What New in Hematopoietic Stem Cell Transplantation?

Joseph M. Tuscano, M.D. UCD Cancer Center

JOSEPH TUSCNO, MD WHAT'S NEW IN HEMATOPOEITIC STEM CELL TRANSPLANTATION?

RELEVANT FINANCIAL RELATIONSHIPS IN THE PAST TWELVE MONTHS BY PRESENTER OR SPOUSE/PARTNER.

GRANT/RESEARCH SUPPORT: SPECTRUM PHARMACEUTICALS, CELGENE, GENENTECH, PHARMACYCLICS SPEAKERS BUREAU: SEATTLE GENETICS, AMGEN, CELGENE

THE SPEAKER WILL DIRECTLY DISCLOSURE THE USE OF PRODUCTS FOR WHICH ARE NOT LABELED (E.G., OFF LABEL USE) OR IF THE PRODUCT IS STILL INVESTIGATIONAL.

14th Annual California Cancer Conference Consortium August 10-12, 2018

Conditioning

Double vs single, ablative vs non-ablative

Post-transplant

Consolidation/maintenance

Novel treatment approaches for PTLD
 Adoptive EBV-targeted T cell therapy

Autologous Conditioning Approaches

Abstract 401 **Double Autologous Stem Cell Transplantation Significantly Prolongs Progression-Free Survival and Overall Survival** in Comparison with Single **Auto Transplantation in Newly Diagnosed Multiple Myeloma: An Analysis of Phase 3** EMN02/HO95 Study

Background

S Controversy: single vs. double aHCT in newly diagnosed MM
 Impact of novel new agents unknown

	EFS	OS	
IFM	25 mo vs 30 mo (P=.03)	48 mo vs 58 mo (P=.01)	Tandem favored for EFS/OS < VGPR benefit most
Bologna 96	23 mo vs 35 mo (P=.001)	65 mo vs 71 mo (P=.90)	Tandem favored for EFS
HOVON 24	21 mo vs 22 mo (P=.013)	55 mo vs 50 mo (P=0.81)	Tandem favored for EFS

IMiDs and proteasome inhibitors also a consideration

Attal M, et al. *N Engl J Med.* 2003; 349:2495-2502. Cavo M, et al. *J Clin Oncol.* 2007;25:2434-2441. Sonneveld P, et al. *Haematologica.* 2007;92:928-935. aHCT, autologous hematopoietic cell transplantation; EFS, event free survival; IMiDs, immunomodulators; OS, overall survival; VGPR, very good partial response

Background

ASBMT

"...insufficient evidence to support tandem aHCT as the standard of care..."

NCCN

 "...a tandem transplant with or without maintenance therapy can be considered for all patients who are candidates for aHCT, and is an option for patients who do not achieve at least a VGPR after the first aHCT..."

IMWG

"...double aHCT is recommended for patients with HR cytogenetics..."

Shah N, et al. *Biol Blood Marrow Transplant*. 2015;21:115-1166. NCCN Clinical Practice Guidelines in Oncology. MM. Version 3.2018. Available at <u>www.nccn.org</u>. Sonneveld P, et al. *Blood*. 2016;127:2955-62.

ASBMT, American Society for Blood and Marrow Transplantation; HR, high risk; IMWG, International Myeloma Working Group; NCCN, National Comprehensive Cancer Network

EMN02/HO95 MM: Study Design

Cavo M, et al. ASH 2017;session 731. Abstr 401.

Endpoints

9 Primary

- PFS from R1: aHCT vs VMP
- PFS from R2: VRD consolidation vs no consolidation

Secondary

- PFS from R1: high dose melphalan-1 vs high dose melphalan-2
- Rates of response to aHCT or VMP
- OS from R1: aHCT vs VMP
- Toxicities with aHCT and VMP

Progression-Free

Overall S<u>urvival</u>

Result

S

	aHCT-2	aHCT-1	HR	95% CI	P-value
PFS by High	69.2%	44.2%	0.42	0.21-0.84	0.014
Risk	(54.7%-87.5%)	(31%-63.2%)			
Cytogenetics					
OS by High	84.9%	72.8%	0.52	0.28-0.98	0.042
Risk	(77.3%-93.2%)	(63.6%-83.4%)			
Cytogenetics					
OS by R-ISS II + III	84.9%	75.2%	0.48	0.27-0.86	0.013
	(78.2%-92.1%)	(67.4%-84%)			

Response Post aHCT-2

CR, complete response; PR, partial response; SD, stable disease; sCR, stringent CR

Cavo M, et al. ASH 2017;session 731. Abstr 401.

Conclusions

	Double ASCT	Single ASCT
Improved PFS	X	
PFS benefit confirmed with multivariable Cox regression analysis	X	
Overcame high risk poor prognosis	X	
Upgraded quality of response	X	
>50% <u>></u> CR	X	

Sesults support double aHCT, especially in high risk

Cavo M, et al. ASH 2017;session 731. Abstr 401.

Autologous Conditioning Regimens: Multiple Myeloma Bortezomib and High-Dose Melphalan vs. High-Dose Melphalan as Conditioning

Background

5 High dose melphalan = standard of care in MM

5 Bortezomib

- Proteasome inhibitor
- Synergizes with alkylating agents

5 Safety and efficacy data supporting combination

- VGPR or better: 70%
- CR: 32%
- No toxic deaths
- No increased hematologic toxicity

Objective and Endpoints

S Assess efficacy

Melphalan + bortezomib vs. melphalan alone

5 Primary endpoint

CR rate at day +60 post aHCT

Secondary endpoints

- ORR
- Toxicity
- Outcomes

Open-label, multicenter, phase III study in de novo MM
 Stratified by post induction response, ISS, cytogenetics

⁵ Open-label, multicenter, phase III study in de novo MM ⁵ Stratified by post induction response, ISS, cytogenetics

Response (I)

	Arm A (n=152*) Bortezomib + Melphalan (%)	Arm B (n=146) Melphalan (%)		
Response at day 60				
Response assessment At least CR, ITT (n=154) sCR CR CR VGPR PR SD PD	23.4 10.5 13.2 55.9 19.1 0.7 0.7	20.5 13.0 8.2 53.4 21.2 2.7 1.4		
*Two patients in arm A not treated				
MRD at screening N/missing Negative, %	116/36 50.9	117/29 47.0		

Response (II)

Roi

	Arm A Bortezomib + Melphalan (%)	Arm B Melphalan (%)		
Response post consolidation (Arm A = n of 141, Arm B = n of 139)				
sCR CR VGPR	19.9 14.2 50.4	20.9 14.4 44.6		
MRD at screening N/missing Negative, %	112/29 64.3	115/24 59.1		
18 mo Progression Free Survival (P=0.4232)	78.5% (69.8 – 85.0)	79.9% (71.0 – 86.3)		
18 mo Overall Survival (P=0.1277)	93.4 (86.2 – 96.9)	99.3 (95.0 – 99.9)		

Conclusions

5 Bortezomib plus melphalan is *not* superior to melphalan

5 CR or better rates at day 60

- Bortezomib plus melphalan = 23.7%
- Melphalan = 21.2%

MRD negativity similar regardless of time

5 No increased or unexpected toxicities

What if you try something else?

Such as busulfan...

Abstract 399 A Randomized Phase III Trial of Busulfan + Melphalan Vs Melphalan Alone for Multiple Myeloma

Muzaffar H, et al. ASH 2017; session 731. Abstr 399.

Background

High dose melphalan is standard of care in MM ...still

SBusulfan plus melphalan = longer PFS

- Oral Busulfan used
- VOD ↑
- TRM ↑

5 Busulfan IV
• NRM↓

Lahuerta JJ, et al. *Haematologica*. 2010;95:1913-1920. Blanes M, et al. *Leuk Lymphoma*. 2015;56:415-419. Kebriaei P, et al. *Biol Blood Marrow Transplantation*. 2011;17:412-420.

NRM, non-relapse mortality; TRM, transplant related mortality; VOD, veno-occlusive disease

Objective and Endpoints

Susulfan plus Melphalan (Bu-Mel) vs. Melphalan alone

5 Primary endpoint

CR rate at day +90 post aHCT

5 Secondary endpoints

- PFS
- OS
- NRM
- Grade 3-4 AEs
- QoL

SRandomized phase III study

Muzaffar H, et al. ASH 2017;session 731. Abstr 399.

Study Design

Susulfan target AUC: 5,000 µM-min ± 12% determined by test dose
 Phenytoin = seizure prophylaxis

Outcome

S Follow-up: 28.1 month

	Busulfan + Melphalan	Melphalan	P-value
CR (d 100)	27 (26)	34 (34)	0.22
MRD-/VGPR (d 100)	53/68 (78)	58/72 (81)	0.83
CR (Final)	52 (51)	54 (54)	0.57
NRM (d 100)	0	0	1.00
NRM (1-year)	2	0	0.11
SPM	2 (2)	3 (3)	0.67
PFS, median (mo)	64.7	34.4	0.013

PFS was preserved after adjusting for maintenance therapy

- PFS was longer with Bu-Mel in high-risk patients (P=0.021)
- No difference in OS (P=0.94)

Progression-Free Survival

Months after Stem Cell Transplant

Muzaffar H, et al. ASH 2017;session 731. Abstr 399.

Conclusion

5 Busulfan plus melphalan vs. melphalan alone

Toxicities: higher rates of
 Grade I-III mucositis
 SALT elevation
 Neutropenic fever

5 Outcomes

- No difference in NRM
- No difference in CR
- No difference in MRD negativity rates
- No difference in OS
- Longer PFS (also seen in high risk)

Allogeneic Conditioning Regimens

"Which RIC vs. MAC? The Never-Ending Debate"

MAC, myeloablative conditioning; RIC, reduced intensity conditioning;

Background: RIC vs. MAC Debate Conflicting data

- CTN 0901 = ↑ RFS with MAC
- Bornhauser M, et al. 2012 = No difference in relapse and OS
- RICMAC-Trial = No difference in RFS and OS

Objective

SCIBMTR

5 Identify optimal regimen for AML or MDS

5 Conditioning regimens

- Bu/Cy
- Flu/Bu 4 (Busulfan dose: IV 10-13 mg/kg)
- Flu/Bu 2 (Busulfan dose: IV 5-6 mg/kg)
- Flu/Mel (Mel dose: IV 130-140 mg/m2)

AML, acute myeloid leukemia; Bu/Cy, busulfan/cyclophosphamide; CIBMTR, Center for International Blood & Marrow Transplant Research; Flu/Bu, fludarabine/busulfan; Flu/Mel, fludarabine/melphalan; MDS, Myelodysplastic syndrome

Risk of Relapse and Mortality Compared to Bu/Cy

	NRM	Relapse	TF	Mortality
Bu/Cy	1.00	1.00	1.00	1.00
Flu/Bu 4	0.99	1.05	1.03	1.05
Flu/Bu 4 + ATG	1.05	1.47*	1.22*	1.28*
Flu/Bu 2	0.71*	1.66*	1.24*	1.14
Flu/Bu 2 + ATG	0.72*	2.09*	1.41*	1.21*
Flu/Mel	1.12	0.71*	0.93	0.92
Flu/Mel + ATG	1.17	0.99	1.16	1.36

* p<0.05

Eapen M, et al. ASH 2017;session 732. Abstr 598.

TF = treatment failure; relapse or death; inverse of relapse-free survival
Conclusions

S Consider

- Bu/Cy
- Flu/Bu 4
- Flu/Mel
 Small number of patients

S Avoid Flu/Bu 2 (↑ relapse, ↓ RFS)

5 Caution using ATG with

- Flu/Bu (\uparrow relapse, \downarrow RFS, \downarrow OS)
- Flu/Mel (↓ OS)

Myeloablative versus reduced-intensity conditioning in HLA-haploidentical peripheral blood stem cell transplantation using posttransplant cyclophosphamide

<u>Junichi Sugita</u>¹, Yusuke Kagaya², Toshihiro Miyamoto³, Yasuhiko Shibasaki⁴, Koji Nagafuji⁵, Shuichi Ota⁶, Tatsuo Furukawa⁷, Miho Nara⁸, Keitaro Matsuo⁹, Koichi Akashi³, Shuichi Taniguchi¹⁰, Mine Harada¹¹, Takanori Teshima¹, <u>on</u> <u>behalf of the Japan Study Group for Cell Therapy and Transplantation</u> (JSCT) Annual Number of Allogeneic HCTs from related donors by Year and Donor Type (HLA-matched/HLA-non-id relative)

JOHNS HOPKINS, Baltimore

Kasamon YL, Biol. Blood Marrow Transplant. 2010. Luznik L, et al. Biol. Blood Marrow Transplant. 2008.

Myeloablative conditioning (MAC)

Reduced-intensity conditioning (RIC)

JSCT Haplo13 Flu + CY + BU + TBI (2Gy)

JSCT Haplo14 RIC Flu + + HU + TBI (4Gy)

Cytokine release syndrome (CRS)

OS•EFS

	Johns Hopkins ¹ BM (n=210)	Haplo14 MAC PBSC (n=50)	Haplo14 RIC PBSC (n=77)
Condtioning regimen	Flu/CY/TBI	Flu/TBI Flu/BU4/TBI	Flu/BU2/TBI
GVHD prophylaxis	PTCy+Tac+MMF	PTCy+Tac+MMF	PTCy+Tac+MMF
Engraftment	87% day15 (11-42)	98% day17 (12-39)	94% day18 (13-50)
Acute GVHD II-IV III-IV	27% 5%	18% 8%	14% 5%
Chronic GVHD all mod-sev	13%	36% 20%	27% 20%
NRM	18%	10%	20%

Maintenance Therapy Strategies Post-Transplant

Approach to Relapse Prevention

 Prevention is the most effective intervention to manage relapse

Consolidation

- -Short-term, more intensive therapy
- -Goal: To deepen response

Maintenance

- -Long-term, less intense therapy
- -Goal: Suppress minimal residual disease (MRD), prolong response, progression-free survival (PFS), overall survival (OS)

Increasingly sensitive methods of MRD detection Allows for risk stratification Goal: To prevent overt relapse

Maintenance Therapy Strategies Post-Transplant for Multiple Myeloma

Lenalidomide: Randomized Controlled Trials

Study	Regimen	Median f/u	Median TTP/PFS (LEN vs PBO)	OS (LEN vs PBO)	Comments
CALGB 100104 McCarty, 2012 (n = 460)	Single aHCT à LEN 10-15mg daily until progression vs PBO	34 mo	TTP: 46 vs 27 mo (p<0.001)	3 years: 88% vs 80% (HR 0.62, Cl 0.4-0.95)	Unblinded at 18 mo, 86/128 pts in PBO crossed over
IFM 2005-02 Attal, 2012 (n = 614)	Single or tandem aHCT à LEN consolidation x 2 à LEN 10-15mg daily x 2 years vs PBO	45 mo	PFS: 41 vs 23 mo (p<0.001)	4 years: 73% vs 75% (p=NS)	LEN stopped at 2 years due to SPM
GIMEMA Palumbo, 2014 (n = 135)	LEN-Dex x 6 à aHCT vs MPR consolidation à LEN 10mg on days 1-21, Q28 days until progression vs OBS	51.2 mo	PFS (from diagnosis): 54.7 vs 37.4 mo (p<0.001)	5 years: 78% vs 66.6% (p=0.14)	Data from the 135 patients randomized post aHCT

PBO: placebo, TTP: time to progression, Dex: dexamethasone, OBS: observation, SPM: second primary malignancy

McCarthy PL, et al. N Engl J Med. 2015;366:1770-1781. Attal M, et al. N Engl J Med. 2012;366:1782-1791. Palumbo A, et al. N Engl J Med. 2014;371:895-905

Lenalidomide: Second Primary Malignancies

Study	Median f/u	Treatment Arm	Invasive SPMs	Solid Cancers	Heme Cancers	Non- melanoma Skin Cancers	Incidence of Invasive SPMs
CALGB 100104	24 mg	LEN	18	10	8	4	7.8%*
McCarty, 2012 (n = 460)	34 MO	Placebo	6	5	1	3	2.6%*
IFM 2005-02 Attal, 2012 (n = 614)	45 mo	LEN	23	10	13	5	7.5%*
		Placebo	9	4	5	3	2.9%*
GIMEMA Palumbo, 2014 (n = 231, total randomized to maintenance)	51.2	LEN	5	NR	NR	NR	4.3%
	mo	Observation	5	NR	NR	NR	4.3%

McCarthy PL, et al. N Engl J Med. 2015;366:1770-1781. Attal M, et al. N Engl J Med. 2012;366:1782-1791. Palumbo A, et al. N Engl J Med. 2014;371:895-905. Yang J, et al. Adv Hematol. 2012;2012:801495.

Lenalidomide: Meta-Analysis

- Requested by the US Food and Drug Administration
- Primary endpoint: Overall survival
- Inclusion criteria:
 - -LEN maintenance arm vs a control arm postaHCT
 - -Database lock for primary efficacy analysis
 - -Primary source patient-level data
- Three RCTs identified:
 - -CALGB 100104
 - -IFM 2005-02
 - -GIMEMA

Median follow-up: 79.5 months

Lenalidomide: Meta-Analysis PFS

 Median PFS: 52.8 mo LEN vs
 23.5 mo control (HR = 0.48; 95% CI 0.41-0.55)

 Median PFS2 (PFS after next therapy): 73.3 mo LEN vs
 56.7 mo control (HR = 0.72; 95% CI 0.62-0.84)

Lenalidomide: Meta-Analysis OS

- Median OS: not reached LEN vs 86 mo control (HR = 0.75; 95% CI 0.63-0.9)
- 7 year survival rate: 62%
 LEN vs 50% control
- At median follow-up of 79.5 mo, 64% LEN vs 54% control alive

Lenalidomide: Meta-Analysis SPMs

- Heme SPMs: 7.3% LEN vs 4.2% control
- Solid SPMs: 6.1% LEN vs 2.8% control
- Time to invasive SPM occurring before progressive disease (PD) was shorter in LEN vs control [HR 2.67 (95% CI 1.54-4.62; p<0.001)]
- Time to PD was longer with LEN vs control [HR 0.51 (95% CI 0.45-0.59; p<0.001)]
- Time to death as a result of MM was longer with LEN vs control [HR 0.66 (95% CI, 0.53-0.81; p<0.001)]
- No difference in time to death as a result of SPMs between groups

McCarthy PL, et al. J Clin Oncol. 2017;35:3279-3289. Supplement to: McCarthy PL, et al. J Clin Oncol. 2017;35:3279-3289.

Bortezomib: HOVON-65/GMMG-HD4

Phase III, randomized, open label

- Median f/u: 41 months
- >VGPR post aHCT: 62% PAD vs 36% VAD
- Median PFS: 35 mo PAD vs 28 mo VAD (p=0.002)
- 5 year OS: 61% PAD vs 55% VAD (p=0.07)
- Grade 2-4 neuropathy 40% PAD vs 18% VAD (p=0.001)
- Discontinuation due to ADRs: 11% PAD vs 30% VAD

Bortezomib: HOVON-65/GMMG-HD4

	PFS			OS			
Subgroup	Median, mo (PAD vs VAD)	HR (95% CI)	р	(PAD vs VAD)	HR (95% CI)	р	
SCr > 2	30 vs 13	0.45 (0.26-0.78)	0.004	Median, mo: 54 vs 21	0.33 (0.16-0.65)	<0.001	
del(17p13)	26.2 vs 12	0.41 (0.19-0.91)	0.024	3 yr, %: 69 vs 17	0.37 (0.14-0.93)	0.028	
t(4;14)	25.3 vs 21.7	0.6 (0.32-1.15)	0.12	3 yr, %: 66 vs 44	0.68 (0.29-1.59)	0.37	

 Potential role for bortezomib in patients with increased SCr or del(17p13)

 No PFS or OS advantage was seen in the LEN metaanalysis in patients with CrCl <50 mL/min or poor risk cytogenetics

Minimal residual disease negativity and Lenalidomide maintenance therapy are associated with superior survival outcomes in multiple myeloma

Ragisha Gopalakrishnan, MD

Hematology/Oncology Fellow Vanderbilt Ingram Cancer Center Vanderbilt University Medical Center

Lenalidomide maintenance increases MRD negativity at 1 year post ASCT compared to Bortezomib and no maintenance therapy

MEDICAL CENTER

Irrespective of cytogenetic risk, lenalidomide maintenance improves PFS and OS compared to Bortezomib and no maintenance therapy

Maintenance in Myeloma: Conclusions

Lenalidomide maintenance prolongs PFS and OS post aHCT

- The risk of developing progressive disease and dying from MM is greater than the risk of developing a SPM
- -ASBMT Guidelines: LEN maintenance unless contraindicated (grade A)
- -NCCN Guidelines: Category 1 preferred regimen
- FDA and European Commission granted approval for maintenance post aHCT in 2017
- Bortezomib offers an alternative for patients with high-risk cytogenetics, renal insufficiency, an inability to tolerate LEN, or previous history of another cancer

 ASBMT Guidelines: Bortezomib may be considered in patients with renal failure or adverse chromosome changes (grade D)
 NCCN Guidelines: Other recommended regimen Maintenance Therapy Strategies Post-Transplant for MDS and AML

MDS and AML Relapse Post alloHCT

- Disease relapse is the most common cause of death post alloHCT
- Relapse rates may be rising due to increased availability of HCT to older patients with reduced intensity conditioning (RIC)
- The majority of relapses occur within 12 months
 - -Maintenance therapy may control disease burden prior to a robust graft-versus-malignancy (GVM) effect
 - -Toxicity profile is critical
- Role of MRD monitoring for patient selection
- Pre-emptive treatment (will not be reviewed today)
 MRD monitoring-CD34+ donor chimerism
 Hourigan CS, et al. Biol Blood Marrow Transplant. 2014;20:154-163.

Maintenance Agents Studied

Hypomethylating agents: Azacitidine (AZA) & Decitabine

- -Direct apoptosis of cancer cells
- -Upregulation of cancer testis antigens
- -Expansion of T-regulatory cells

Histone deacetylase inhibitor: Panobinostat

 Moderately active against leukemia
 Immunomodulatory effects
 Phase I/II trial (n=42): 2 year OS 81% and RFS 75%

FLT3 Inhibitors

- -FLT3-ITD mutations associated with high relapse rates and short remission duration
- -FLT3-TKD mutations have unclear prognostic value

Kroger N, et al. Biol Blood Marrow Transplant. 2014;20:168-172. Bug G, et al. Leukemia. 2017;31:2523-2525.

De Lima Trial: Azacitidine

Objective	To determine a safe dose and schedule of AZA for relapse prevention following alloHCT with reduced intensity conditioning
Study Design	Phase I, dose escalation
Patients	 Age 18-75 years AML or high-risk MDS (IPSS INT-2 or high-risk) Not candidates for myeloablative conditioning In CR at day +30 following alloHCT
Intervention	 AZA 8-40mg/m² SubQ x 5 days, Q30 days for 1-4 cycles AZA must be initiated by day +90 Eligibility: ANC > 1000, PLT > 15, no uncontrolled infection, no grade III/IV aGVHD

De Lima Trial: Azacitidine

	 Patient Characteristics 37 patients with AML and 8 patients with MDS Median age 60.6 years 67% not in CR at the time of transplant 40% had poor-risk cytogenetics
Results	 <u>Outcomes</u> Median follow-up 20.5 months, 42% died, 53% relapsed 20% of patients completed 4 cycles AZA 40 mg/m2 associated with thrombocytopenia Longer OS associated with fewer blasts, chemotherapy cycles pre-HCT, comorbidities, and more AZA cycles CGVHD decreased with more AZA cycles
Conclusions	 AZA 32 mg/m2 x 5 days for 4 cycles is safe following alloHCT Phase 3 trial at MD Anderson Cancer Center with 1 year of maintenance is ongoing

Oral AZA (CC-486): Phase I/II Study

Primary Outcome	Maximum tolerated dose (MTD)
Study Design	 Phase I/II, dose-finding 200mg-300mg daily x 7 days, Q 28 days x 12 cycles 150-200mg daily x 14 days, Q 28 days x 12 cycles
Patients	 Age ≥ 18 years AML or MDS diagnosis Myeloablative or reduced intensity conditioning In CR following alloHCT
Results (n = 30)	 MTD was not reached à 200mg daily x 14-day arm expanded Median f/u: 19 months 10/19 patients in expanded arm completed 12 cycles 8/30 patients (27%) relapsed or had PD 3 patients (10%) developed grade 3 aGVHD, 8 patients developed cGVHD (2 severe cases) CC-486 200mg 14-day dosing regimen will be further studied

AML & MDS Maintenance Post alloHCT: Ongoing Trials

Hypomethylating Agents:

Agent	Design	Duration	Patient	Primary Endpoint	Reference
AZA	Phase III	1 year	Age 18-75	RFS	NCT00887068
AZA	Phase II	1 year	Age 1-75, T-cell depleted HCT	Relapse	NCT01995578
AZA + ValproicAcid	Phase II	4 months	Age <u>></u> 2	OS	NCT02124174
AZA + GM-CSF	Phase II	1 year	All ages	RFS	NCT01700673

Rashidi A, et al. Blood. 2016;128:763-773. clinicaltrials.gov. Accessed December 1, 2017.

Sorafenib in FLT3-ITD

- Retrospective analysis
- Patients:
 - -FLT3-ITD AML diagnosed between 2008-2014
 - -Received alloHCT in CR1
- Sorafenib:
 - -200mg daily to 400mg BID
 - -Median time to initiation = 68 days

Outcome	Sorafenib (n=26)	Control (n=43)	P-value
2-year OS	81%	62%	0.029
2-year PFS	82%	53%	0.0081
2-year relapse	8.2%	37.7%	0.0077
2-year NRM	9.8%	9.3%	0.82
1-year cGVHD	55.5%	37.2%	0.28

AML & MDS Maintenance Post alloHCT: Ongoing Trials

FLT3 Inhibitors:

Agent	Design	Duration	Patient	Primary Endpoint	Reference
Gilteritinib	Phase III	2 years	Age <u>≥</u> 18, FLT3-ITD+	RFS	NCT02997202 (BMT-CTN)
Crenolanib	Phase II	2 years	Age <u>></u> 18, FLT3 mutated	PFS	NCT02400255
Sorafenib	Phase II	2 years	Age <u>></u> 19, FLT3-ITD+	DLT	NCT01578109
	Phase II	1 year	Age <u>></u> 60, FLT3 mutated	EFS/OS	NCT02723435
Midostaurin	Phase II	1 year	Age 18-60, FLT3-ITD+	RFS	NCT01883362
Quizartinib	Phase III	1 year	Age <u>></u> 19, FLT3-ITD+	EFS	NCT02668653

Rashidi A, et al. Blood. 2016;128:763-773. clinicaltrials.gov. Accessed December 1, 2017.

Phase I Trial of Post Allogeneic Stem Cell Transplant Maintenance Lenalidomide in Patients with High Risk AML or MDS

Rajeev Krishnan, M.D.^{1,} Avan Lo¹, Carol Richman, M.D.¹, Joseph M. Tuscano, M.D.^{1,2}, and Mehrdad Abedi, M.D¹

¹Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA ² Veterans Administration Northern California Health Care System

ASBMT 2018

- Patients aged 18-65 with High-risk AML or MDS (defined by residual disease, poor-risk cytogenetics, secondary AML or R-IPSS >3) s/p allogeneic stem cell transplant were enrolled
- Regimen: Lenalidomide for 21 of 28 day cycle for up to 6 cycles
- Primary objective = Determine maximum tolerated dose (MTD) of Lenalidomide post transplant
- Secondary objective = 1-year relapse rate, 1-year disease-free survival (DFS) and 1-year Graft-versus-Host Disease (GvHD) rate
Patient Characteristics and Efficacy

Patient #	Age/Sex	Diagnosis	# Prior therapies	Cycles completed	Transplant	Current Status as of 2/2018
001	63 F	AML - %	3	6	MUD allo	Relapsed 1 year after trial and passed 3 years later
002	62 M	AML - \$	1	4	MRD allo	Alive and remains in CR
003	64 F	AML - \$	5	21 days	MUD allo	Alive and remains in CR
004	36 M	AML - +	3	6	MRD allo x2	Alive and remains in CR
005	58 M	AML - +	4	6	MUD allo	Alive and remains in CR
006	56 M	AML - */#	2	6	9/10 MUD	Alive and remains in CR
007	34 M	AML - \$	1	6	MUD allo	Alive and remains in CR
008	41 F	AML - %/+	3	2	MUD allo/DLI	Alive and remains in CR
009	47 M	AML - \$/%	3	3	MUD allo	Alive and remains in CR
010	44 M	AML - */+	2	6	8/10 MUD allo	Alive and remains in CR
011	54 M	MDS - @	1	21 days	MUD allo	Alive and remains in CR
012	63 M	MDS - @	1	1	MUD allo	Alive and remains in CR
013	53 M	MDS - %/\$	1	6	MUD allo	Alive and remains in CR

%Complex Cytogenetics \$Transformed from MDS #t-AML

+Relapsed/Refractory *FLT3 mutated

@R-IPSS>3

Krishnan R et al ASBMT 2018

Conclusions

- Lenalidomide use as maintenance in the post-allogeneic period appears to be safe and well tolerated
- ♦ There was no increase in the incidence of acute or chronic GvHD
- Continued remissions were seen in 12 of 13 patients regardless of risk
- Further investigation to find the MTD and a larger Phase II study is warranted to determine efficacy among high risk AML and MDS

Maintenance in AML & MDS: Conclusions

- Data is preliminary and non-comparative
- Prospective, randomized trials are needed and anticipated
- Azacitidine
 - -Encouraging preliminary results
 - -Acceptable safety profile following reduced intensity conditioning
- FLT3 Inhibitors

-Patients should be enrolled in clinical trials, consider sorafinib in HR Flt3 + patients

- Application of MRD monitoring will further guide relapse prevention strategies-? Ready for prime time
- Lenalidomide post allo transplant for AML appears promising. Larger trials are needed

Overall Conclusions

- ♦ Multiple Myeloma-Mel 200 remains the SOC –for now
 - ♦ Consider Double auto or Bu-Mel for high risk?
- ♦ Allo transplant
 - ♦ MAC vs RIC debate unresolved, but MAC likely better for HR patients
- ♦ Maintenance therapy
 - \diamond Myeloma-Len SOC, +/- bortez for HR (?)
 - ♦ AML-FLT3+ Sorafenib vs more targeted FLT3 inhibitors
 - ♦ MDS/AML 5-Aza for HR
 - ♦ MCL-Rituxan post-Auto PSCT SOC
- ♦ PTLD
 - ♦ EBV-direct adoptive T cell therapy very promising
 - ♦ Always consider enrolment on clinical trials

Questions?