

Making Cancer History®

16th Annual Miami Cancer Meeting (MCM) Immunotherapy and Targeted Therapy in 2019: Moving Forward with Personalized Cancer Therapy

ER/PR and CDK Pathways in the Management of ER+ Metastatic Breast Cancer

Vicente Valero, M.D., F.A.C.P. Professor of Medicine and Deputy Chairman Department of Breast Medical Oncology U. T. MD Anderson Cancer Center Houston, Texas

Disclosure Information

I have the following financial relationships to disclose:

Consultant/Advisory Boards/Education: Roche, Merck, Novartis and Astra-Zeneca

Outline

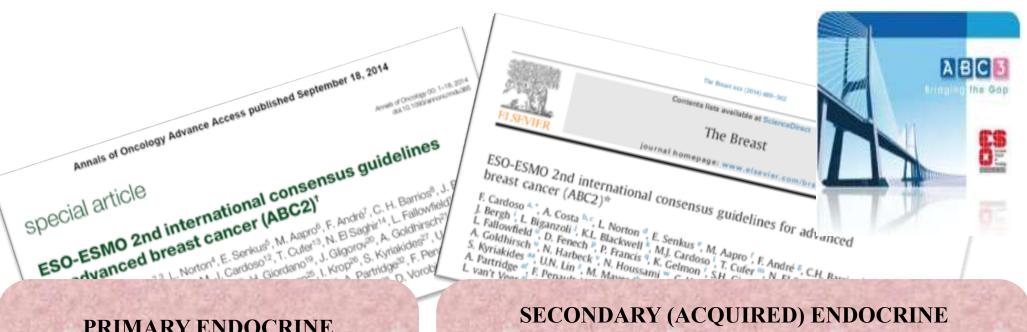
- Overview
- Hormonal Therapy
- M-THOR inhibitors
- CDK4/6 inhibitors
- PI3K/AKT inhibitors
- Conclusions

Current Treatment of Advanced Hormone Receptor Positive (HR+) HER2- Breast Cancer

- Nearly 75% of patients have invasive breast cancers are hormone receptor positive (HR⁺)
- Endocrine therapy is the standard of care for patients with HR⁺ breast cancer, recommended by national and international guidelines
- Hormone therapy plus minus targeted therapy is as effective as (or more effective than) chemotherapy for patients with HR+ MBC
- Sequential endocrine therapy may add years of high quality life to patients with ER+ MBC
- Several developments in the past 5 years offer promising treatment options and better care for patients with HR+ MBC

Systemic Treatment for Patients with HR+, HER2– MBC

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) recommend 3 lines of consecutive ET for patients with HR+ MBC without visceral symptoms.
FDA-approved ETs or combination therapies include tamoxifen, goserelin plus tamoxifen, anastrozole, letrozole, exemestane, exemestane + everolimus, ribociclib + letrozole or fulvestrant, palbociclib + letrozole or fulvestrant, abemociclb+/- fulvestrant or letrozole
Evidence suggests that patients derive diminishing benefits with each additional line of therapy.

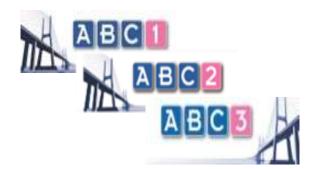

Treatment algorithm for recurrent or stage IV BC **Continue ET** No clinical benefit Yes Chemotherapy until after 3 sequential progression or Progression ET regimens or unacceptable symptomatic No visceral disease **Trial of new ET** toxicity

> Are there preferred combinations or single agents and sequence of endocrine therapies?

ET = endocrine therapy; HR = hormone receptor; HER = human epidermal growth receptor; ABC = advanced breast cancer. The NCCN Clinical Practice Cuidelines in Oncology, Breast Cancer V3, 2017, December 15, 2017

The NCCN Clinical Practice Guidelines in Oncology. Breast Cancer V3. 2017. December 15, 2017

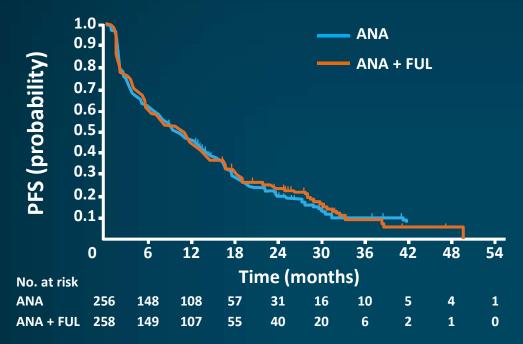
Definitions of Endocrine Resistance in ER+ MBC



PRIMARY ENDOCRINE RESISTANCE Relapse while on the first 2 years of adjuvant ET, or PD within first 6 months of 1st line ET for MBC, while on ET SECONDARY (ACQUIRED) ENDOCRINE RESISTANCE Relapse while on adjuvant ET but after the first 2 years, or relapse within 12 months of completing adjuvant ET, or PD \geq 6 months after initiating ET for MBC, while on ET

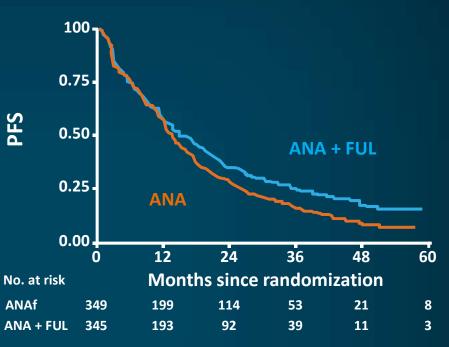
European Society for Medical Oncology

New Trials of Hormone Therapy Alone in First-Line Advanced Breast Cancer


Improving upon AIs as standard of care as 1st-line endocrine therapy for HR+ MBC

Recent 1st Line Studies:

- Combination Endocrine Rx (Fulvestrant + AI) (FACT; SWOG-0226)
- Anastrozole versus Fulvestrant (FALCON)
- Addition of growth factor tyrosine kinase inhibitors (M-THOR and PI3K inhibitors, TAMRAD, BOLERO-2, BELLE 2-3, SANDIPER)
- Addition of CDK 4/6 inhibitors (PALOMA-2 and 3; MONALEESA-2, 3, and 7 and Monarch-2 and 3)


First-Line Anastrozole ± Fulvestrant ER+MBC

FACT¹: TTP

ANA + FUL (n = 258) ANA (n = 256) Patients with progression, no. (%) 200 (77.5) 200 (78.1) Median TTP in months 10.8 10.2 Primary TTP analysis (log-rank test) HR = 0.99 (95% Cl, 0.81–1.20), P=0.91 HR

SWOG 0226²: PFS

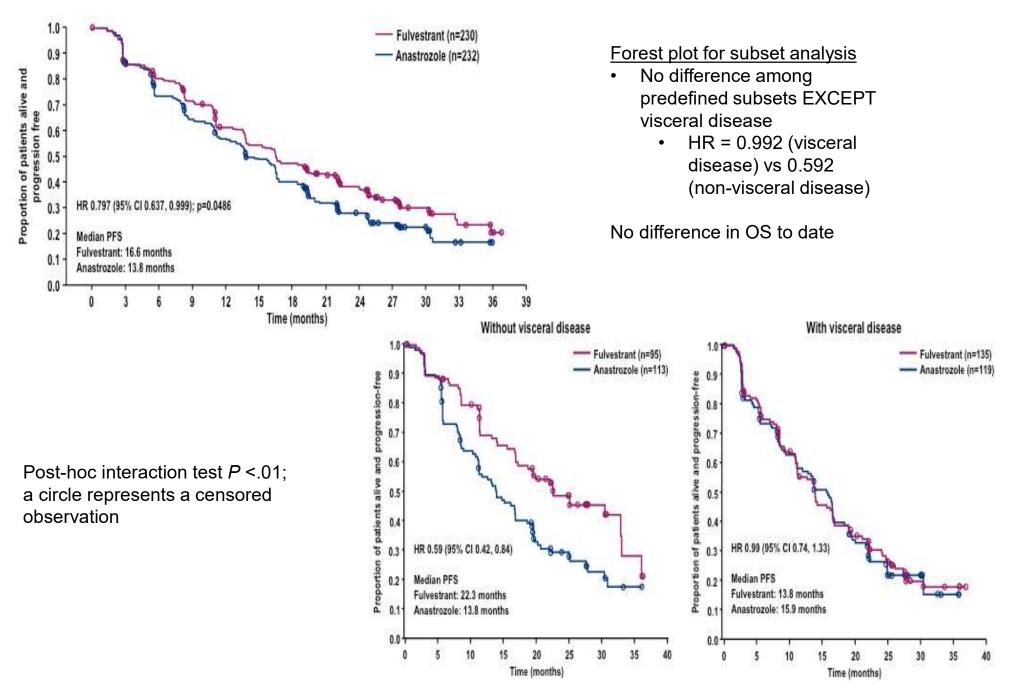
	Events	Median PFS (95% CI)
Combination	268	15.0 (13.2–18.4)
ANA	297	13.5 (12.1–15.1)

HR = 0.80 (95% CI, 0.68–0.94) *P*=0.007 by stratified log-rank test

ER = estrogen receptor; MBC = metastatic breast cancer; ANA = anastrozole; FUL = fulvestrant; TTP = time to progression; SWOG = Southwest Oncology Group; PFS = progression-free survival; HR = hazard ratio (in reporting risk); Cl = confidence interval.

1. Bergh J et al. J Clin Oncol. 2012;30:1919-1925. 2. Mehta RS et al. N Engl J Med. 2012;367:435-444.

FALCON: (Fulvestrant and AnastrozoLe Compared in Hormonal Therapy-Naïve Advanced BC)



- Randomized, double-blind, parallel-group, international, multicenter study
- Randomization of 450 patients was planned to achieve 306 progression events; if true PFS HR was 0.69 this would provide 90% power for statistical significance at the 5% two-sided level (log-rank test).

BC = breast cancer; PgR = progesterone receptor; HER = human epidermal growth receptor; PO = by mouth; ORR = objective (or overall) response rate; CBR = clinical benefit rate; DoR = duration of response; EDoR = expected DoR; DoCB = duration of clinical benefit; EDoCB = expected DoCB; HRQoL = health-related quality of life; FACT-B = Functional Assessment of Cancer Therapy for BC; TOI = Trial Outcome Index.

Robertson JFR et al. Lancet. 2016;388:2997-3005.

FALCON Trial: Anastrozole vs Fulvestrant

Robertson JFR et al, Lancet Oncology 2016

Major Challenge in Endocrine Resistance

- Approximately 30-50% of patients with HR⁺ advanced breast cancer do not respond to initial endocrine therapy.
- The majority (if not all) of patients with HR⁺ advanced breast cancer will ultimately progress despite endocrine therapy.

APPROACHES TO OVERCOMING RESISTANCE TO ENDOCRINE THERAPY

• Alterations of downstream signaling pathways such as PI3K, (mTOR and PI3K inhibitors)

• Alterations of the cell cycle machinery (CDK inhibitors)

Randomized Trials of mTOR Inhibitors and Endocrine Therapy for Patients with ER+ MBC

Study	Agents	No. of patients	% RR/CBR	PFS in mos	HR (95% CI)	Р
TAMRAD	Tamoxifen	57	13/42.1	4.5		
	Tamoxifen + everolimus	54	14/61.1	8.6	0.54 (0.35-0.81)	0.002
HORIZON	Letrozole	556	27/-	9.0		
	Letrozole + Temsirolimus	556	29/-	8.9	0.90 (0.76-1.07)	0.25
BOLERO-2	Exemestane	239	1.7/26.4	3.2		
	Exemestane + Everolimus	485	12.6/51.3	7.8	0.45 (0.38-0.54)	<0.0001

Bachelot T, et al., *J Clin Oncol* 30(22):2718-24, 2012; Wolff AC, et al., *J Clin Oncol* 31(2):195-202, 2013; Baselga J, et al., *NEJM* 366(6):520-9, 2012

APPROACHES TO OVERCOMING RESISTANCE TO ENDOCRINE THERAPY

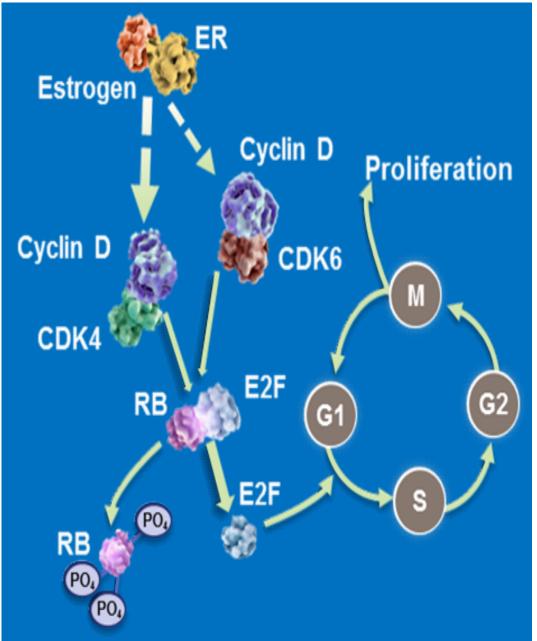
• Alterations of downstream signaling pathways such as PI3K, (mTOR and PI3K inhibitors)

• Alterations of the cell cycle machinery (CDK inhibitors)

CDK4/6 in HR+ Breast Cancer

HR+ breast cancer growth is dependent on cyclin D1, a direct transcriptional target of ER

•


•

•

Cyclin D1–CDK4/6 complexes initiate Rb hyperphosphorylation

Rb hyperphosphorylation results in it's inactivation, which allows the cell to progress from G1 to S-phase¹

Short-term inhibition of CDK4 & 6 leads to G1 arrest (that rebounds on withdrawal)²

¹Hosford Pharmgenomics Pers Med 2014; ²Gelbert *Invest New Drugs* 2014 Figure adapted from Jerusalem ASCO 2018

Status of CDK4/6 Inhibitors in Development

	Palbociclib (Ibrance [®] , Pfizer)	Ribociclib (Kisqali [®] , Novartis)	Abemaciclib (Verzenio™, Eli Lilly)
Potency (IC ₅₀)	CDK4: 9–11 nM CDK6: 15 nM	CDK4: 10 nM CDK6: 39 nM	CDK4: 2 nM CDK6: 10 nM
Dose/schedule	125 mg daily, 3 weeks on/1 off	600 mg daily 3 weeks on/1 off	Combination:150 mg BID Monotherapy: 200 mg BID Continuous
Completed Phase III trials	1st line: PALOMA-2 2nd line: PALOMA-3	1st line: MONALEESA-2-3 MONALEESA-7 2nd line: MONALEESA-3	1st line: MONARCH-3 1st or 2nd line: MONARCH-2
FDA approval status	2015: 1st line (with letrozole) 2016: 2nd line (with fulvestrant)	2017: 1st line (with letrozole) 2018: 1 st and 2 nd (with fulvestrant)	2017: 2nd line (with fulvestrant) Single agent post-ET and chemo

BID = twice a day; Chemo = chemotherapy.

Palbociclib (Ibrance®) prescribing information (PI), 2017. Ribociclib (Kisqali®) PI, 2017. Abemaciclib (Verzenio[™]) PI, 2017.

Randomized Trials in First-Line HR+ MBC

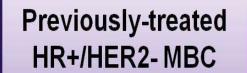
Study	No. of patients	ORR	CBR	mPFS in mos (95% CI)	HR	Р
PALOMA-1 - Letrozole - Letrozole + palbociclib	81 84	33 (39) 43 (56)	58 81	10.2 (5.7-12.6) 20.2 (13.8-27.5)	0.488 (0.319-0.748)	0.0004
PALOMA-2Letrozole + placeboLetrozole + palbociclib	222 444	35 (44) 42 (55)	71 84	14.5 (12.9-17.1) 24.8 (22.1-NR)	0.58 (0.46-0.72)	<0.0001
MONALEESA-2 - Letrozole + placebo - Letrozole + ribociclib	334 334	28 (37) 41 (53)	72 80	14.7 (13.0-16.5) NR (19.3-NR)	0.556 (0.429-0.720)	0.00000329
MONALEESA-3Fulvestrant + placeboFulvestrant + ribociclib	238 129	N/A N/A	N/A N/A	18.3 (N/A) NR (N/A)	0.577 (0.415-0.802)	N/A
MONALEESA-7 - Tamoxifen/NSAI + GnRH + placebo - Tamoxifen/NSAI + GnRH + ribociclib	337 335	30 (36) 41 (51)	67 80	13.0 (11.0-16.4) 23.8 (19.2-NR)	0.553 (0.441-0.694)	0.000000098
MONARCH-3 - NSAI + placebo - NSAI + abemaciclib	165 328	35 (44) 48 (59)	72 78	14.7 NR	0.543 (0.409-0.723)	0.000021

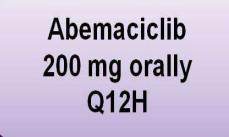
Finn RS, et al. Lancet Oncol, 16(1):25 - 35, 2015; Finn RS, et al. NEJM 375(20):1925-36, 2016; Hortobagyi GN, et al. NEJM 375(18):1738-48, 2016; Goetz MP, et al. *J Clin Oncol* 35(32):3638-3646, 2017; Tripathy D, et al. SABCS 2017 GS2-05

Randomized Trials with cdk4/6-Inhibitors in Pre-Treated Metastatic, HR+ Breast Cancer

Study	No. of patients	ORR	CBR	mPFS in mos (95% CI)	HR	Р
Second-Line Metastatic Brea	st Cancer					
 PALOMA-3 Fulvestrant + placebo Fulvestrant + Palbociclib 	174 347	6.3 10.4	19.0 34.0	3.8 (3.5-5.5) 9.2 (7.5-NR	0.422 (0.318-0.560)	<0.000001
MONARCH-2 - Fulvestrant + placebo - Fulvestrant + Abemaciclib	223 446	16.1 35.2	56.1 72.2	9.3 16.4	0.553 (0.449-0.681	<0.0000001
 MONALEESA-3 Fulvestrant + placebo Fulvestrant + Ribociclib 	109 236	N/A N/A	N/A N/A	9.1 14.6	0.57 0.42-0.74	N/A
Third-Line Metastatic Breast	Cancer and Be	yond				
MONARCH-1	132	19.7	42.4	6.0 (4.2-7.5)	N/A	N/A

Turner NC., et al. NEJM 373(3):209-19, 2015; Sledge GW Jr. Et al. *J Clin Oncol* 35(25):2875-2884, 2017; Dickler MN, et al. *Clin Cancer Res* 23(17):5218-5224, 2017; Slamon DJ, ASCO 2018


Special Clinical Situations CDK 4/6 Single Agent Therapy in ER+ HER-2 normal


Refractory Metastatic Breast Cancer

Brain metastasis

Elderly

MONARCH 1: Phase 2 Study Design

Treatment continued until unacceptable toxicity or PD

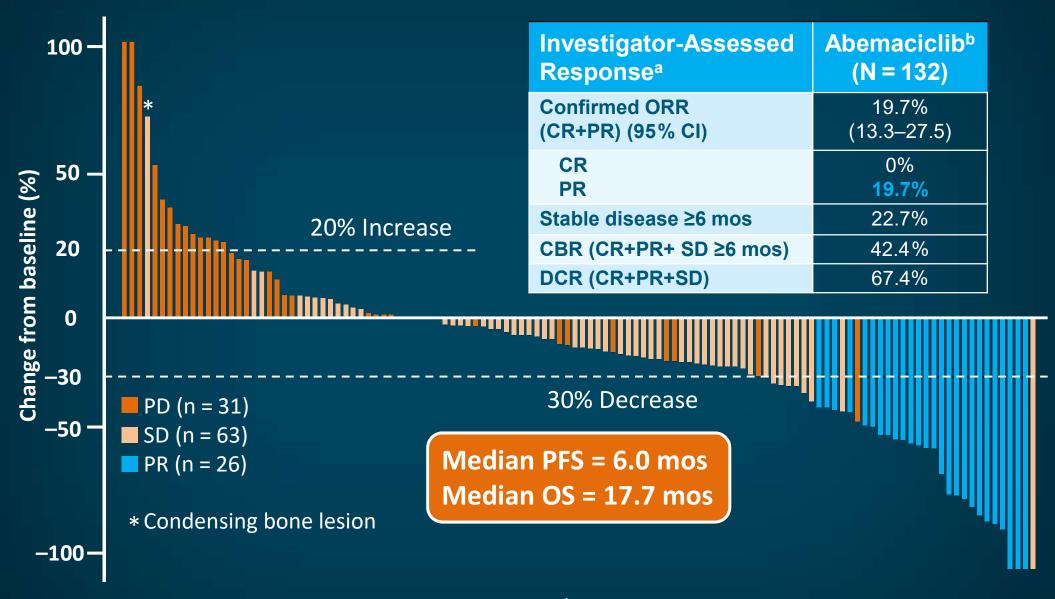
Primary objective

To evaluate abemaciclib with respect to confirmed objective response rate based on investigator assessment (per RECIST v1.1)

Secondary objectives

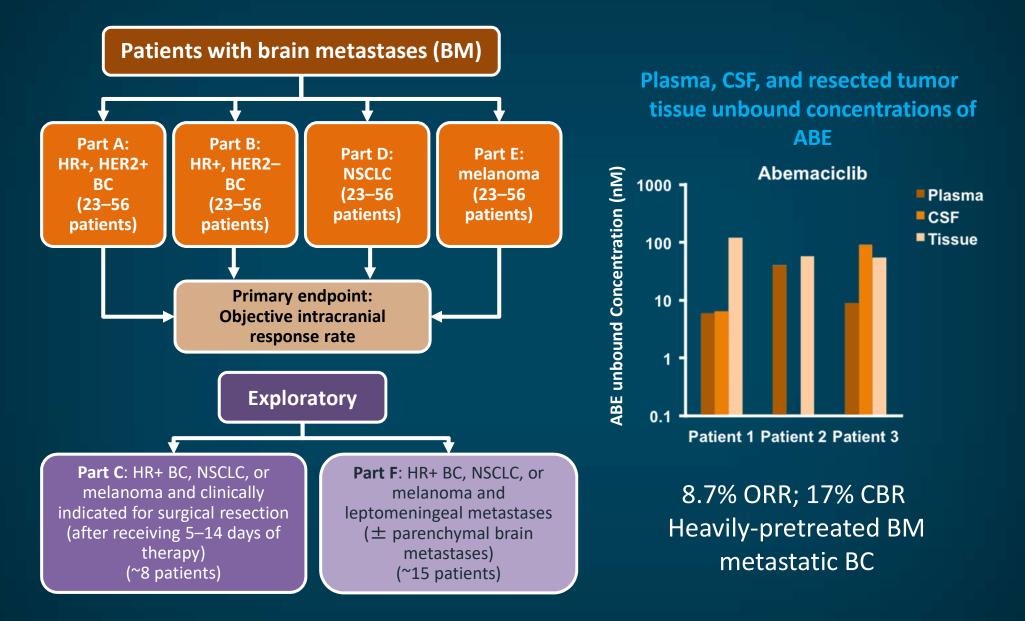
Duration of response, progression-free survival, overall survival, clinical benefit rate, safety

Statistical design


A sample size of 128 patients provides 82% power, assuming a true response rate of 25%, to exclude an ORR of \leq 15% on the lower bound of the 95% CI at 12 months follow-up

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author, Permission required for reuse.

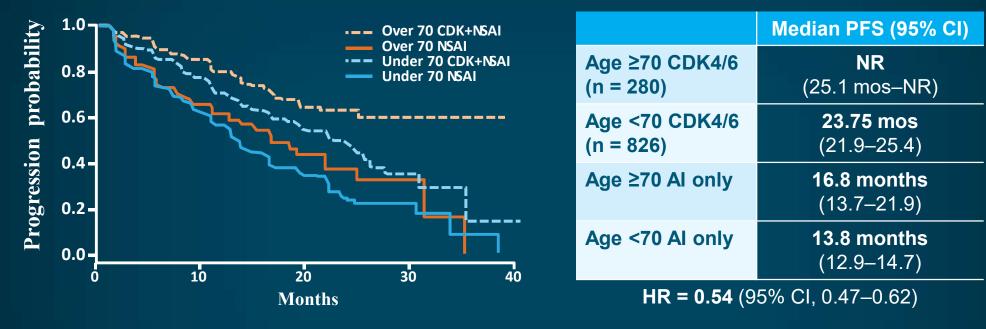
Presented by: Maura N. Dickler, MD


Presented By Maura Dickler at 2016 ASCO Annual Meeting

MONARCH 1: Late-Line Abemaciclib ER+ MBC

^aAssessments based on independent review were comparable. ^b200 mg monotherapy dose. CR = complete response; PR = partial response; DCR = disease control rate; SD = stable disease. Dickler MN et al. *Clin Cancer Res.* 2017;23:5218-5224.

Abemaciclib for Brain Metastases*



NSCLC = non-small-cell lung cancer; CSF = cerebrospinal fluid. * Abemaciclib is not FDA-approved for this indication.

NCI02308020. Sahebjam S et al. J Clin Oncol. 2016;34(suppl): abstract 526. Tolaney SM et al. J Clin Oncol. 2017;35(suppl): abstract 1019.

US FDA Pooled Analysis of Outcomes of Older Women with HR+ MBC Treated with CDK4/6 Inhibitor as Initial Endocrine-Based Therapy

Efficacy of CDK4/6 Inhibitors in patients aged >70

- Older patients with BC benefit from treatment with CDK4/6 inhibitors as initial endocrine-based therapy for HR+, HER2-negative MBC.
- Severity of AEs and rates of dose modifications and interruptions were higher in women aged ≥65, ≥70.
- Rates of selected adverse events similar across pooled trials

No treatment difference across age subgroups. Similar results with alternate age cut offs (aged >65, >75, etc.) Singh H et al. SABCS 2017: abstract GS5-06.

Summary of 1st and 2nd line CDK4/6i Trials

Table 1. Select Randomized Clinical Studies of Endocrine Therapy Plus CDK4/6-Directed Therapy in Estrogen Receptor-Positive Metastatic Breast Cancer

Study	Regimen	Phase	No.	PFS, Endocrine Alone (months)	PFS, + CDK 4/6 Inhibitor (months)	Hazard Ra	tio (95% Cl)
First line							
PALOMA-1	Letrozole with or without palbociclib		165	10.2	20.2	0.488 (0.	19 to 0.748)
PALOMA-2	Letrozole with or without palbociclib		666	14.5	24.8	0.58 (0.	6 to 0.72)
MONALEESA-2	Letrozole with or without ribociclib		668	14.7	25.	0.56 (0.	3 to 0.72)
MONARCH-3	NSAI with or without abemaciclib		493		NCT 3 21*		
Second line							
PALOMA-3	Fulvestrant with or without palbociclib		521	4.6	9.5	0.46 (0.	6 to 0.59)
MONARCH-2	Fulvestrant with or without abemaciclib		669	9.3	16.4	0.553 (0.	49 to 0.681)
MONALEESA-3	Fulvestrant with or without ribociclib	Ш	725		NCT02422615		

Abbreviations: CDK4/6, cyclin-dependent kinase 4/6; PFS, progression-free survival; NSAI, nonsteroidal aromatase inhibitor. *Interim analysis reportedly met primary end point of improved PFS in the combination arm.⁸

Wander S, Mayer EL, Burstein HJ. J Clin Oncol 2017

SAFETY PROFILE

Side effects of CDK4/6 inhibitors

		125 mg per day on, 1 week off])		600 mg per day on, 1 week off]))0 mg twice per day tinuous])
Common Adverse Event*	All Grades	Grade 3 and 4	All Grades	Grade 3 and 4	All Grades	Grade 3 and 4
Neutropenia	74-81	54-67	74	59	46	27
Thrombocytopenia	16-22	23	NR	ND	16	9
Fatigue	37-40	2-4	37	2	40	3
Diarrhea	21-26	1-4	35	1	86	13
Nausea	25-35	0-2	52	2	45	3
QTc prolongation	NR	NR	3	NR	NR	NR

NOTE. Data are given as percent.

Abbreviation: NR, not reported; QTc, corrected QT interval.

*Common adverse events in phase III trials in the metastatic setting.

Wander S, Mayer EL, Burstein HJ. J Clin Oncol 2017

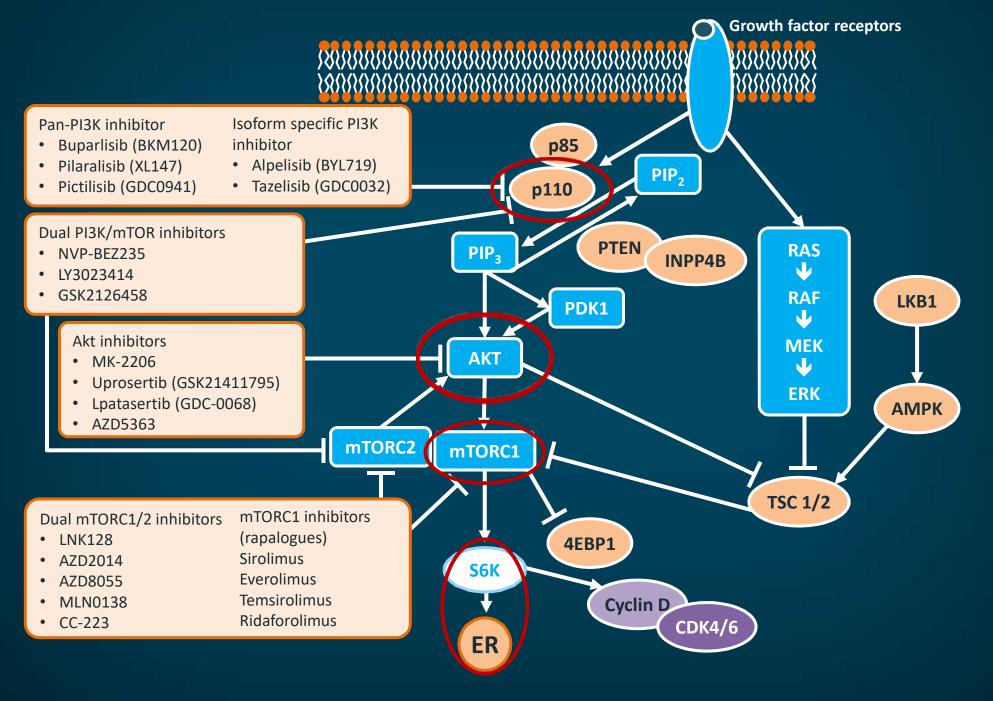
Clinical Summary of CDKi in HR+ MBC

- Consistent clinical benefit and significant PFS improvements regardless of:
 - Age, menopausal state, prior endocrine therapy exposure, and endocrine therapy partner,
- Schedule of administration is convenient
- Treatment is associated with predictable, tolerable and manageable safety profile
 - Unique toxicities
 - Abemaciclib: diarrhea occurs early, dose related
 - Ribociclib: QTc prolongation; ECG q2 x 3
 - All: Neutropenia with low incidence of febrile neutropenia

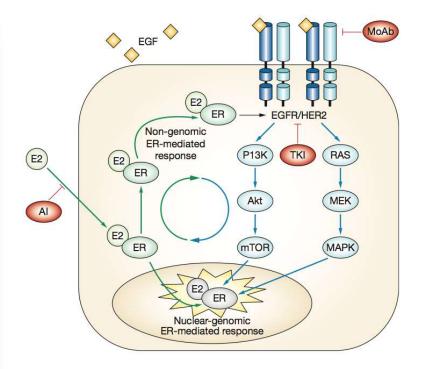
Clinical Questions of CDKi in HR+ MBC

- When to best to integrate, first line, second line and later
- Can we select patients for CDK inhibition based in molecular or clinical characteristics
- Are these results in significant PFS would translate into significant improvement in overall survival
- What should we do do upon disease progression, switch hormonal agent and continue CDK inhibition or switch to hormonal therapy or chemotherapy alone?

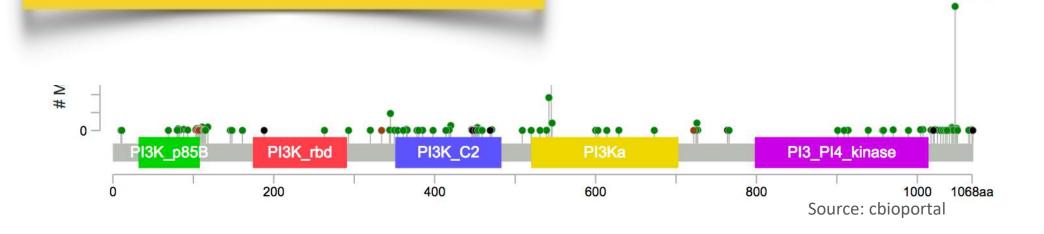
Progression on CDK4/6 Inhibitors


- Per NCCN 2017 guidelines: If disease progression on CDK4/6 inhibitor + letrozole, there are no data to support an additional line of therapy with another CDK4/6 inhibitor regimen.
- Resistance mechanisms for CDK4/6
 - Rb mutation
 - Collateral pathways, eg, PI3K
 - Switch to cyclin E
 - Resistance to the endocrine therapy, eg, ESR1 or HER2 mutation
- Clinical trial approaches to overcoming resistance
 - CDKi-free period then rechallenge
 - Add additional agents (PI3K, mTOR inhibitors)
 - Switch endocrine therapies

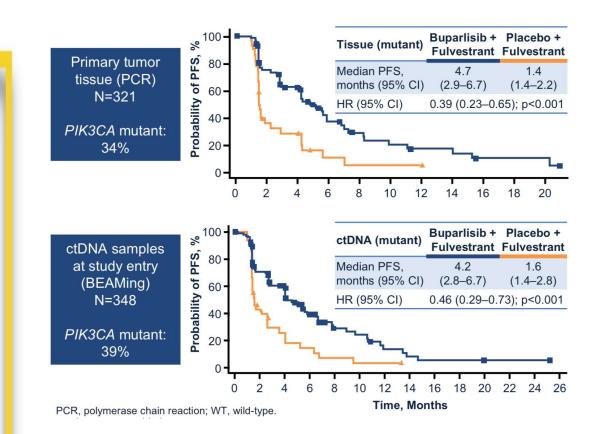
APPROACHES TO OVERCOMING RESISTANCE TO ENDOCRINE THERAPY

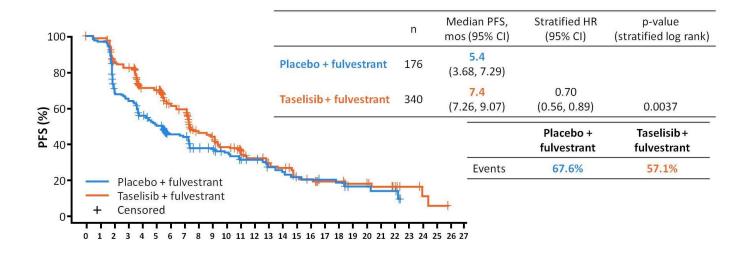

• Alterations of downstream signaling pathways such as PI3K, (PI3K inhibitors)

• Alterations of the cell cycle machinery (CDK inhibitors)


PI3 Kinase/mTOR Signaling

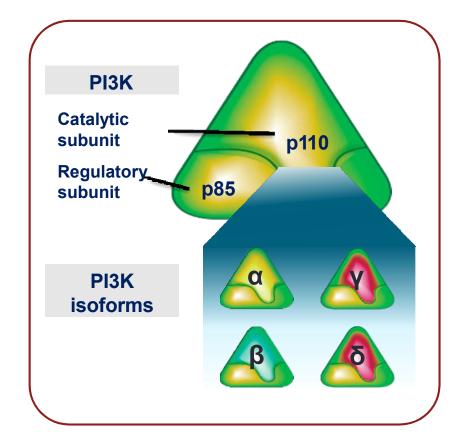
- PI3K/mTOR/Akt pathway involved in tumor growth and survival
- PIK3CA most common oncogenic mutation in BC
- Mutations in 30-35% of HR positive BC
- Implicated in resistance to endocrine and chemotherapy
- Commonly seen in metaplastic BC (75%)


H1047L/Q/R/Y


Buparlisib plus Fulvestrant vs. Fulvestrant

- Phase-3 for ER +ve MBC
- Progressed on endocrine therapy or mTOR inhibitor (2:1)
- PFS improvement in PIK3CA mut
- LFT alteration, hyperglycemia, HTN with Buparlisib

Taselisib plus Fulvestrant vs. Fulvestrant


SANDPIPER

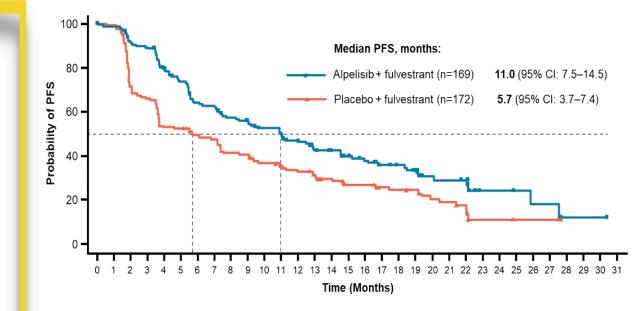
- ER +ve MBC
- Post menopausal
- *PIK3CA* mutation positive
- Recurrence on Al
- No Prior everolimus

- Expected AE GI Toxicity and hyperglycemia
- Issues with tolerability, frequent interruptions

PIK3CA mutations and alpelisib

- PI3K enzyme has four isoforms $(\alpha, \beta, \delta, \gamma)^1$
- Previously investigated PI3K inhibitors targeted multiple isoforms and their associated toxicities precluded further development and prompted the need for selective PI3K inhibitors²⁻⁴
- Alpelisib (BYL719) is an inhibitor of the PI3K α-isoform¹
- Alpelisib inhibits the α -isoform of PI3K 50 times more potently than other PI3K isoforms $(\beta, \delta, \gamma)^5$
- Alpelisib has demonstrated antitumor activity in preclinical models harboring *PIK3CA* alterations¹

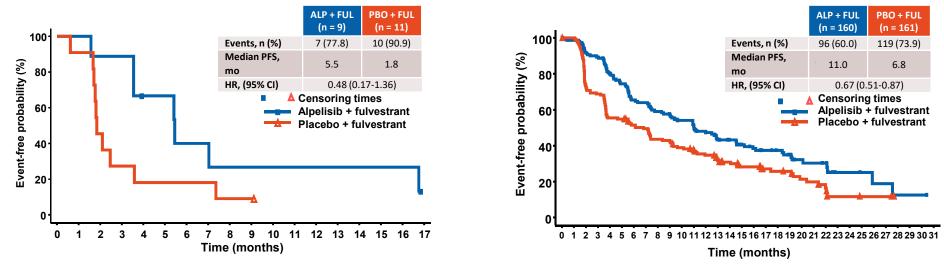
PI3K, phosphatidylinositol-3-kinase; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha.


1. Fritsch C, et al. *Mol Cancer Ther* 2014;13:1117–1129; 2. Baselga J, et al. *J Clin Oncol* 2018;36 (Suppl): LBA 1006; 3. Di Leo A, et al. *Lancet Oncol* 2018;19:87–100;

4. Baselga J, et al. Lancet Oncol 2017;18:904–916; 5. Furet P, et al. Bioorg Med Chem Lett 2013;23(13):3741-8.

Alpelisib plus Fulvestrant vs. Fulvestrant

SOLAR


- ER +ve MBC, Recurrence on prior AI
- Alpha specific isoform inhibitor
- *PIK3CA* mutation +ve
- G3 hyperglycemia 33%, 10% rash
- No difference in non-mutants
- Activity in both exon 9 and exon 20 mutations
- ORR 36%

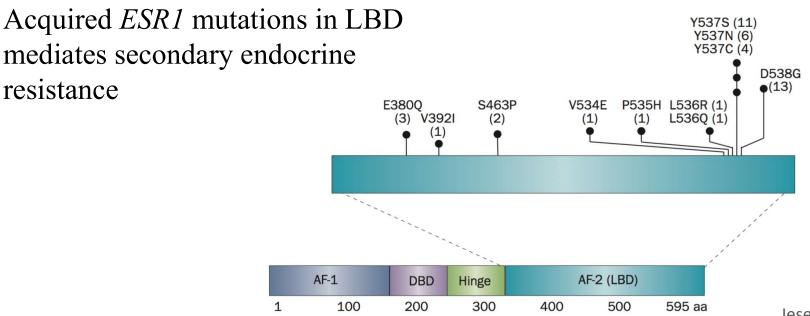
Alpelisib plus Fulvestrant vs. Fulvestrant

With Prior CDK4/6 inhibitor therapy

Without Prior CDK4/6 inhibitor therapy

Overall Survival Not Mature

GENOMICS TO PERFORM PRECISE MEDICINE IN PATIENT WITH ER+ MBC

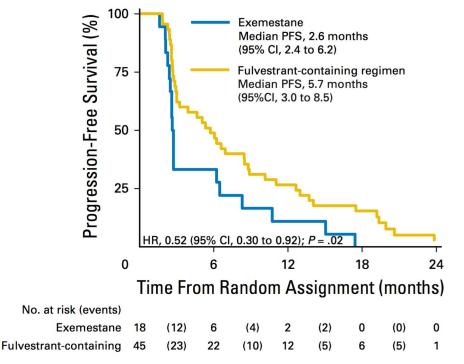

ESR1

Activating *ESR1* mutations in hormone-resistant metastatic breast cancer

Dan R Robinson^{1,2,12}, Yi-Mi Wu^{1,2,12}, Pankaj Vats^{1,2}, Fengyun Su^{1,2}, Robert J Lonigro^{1,3}, Xuhong Cao^{1,4}, Shanker Kalyana-Sundaram^{1,2}, Rui Wang^{1,2}, Yu Ning^{1,2}, Lynda Hodges¹, Amy Gursky^{1,2}, Javed Siddiqui^{1,2}, Scott A Tomlins^{1,2}, Sameek Roychowdhury⁵, Kenneth J Pienta⁶, Scott Y Kim⁷, J Scott Roberts⁸, James M Rae^{3,9}, Catherine H Van Poznak⁹, Daniel F Hayes⁹, Rashmi Chugh⁹, Lakshmi P Kunju^{1,2}, Moshe Talpaz⁹, Anne F Schott⁹ & Arul M Chinnaiyan^{1-4,10,11}

ESR1 ligand-binding domain mutations in hormone-resistant breast cancer

Weiyi Toy¹, Yang Shen², Helen Won¹, Bradley Green³, Rita A Sakr⁴, Marie Will⁵, Zhiqiang Li¹, Kinisha Gala¹, Sean Fanning³, Tari A King⁴, Clifford Hudis^{5,6}, David Chen⁷, Tetiana Taran⁷, Gabriel Hortobagyi⁸, Geoffrey Greene³, Michael Berger^{1,9}, José Baselga^{1,5} & Sarat Chandarlapaty^{1,5,6}



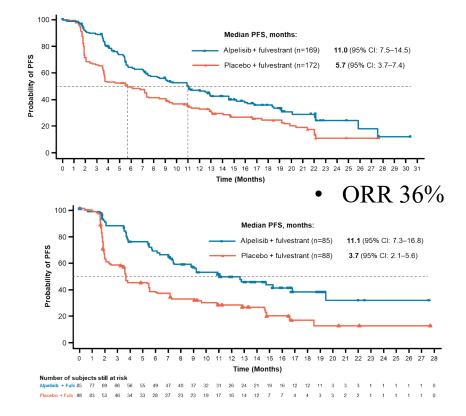
Jeselsohn et al. 2015

ESR1

- Uncommon in primary tumors
- Currently, the most effective therapy for *ESR1* mutations is unknown
- Fulvestrant might have activity on select ESR1 variants
- Novel SERDs are being developed

Study	Frequency
FERGI	40%
SOFEA	40%
BOLERO-2	30%
Clatot	31%
PALOMA-3	25%

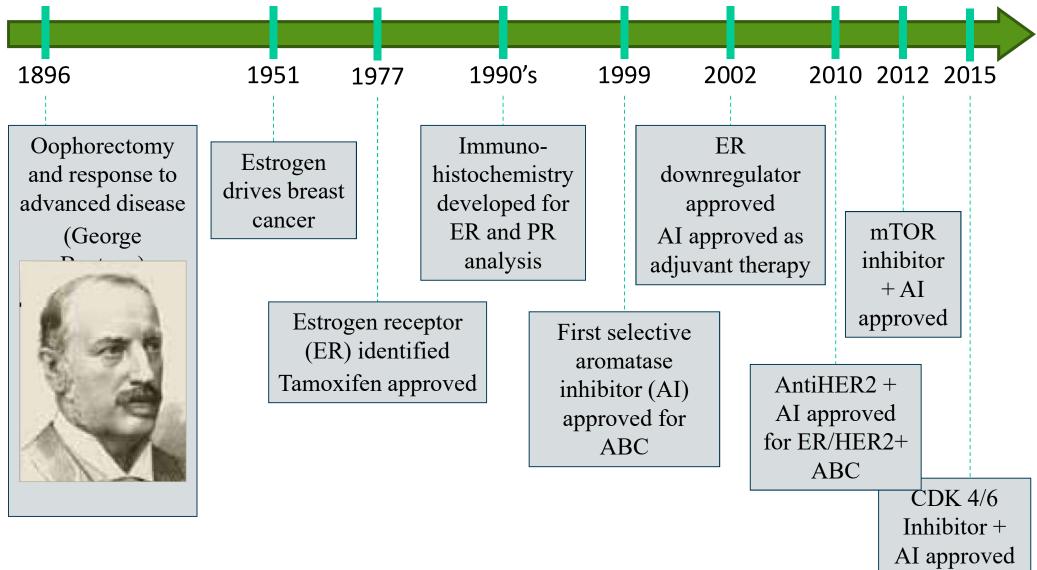
Efficacy of cdk 4/6-inhibitors Plus Endocrine Therapy by Baseline Tumor Markers


- The Benefit of ribociclib plus letrozole is not altered by
 - Total Rb, Ki67 and p16 expression (IHC);
 - mRNA expression of *CCND1*, *CDKN2A*, and *ESR1*;
 - Presence of *PIK3CA* mutations or tp53 alterations (ctDNA sequencing)
- Quantitative reductions in treatment benefit were observed with
 - RTK gene, CDH1, FGFR1/ZNF703 (8p11.23) alterations (circulating tumor DNA)
 - Sample numbers were limited; these observations need validation

Andre F, et al. AACR 2017 (CT045); Turner N, et al. ASCO 2016; Hortobagyi GN, et al. SABCS 2017. PD4-06

Alpelisib plus Fulvestrant vs. Fulvestrant

SOLAR


- ER +ve MBC, Recurrence on prior AI
- Alpha specific isoform inhibitor
- *PIK3CA* mutation +ve
- G3 hyperglycemia 33%, 10% rash
- No difference in non-mutants
- PFS primary endpoint
- Activity in both exon 9 and exon 20 mutations

Take home points in HT in ER+ HER-2- MBC

- Endocrine therapy is the cornesrtone of the treatment of HR+ MBC.
- Combined AI and SERD treatment might be more effective than an AI alone for ET-naïve patients with ER+ MBC no candidate to CDK 4/6 inhibitors
- M-THOR and PI3K inhibitors plus HT provide superior clinical benefit and PFS than HT alone in hormone-resistant ER+ MBC clinical benefit when used in combination with endocrine therapy.
 - Challenges: Toxicities and patient selection
- CDK inhibitors plus HT is the standard of care in first or second line setting. All agents with nearly identical activity but have different side effect profiles. Optimal use" remains unclear and survival data is still evolving
- Resistance to endocrine therapy is a challenge. Mutations of the PI3K pathway are frequent in breast cancer. Aberrations in PI3K Common mechanism of endocrine resistance.

Hormonal Therapy for Advanced Breast Cancer: Milestones

Love RR, Philips J. J Natl Cancer Inst. 2002;94:1433-1434; Allred DC, et al. Mod Pathol. 1998;11:155-168; Bross PF, et al. Oncologist. 2002;2:477-480; Cohen MH, et al. Oncologist. 2001;6:4-11.

MDAnderson Cancer Center

+

Making Cancer History

MD Anderson Cancer Center

Alkek Hospital

Albert B. and Margaret M.