C1156Y ^c	G1202R	N.D.
mutations to the TKI	L1152P/R	L1152P/R	V1180L	E1210K + S1206C			
	C1156Y/T	C1156Y/T	G1202R	E1210K+ D1203N			
	11171T/N/S	F1174C/ L/V					
	F1174C/L/V V1180L L1196M G1202R S1206C/Y E1210K G1269A/S	G1202R					

Cancer Discovery 7(2); 1-19, 2017

Cancer Discovery 7(2); 1-19, 2017

ALK TKI	Crizotinib (PF-02341066)	Ceritinib (LDK378)	Alectinib (RO/ CH5424802)	Brigatinib (AP26113)	Lorlatinib (PF-06463922)	Entrectinib (RXDX-101)	Ensartinib (X-396)
Manufacturer	Pfizer	Novartis	Genentech	Ariad	Pfizer	Ignyta	Xcovery
Targets other than ALK	ROS1 MET	ROS1 IGF1R IR	GAK LTK RET	ROS1	R051	NTRK1 NTRK2 NTRK3 ROS1	ROS1 MET AXL
Resistance mutations known to be targeted by TKI	L1198F	11171T/N L1196M S1206C/Y G1269A/S	L1152P/R C1156Y/T F1174C/L/V L1196M S1206C/Y G1269A/S	I1151Tins L1152P/R C1156Y/T F1174C/L/V L1196M G1202R ^a G1269A/S	11151Tins L1152P/R C1156Y/T I1171T/N/S F1174C/L/V L1196M G1202R ^b S1206C/Y E1210K G1269A/S	C1156Y/T L1196M	C1156Y/T L1196M
Reported resistance	I1151Tins	11151Tins	11171T/N/S	G1202R*	L1198F + C1156Y	G1202R	N.D.
mutations to the TKI	L1152P/R	L1152P/R	V1180L	E1210K+ S1206C			
	C1156Y/T	C1156Y/T	G1202R	E1210K+ D1203N			
	11171T/N/S	F1174C/ L/V					
	F1174C/L/V V1180L L1196M G1202R S1206C/Y E1210K G1269A/S	G1202R					

Cancer Discovery 7(2); 1-19, 2017

Overview

- 1. Discovery and Tumor Association
- 2. Diagnostics
- 3. Front-Line Therapy
- 4. Resistance and Resistant Mutation Focused Treatments
- 5. Utility of cell Free DNA Analyses

Published OnlineFirst April 15, 2019; DOI: 10.1158/1078-0432.CCR-19-0624

Precision Medicine and Imaging

Clinical Utility of Comprehensive Cell-free DNA Analysis to Identify Genomic Biomarkers in Patients with Newly Diagnosed Metastatic Non-small Cell Lung Cancer ©

Natasha B. Leighl¹, Ray D. Page², Victoria M. Raymond³, Davey B. Daniel⁴, Stephen G. Divers⁵, Karen L. Reckamp⁶, Miguel A. Villalona-Calero⁷, Daniel Dix³, Justin I. Odegaard³, Richard B. Lanman³, and Vassiliki A. Papadimitrakopoulou⁸ Clinical Cancer Research

FDA Approved Targets		Tissue +	Tissue -	Tissue Not Assessed/ QNS	Total		
	CfDNA+	18	0	1	19	Sensitivity	81.8%
EGFR Exon 19 del	cfDNA-	4	201	44	240	PPV	100.09
	cfDNA cancelled / TND	0	11	3	14	Specificity	100.09
	Total	22	212	48	282	NPV	98.0%
						Concordance	98.2%
	cfDNA+	9	0	2	11	Sensitivity	90.0%
EGFR L858R	CfDNA-	1	213	43	267	PPV	100.09
	cfDNA cancelled / TND	0	11	3	14	Specificity	100.09
	Total	10	224	48	282	NPV	99.5%
						Concordance	99.89
	cfDNA+	5	0	1	8	Sensitivity	62.5%
ALK Fusion (ORIGINAL)	cfDNA-	3	207	52	262	PPV	100.09
	cfDNA cancelled / TND	1	11	2	14	Specificity	100.09
	Total	9	218	55	282	NPV	98.6%
						Concordance	98.89
ALK Fusion (Re-analysis)	cfDNA+	8	0	1	7	Sensitivity	75.0%
	CfDNA-	2	207	52	261	PPV	100.09
	cfDNA cancelled / TND	1	11	2	14	Specificity	100.09
	Total	9	218	55	282	NPV	99.0%
						Concordance	99.1%
	cfDNA+	0	0	0	0	Sensitivity	-
ROS1 Fusion	cfDNA-	2	151	115	268	PPV	
	cfDNA cancelled / TND	0	8	8	14	Specificity	100.09
	Total	2	159	121	282	NPV	98.7%
						Concordance	98.7%
	cfDNA+	2	0	0	2	Sensitivity	100.09
BRAF V600E mutation	cfDNA-	0	90	178	268	PPV	100.09
	cfDNA cancelled / TND	0	5	9	14	Specificity	100.09
	Total	2	95	187	282	NPV	100.09
						Concordance	100.09

Conclusions

- The Identification of EGFR mutations and ALK rearrangements in NSCLC has led to significant advances for the survival and quality of life of a substantial fraction of lung cancer patients.
- Several therapeutic alternatives are available for the frontline treatment and for patients experiencing subsequent progression.
- Technological advances in tissue and cell free DNA sequencing have poised us for a more informed choice of these alternatives.

MOC Question

Which one of the statements below is less likely to be true

- 1. Treatment with first generation or second generation tyrosine kinase inhibitors can be considered for first line treatment in patients with EGFR mutated lung cancer and metastatic disease.
- 2. Immuno histochemistry can be used as a method to diagnose ALK rearranged lung cancer.
- 3. Biopsy is not necessary in the recurrence setting for patients with ALK rearranged and EGFR mutated lung cancer previously treated with a tyrosine kinase inhibitor, as advances in cell free DNA testing can provide guidance to the next strategy of treatment in a less invasive way.
- 4. Given the approval of several second and third generation ALK inhibitors, there is no reason no consider the use of crizotinib either in the first line or recurrence setting.