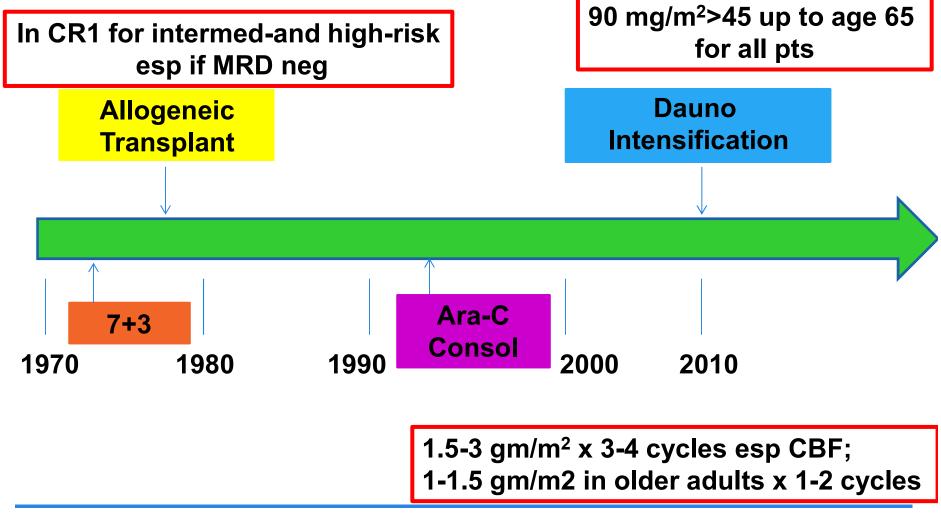
Mecnorial Sloan Kettering Caucer Center.

# Novel Therapeutic Strategies in Acute Myeloid Leukemia: Our Cup Runneth Over

Martin S.Tallman, M.D. Chief, Leukemia Service Memorial Sloan Kettering Cancer Center Professor of Medicine Weill Cornell Medical College New York, NY UC Davis October, 2019

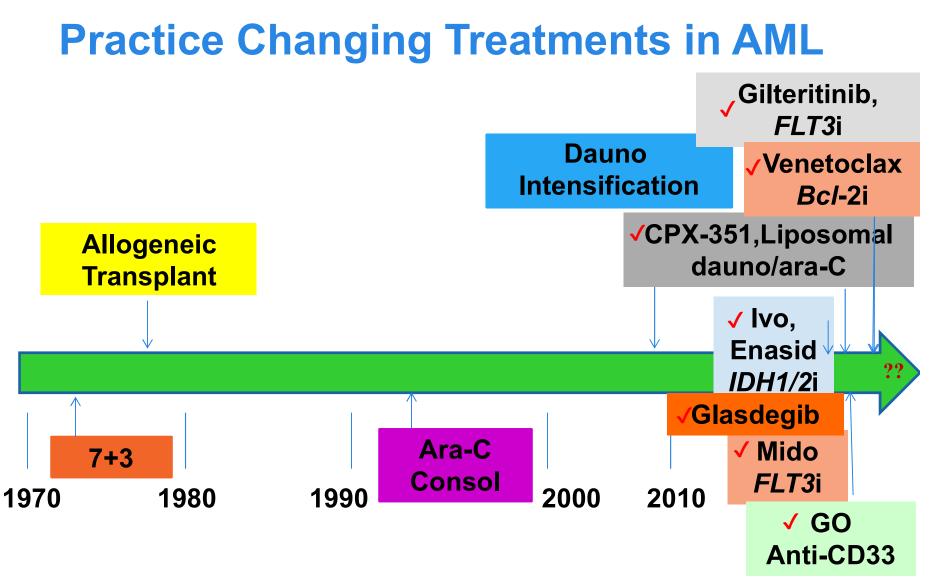
# **Disclosures**


- Research Funding
  - Cellerant
  - AROG
  - BioSight
  - ADC Therapeutics
  - Abbvie
  - Orsenix
  - Nohla

- Advisory Boards
  - Orsenix
  - Daiichi-Sankyo
  - Rigel
  - Abbvie
  - Bioline
  - Biosight
  - KAHR
  - Delta Fly Pharma
  - Jazz
  - Oncolyze
- Off label use
  - Venetoclax
  - Gilteritinib
  - Quizartinib
  - Crenolanib
  - GMI-1271
  - Idasanutlin

# **Objectives**

- Describe the major advances in AML over the past 4 decades
- Demonstrate the importance of genetic profiling for prognosis and therapy
- Discuss the 8 newly approved agents for AML
- Provide treatment strategies in the era of targeted therapy


# Practice Changing Treatments in AML 1973-2017

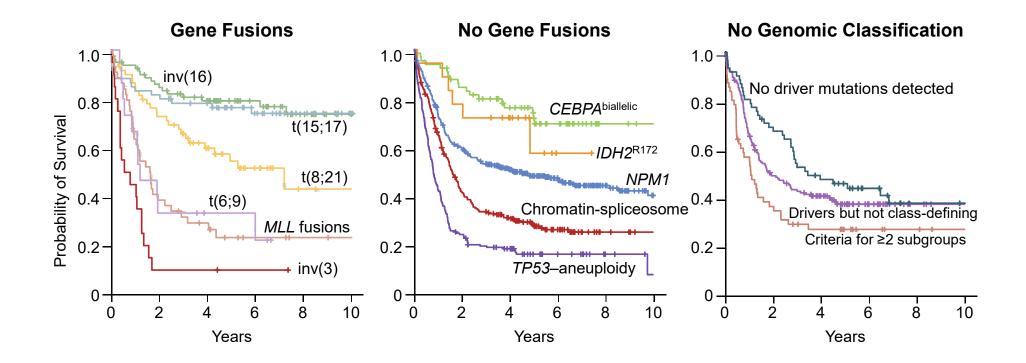


Yates et al. Cancer Chemother Rep, 1973;

Thomas et al. NEJM, 1979; Mayer et al. NEJM, 1994; Fernandez et al. NEJM, 2009

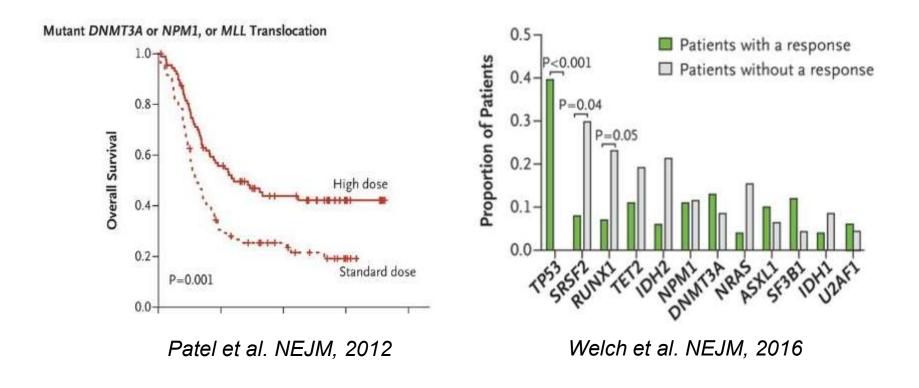





#### Will They Have a Clinically Meaningful Impact?

Yates et al. Cancer Chemother Rep, 1973; Thomas et al. NEJM, 1979; Mayer et al. NEJM, 1994; Fernandez et al. NEJM, 2009; Stone et al. NEJM, 2017; Stein et al. Blood, 2017 Lancet et al. J Clin Oncol, 2018; Castaigne et al. Lancet 2012; Cortes et al. Leukemia, 2019; Dinardo et al. Blood, 20129

# **Recent Progress in AML**


- Insights into genetic pathogenesis/integrated genetic profiling
- Intensified induction and less intensive postremission strategies
- Drug Discovery
- Expanded availability of hematopoietic cell transplantation
- Change in approach to older adults
- Increased importance of MRD

#### **Kaplan-Meier Curves for Overall Survival**



Papaemmanuil et al. N Engl J Med, 2016

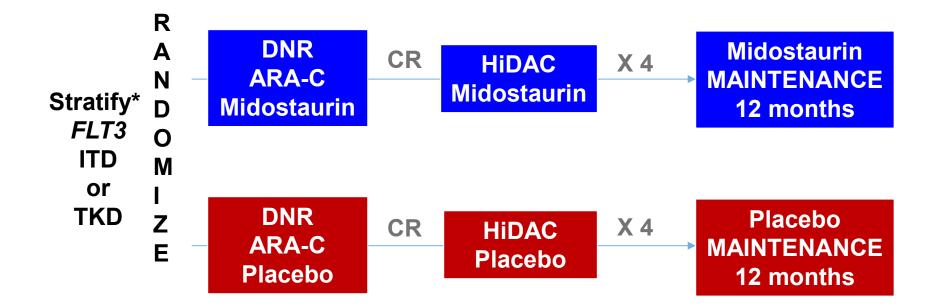
# Risk-Stratification and Prognostication of AML Informed by Mutational Profile



### Gene Mutations Important in Practice "Clinically Actionable"

| Gene          | <u>Incidence</u> | <u>Associations</u>               | <b>Impact</b>                                                                                                                                   |
|---------------|------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| FLT3-ITD/TKD  | 25%              | NPM1                              | Unfavorable                                                                                                                                     |
| NPM1          | 33%              | FLT3                              | Favorable                                                                                                                                       |
| $dCEBP\alpha$ | 8%               | FLT3                              | Favorable                                                                                                                                       |
| C-KIT         | 15%              | CBF                               | Unfavorable [in t(8;21), but not<br>in inv(16)]; D816 worse than<br>others <sup>1</sup> , MRD poor prognostic<br>factor in inv(16) <sup>2</sup> |
| IDH1 and 2    | 22%              | NPM1                              | Favorable                                                                                                                                       |
| TP53          | 7%               | t-AML, Complex<br>karyotype (60%) | Unfavorable                                                                                                                                     |

<sup>1</sup>Yui et al. Ann Hematol, 2017; <sup>2</sup>Kawashima et al. ASH, 2018 (abstr 438)

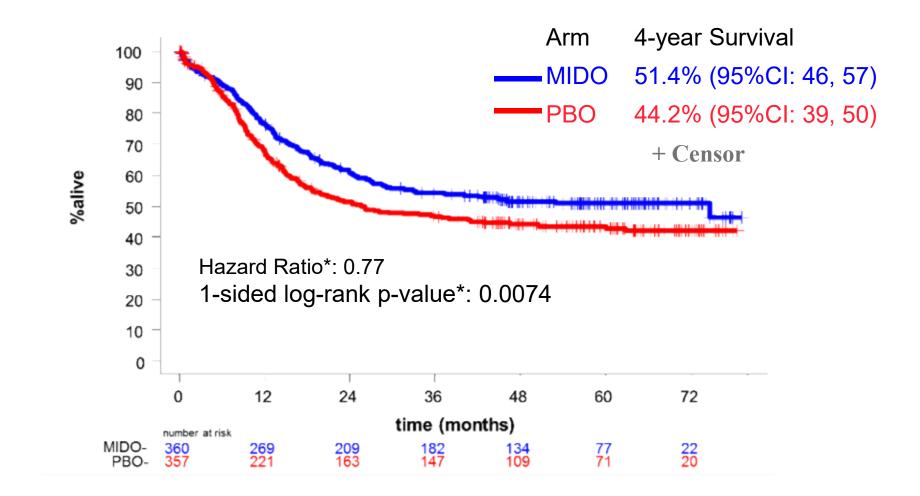

# **New Agents With Regulatory Approval**

| Agent                     | Target              | Population                                             | Setting                                                                                   |
|---------------------------|---------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Midostaurin               | FLT3                | FLT3-ITD+ or TKD+                                      | Treatment naïve<br>w chemo in induc and consol                                            |
| Gemtuzumab<br>ozogamicin  | CD33                | CBF and possibly intermed-risk                         | Treatment naïve<br>CD33+ adults w chemo or single<br>agent or<br>Rel/refr adults and peds |
| CPX-351                   | Cytotoxic           | t-AML or AML<br>with MRC                               | Treatment naïve w t-AML or AML with MRC                                                   |
| Ivosidenib/Enasi<br>denib | IDH1/2              | <i>IDH1/2+</i><br>Ivo in age >/=75 or<br>comorbidities | Rel/refr AML<br>Ivo in treatment naive                                                    |
| Venetoclax                | BCL-2               | Age >/=75 or comormidities                             | Treatment naïve w HMA or LoDAC                                                            |
| Gilteritinib              | FLT3                | FLT3-ITD+ or TKD+                                      | Rel/refr AML                                                                              |
| Glasdegib                 | Smoothened receptor | Age >/=75 or comorbidities                             | Treatment naïve w LoDAC                                                                   |

## FLT3 Mutations in AML Background

- Frequent in normal cytogenetic AML
- Associated with high WBC, packed marrow
- ITD associated with high relapse rate, poor OS; TKD less so
- Most common in APL, but appears not prognostic
- Resistance mechanisms include point mutations, high levels of *FLT3* ligand

#### RATIFY (C10603) Trial Schema




\*Stratification: TKD; ITD with allelic ratio <0.7 'vs' ≥0.7

Stone et al. N Engl J Med, 2017

# **Overall Survival**

23% reduced risk of death in the Mido arm



Stone et al. N Engl J Med, 2017

# Midostaurin in AML Limitations

- First agent with (sustained) regulatory approval in >40 years
- It has changed practice, but will it have a clinically meaningful impact?
  - OS increase 7%
  - Benefit more in *FLT3*-TKD than ITD
  - Men OS benefit ITD not TKD; woman trend for benefit OS TKD not ITD
  - Which phase of treatment important?
  - Among least potent *FLT3* inhibitors
  - Role in maintenance unclear<sup>1</sup>
  - Beneficial effect of Midostaurin most pronounced in NPM1<sup>wt</sup>/FLT3<sup>high</sup> group but benefit also in NPM1pos<sup>2</sup>

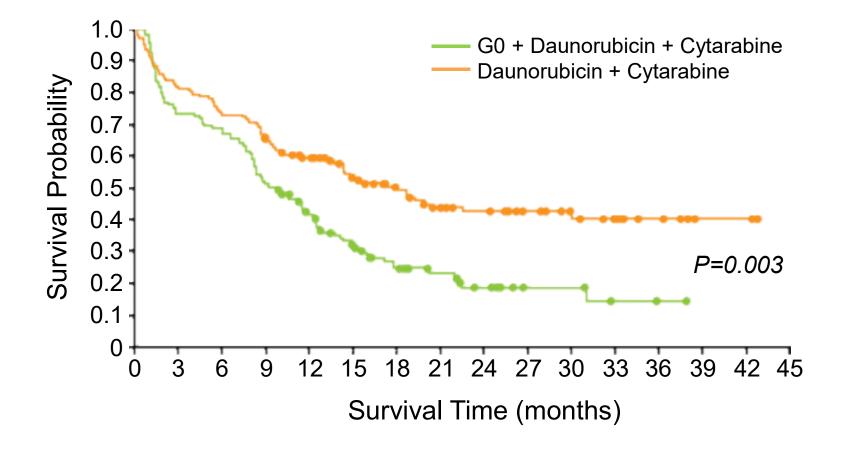
Larson et al. ASH, 2017 (abstr 145); <sup>2</sup>Dohner et al. ASH, 2017 (abstr 467)

# **Second Generation FLT3 Inhibitors**

#### Gilteritinib

 <u>Inhibits FLT3-ITD and TKD</u>, in newly diagnosed pts w chemo and single agent maint CRc 89%<sup>1</sup>; Ph3 randomized trial in de novo disease underway;

#### Quizartinib


 Inhibits FLT3-ITD and PDGFa, most potent FTLT3i, in R/R AML OS benefit vs std care<sup>2</sup>; Ph3 randomized trial in de novo disease underway

#### Crenolanib

<u>Inhibits FLT3-ITD, TKD</u>, PDGFa and b, in trial with induction chemo CR 88% w 1 cycle<sup>3</sup>; randomized trial in newly diagnosed pts of chemo w ether crenolanib vs midostaurin underway<sup>4</sup>

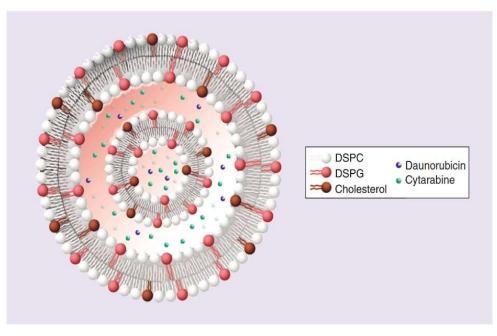
<sup>1</sup>Pratz et al. ASH, 2018 (abstr 564); <sup>2</sup>Cortes et al. Lancet Oncol, 2019; <sup>3</sup>Wang et al ASH, 2016 (abstr 1071); Stone et al. ASCO, 2019 (abstr 7068)

#### Gemtuzumab Ozogamicin (Fractionated) in Newly Diagnosed AML Ages 50-70 Kaplan-Meier Plot of Event-Free Survival ALFA-0701 Trial



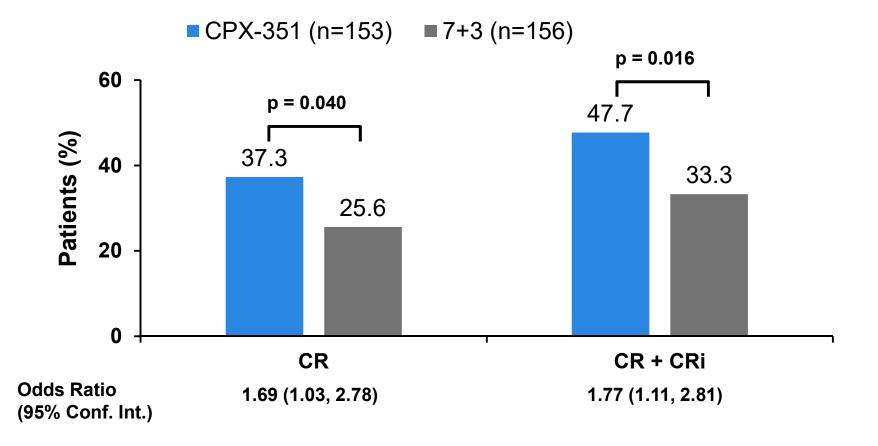
Castaigne. et al. Lancet, 2012 and update

# Gemtuzumab Ozogamicin: Reapproved New Insights


- CD33 single nucleotide polymorph rs121459419 C→T may be biomarker for response
- Fractionated schedule reduces toxicity
- OS benefit in fav-risk and trend in intermed-risk
- Risk of SOS/VOD 8% after allograft; higher if allo <3 mo of GO
- CD33 blast expression impacts outcome

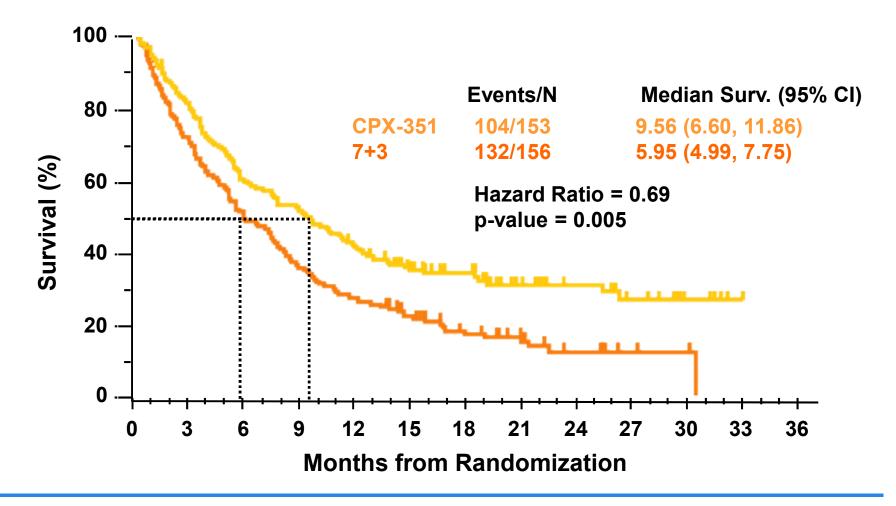
Lamba et al. J Clin Oncol, 2017; Burnett et al. J Clin Oncol, 2011; Battipaglia et al. BBMT, 2017; Olombel et al. Blood, 2016; Lamba et al. ASH, 2017 (abstr 3826)

# **CPX-351**


- A fixed 5:1 synergistic molar ratio of cytarabine to daunorubicin is maintained for a prolonged period of time<sup>1</sup>
- CPX-351 accumulates and persists in the bone marrow in high concentrations<sup>1</sup>
- CPX-351 is preferentially taken up by leukemic cells vs normal bone marrow cells<sup>1</sup>

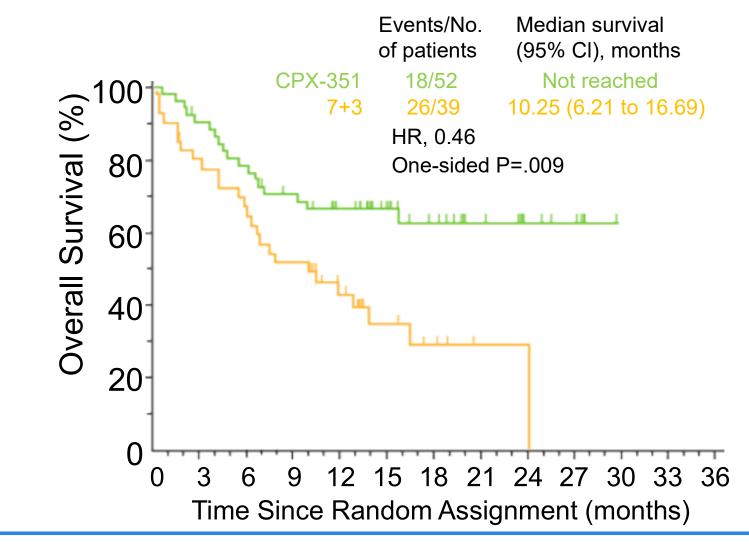
#### Schematic representation of CPX-351<sup>2</sup>




<sup>1</sup>Jazz Pharmaceuticals. Vyxeos® 44mg/100mg (danorubicin/cytarabine) Summary of Product Characteristics 2018; <sup>2</sup>Tolcher AW, Mayer LD. Future Oncol, 2018

### Patients Treated With CPX-351 Exhibited Statistically Significant Improvements in Response Rate in sAML Ages 60-75




Lancet et al. J Clin Oncol, 2018

### Overall Survival Was Greater in the CPX-351 Arm Compared to the 7+3 Arm



Lancet et al. J Clin Oncol, 2018

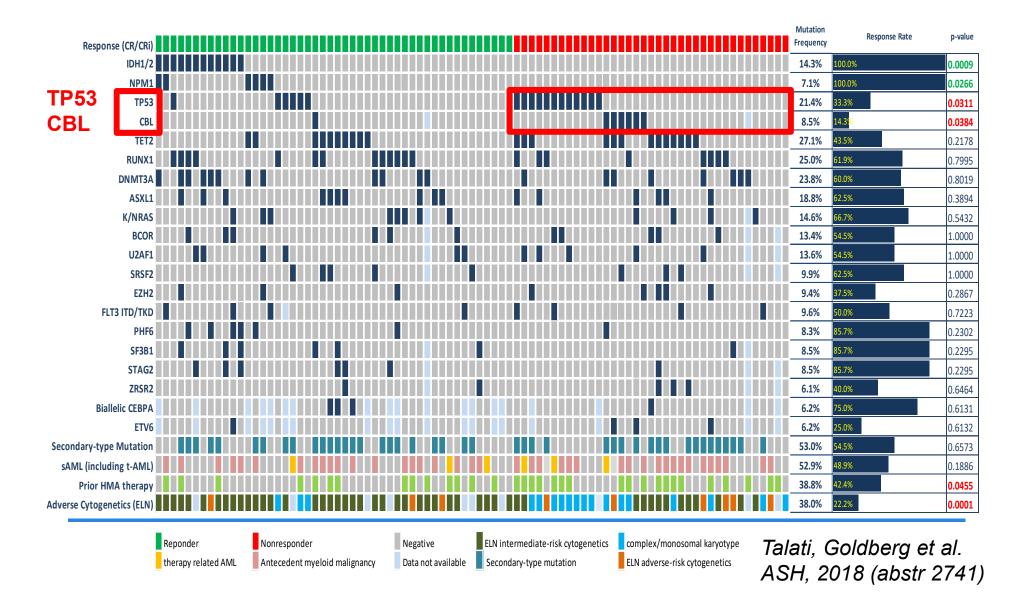
#### Impact of CPX-351 on Transplant Outcome Overall Survival



Lancet et al. J Clin Oncol, 2018

### **CPX-351** Questions Emerge

- Why is CPX-351 more effective in t-AML and AML with MRC?
- Why is outcome after allograft better with CPX-351 than with with 7 + 3?
- Will CPX-351 be effective alone or when combined with other agents in adverse subtypes?
  - 11q23/*MLL*?
  - *P53* predicts poorer response: CR + CRi 62% vs 33%,
    CR 45% vs 28%, MRD CR 36% vs 8%<sup>1</sup>

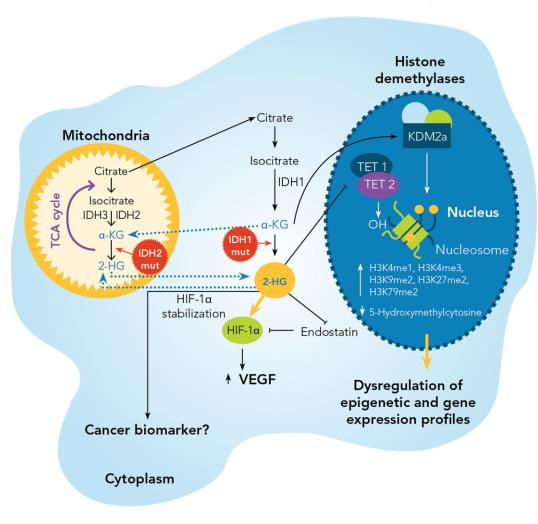

<sup>1</sup>Goldberg et al. ASH, 2018 (abstr)

### Genomic Landscape Impacts Induction Outcome With CPX-351

|                            |                                 |                                               |                                |                                                               |                                                              | Mutation<br>Frequency | Response Rate | p-value |
|----------------------------|---------------------------------|-----------------------------------------------|--------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-----------------------|---------------|---------|
|                            |                                 |                                               |                                |                                                               |                                                              | 14.3%                 | 100.0%        | 0.0009  |
| NPM1 NPM1                  |                                 |                                               |                                |                                                               |                                                              | 7.1%                  | 100.0%        | 0.0266  |
| TP53                       |                                 |                                               |                                |                                                               |                                                              | 21.4%                 | 33.3%         | 0.0311  |
| CBL                        |                                 |                                               |                                |                                                               |                                                              | 8.5%                  | <b>14.3</b> % | 0.0384  |
| TET2                       |                                 |                                               |                                |                                                               |                                                              | 27.1%                 | 43.5%         | 0.2178  |
| RUNX1                      |                                 |                                               |                                |                                                               |                                                              | 25.0%                 | 61.9%         | 0.7995  |
| DNMT3A                     |                                 |                                               |                                |                                                               |                                                              | 23.8%                 | 60.0%         | 0.8019  |
| ASXL1                      |                                 |                                               |                                |                                                               |                                                              | 18.8%                 | 62.5%         | 0.3894  |
| K/NRAS                     |                                 |                                               |                                |                                                               |                                                              |                       | 66.7%         | 0.5432  |
| BCOR                       |                                 |                                               |                                |                                                               |                                                              |                       | 54.5%         | 1.0000  |
| U2AF1                      |                                 |                                               |                                |                                                               |                                                              |                       | 54.5%         | 1.0000  |
| SRSF2                      |                                 |                                               |                                |                                                               |                                                              | 9.9%                  | 62.5%         | 1.0000  |
| EZH2                       |                                 |                                               |                                |                                                               |                                                              | 9.4%                  | 37.5%         | 0.2867  |
| FLT3 ITD/TKD               |                                 |                                               |                                |                                                               |                                                              | 9.6%                  | 50.0%         | 0.7223  |
| PHF6                       |                                 |                                               |                                |                                                               |                                                              | 8.3%                  | 85.7%         | 0.2302  |
| SF3B1                      |                                 |                                               |                                |                                                               |                                                              | 8.5%                  | 85.7%         | 0.2295  |
| STAG2                      |                                 |                                               |                                |                                                               |                                                              | 8.5%                  | 85.7%         | 0.2295  |
| ZRSR2                      |                                 |                                               |                                |                                                               |                                                              | 6.1%                  | 40.0%         | 0.6464  |
| Biallelic CEBPA            |                                 |                                               |                                |                                                               |                                                              | 6.2%                  | 75.0%         | 0.6131  |
| ETV6                       |                                 |                                               |                                |                                                               |                                                              | 6.2%                  | 25.0%         | 0.6132  |
| Secondary-type Mutation    |                                 |                                               |                                |                                                               |                                                              |                       | 54.5%         | 0.6573  |
| sAML (including t-AML)     |                                 |                                               |                                |                                                               |                                                              |                       | 48.9%         | 0.1886  |
| Prior HMA therapy          |                                 |                                               |                                |                                                               |                                                              |                       | 42.4%         | 0.0455  |
| Adverse Cytogenetics (ELN) |                                 |                                               |                                |                                                               |                                                              | 38.0%                 | 22.2%         | 0.0001  |
|                            | Reponder<br>therapy related AML | Nonresponder<br>Antecedent myeloid malignancy | Negative<br>Data not available | ELN intermediate-risk cytogenetics<br>Secondary-type mutation | complex/monosomal karyotype<br>ELN adverse-risk cytogenetics |                       | Goldberg et   |         |

ASH, 2018 (abstr 2741)

### Genomic Landscape Impacts Induction Outcome With CPX-351



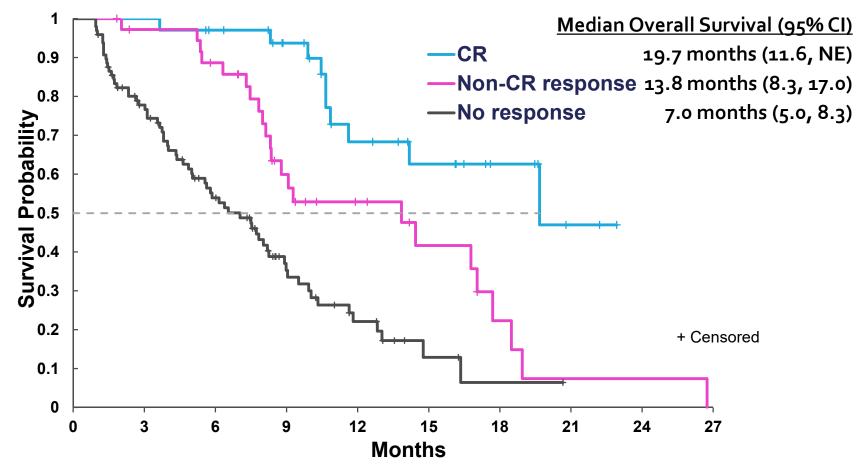

# TP53 Mutations Predict Lower Rates of CR/CRi following CPX-351

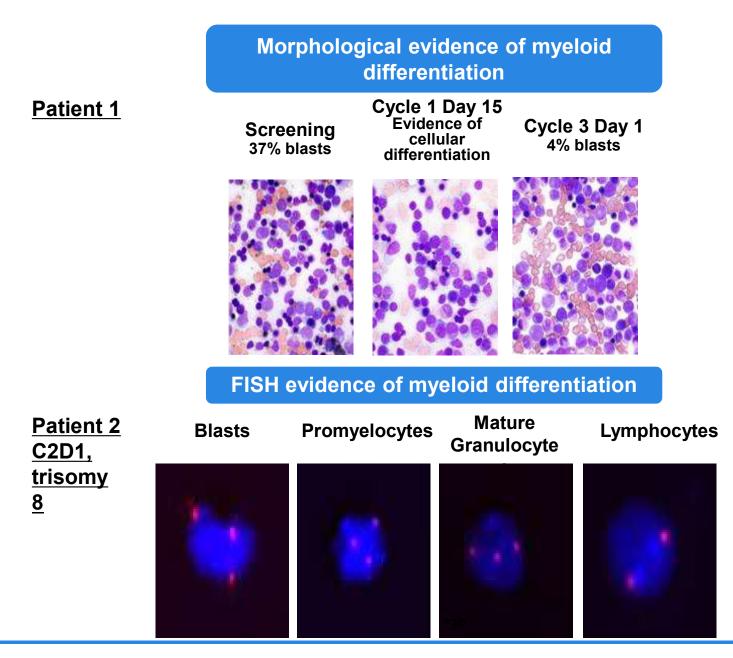
**CR/CRi** CR p=0.037 p=0.063 **62%** 70% 70% 60% 60% 45% 50% 50% 33% 40% 40% 28% 30% 30% 20% 20% 10% 10% 0% 0% WT **TP53+** WT **TP53+** 

Goldberg, Talati et al. ASH, 2018 (abstr 1433)

## Role of IDH in Malignancy Background



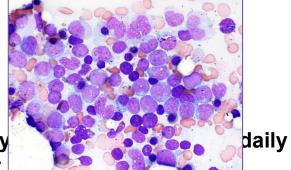

- IDH is critical metabolic enzyme in the citric acid cycle
- IDH1 in cytoplasm and IDH2 in mitochondria
- Cancer-associated IDHm produces 2hydroxyglutarate (2-HG) and blocks normal cellular differentiation


# **Response With Enadisenib in R/R AML**

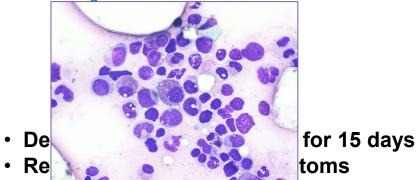
|                                                              | Relapsed/Refractory AML          |                      |  |
|--------------------------------------------------------------|----------------------------------|----------------------|--|
|                                                              | Enasidenib<br>100 mg/day (n=214) | All doses<br>(N=281) |  |
| Overall response rate, % [n/N]                               | 37% (79/214)                     | 38% (108/281)        |  |
| [95% CI]                                                     | [30.4, 43.8]                     | [32.7, 44.4]         |  |
| Best response                                                |                                  |                      |  |
| CR, n (%)                                                    | 43 (20.1)                        | 55 (19.6)            |  |
| [95% CI]                                                     | [14.9, 26.1]                     | [15.1, 24.7]         |  |
| CRi or CRp, n (%)                                            | 17 (7.9)                         | 22 (7.8)             |  |
| PR, n (%)                                                    | 8 (3.7)                          | 16 (5.7)             |  |
| MLFS, n (%)                                                  | 11 (5.1)                         | 15 (5.3)             |  |
| SD, n (%)                                                    | 110 (51.4)                       | 137 (48.8)           |  |
| PD, n (%)                                                    | 11 (5.1)                         | 15 (5.3)             |  |
| NE, n (%)                                                    | 2 (0.9)                          | 3 (1.1)              |  |
| Time to first response (mos), median (range)                 | 1.9 (0.5–11.1)                   | 1.9 (0.5-11.1)       |  |
| Duration of response (mos), median [95%CI]                   | 5.6 [4.6, 7.4]                   | 5.6 [4.6, 6.5]       |  |
| Time to CR (mos), median (range)                             | 3.7 (0.7–11.2)                   | 3.8 (0.5-11.2)       |  |
| Duration of response in pts with CR (mos), median<br>[95%CI] | 8.8 [5.6, NR]                    | 7.4 [6.4, 14.7]      |  |

Stein et al. Blood, 2017

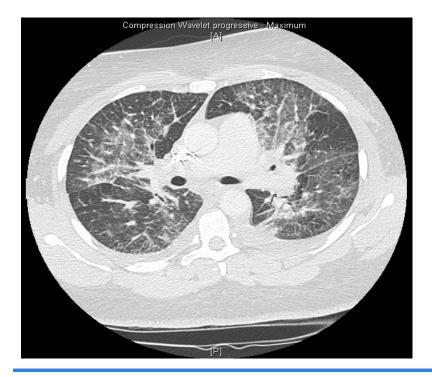
# Overall Survival With Enasidenib by Best Response

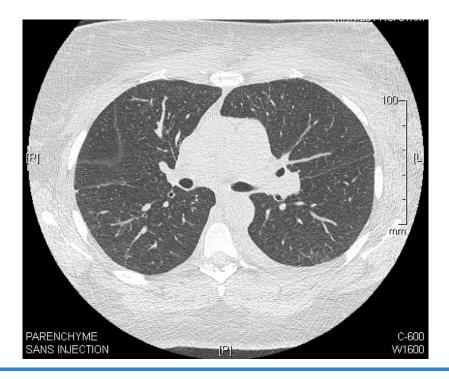






Stein et al. Blood, 2017

### **Differentiation** Syndrome


٠



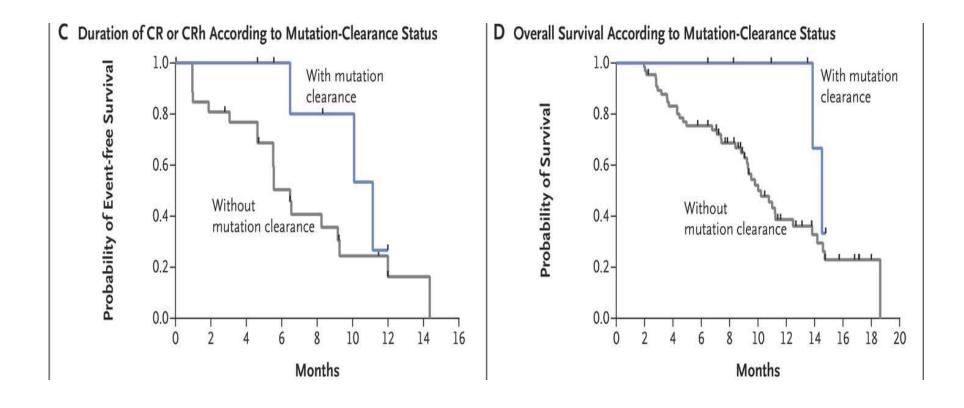

- 21 day • Fever,
- Normal BAL



Patient achieves a complete remission •






Courtesy Dr. Stephane De Botton

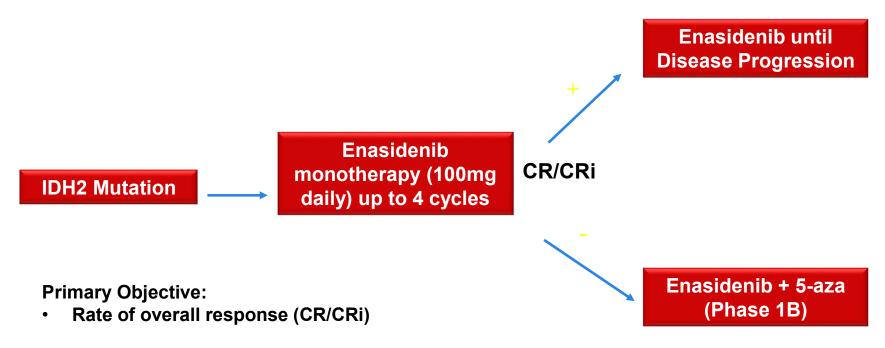
#### Ivosidenib or Enasidenib Plus Chemotherapy Phase I Trial Best Overall Response Summary

|                       | Ivosidenib (AG-120) + CT |                   |                | Enasidenib (AG-221) + CT |                   |                |
|-----------------------|--------------------------|-------------------|----------------|--------------------------|-------------------|----------------|
| Response, (%)         | All<br>(n=41)            | De novo<br>(n=28) | sAML<br>(n=13) | All<br>(n=77)            | De novo<br>(n=45) | sAML<br>(n=32) |
| CR+CRi/CRp            | 78                       | 93                | 46             | 69                       | 73                | 63             |
| CR                    | 66                       | 79                | 39             | 55                       | 62                | 44             |
| CRi/CRp               | 12                       | 14                | 8              | 14                       | 11                | 19             |
| MLFS                  | 5                        | -                 | 15             | 13                       | 9                 | 19             |
| PR                    | 2                        | 0                 | 8              | 1                        | -                 | 3              |
| Persistent<br>disease | 5                        | 4                 | 8              | 12                       | 13                | 9              |
| NE                    | 10                       | 4                 | 23             | 5                        | 4                 | 6              |

Stein et al. ASH, 2018 (abstr 560)

# Duration of CR or CRh and OS According to Mutation Clearance Status in IDH-1 Mutated AML




DiNardo et al. N Engl J Med, 2018

#### Mutant *IDH1* Inhibitor Ivosidenib In Combination With Azacitidine For Newly Diagnosed AML

- Ivo in IDH1mut newly diagnosed AML<sup>1</sup>
  - N=34
  - Med age 77, 56% >/=75
  - Secondary AML 76%, prior MDS 53%, prior HMA for AHD 47%
  - CR 30%, CR + CRh 42%, ORR 55%, transf indep 43%
- Ivo + Aza in IDH1mut newly diagnosed AML<sup>2</sup>
  - N=23
  - CR 57%, CRi/CRp 13%, MLFS 9%, ORR 78% (exceeding Aza alone Dombret Blood, 2015)
  - Med time to response 1.8 mo and to CR 3.5 mo
  - IDHmut clearance 63%

<sup>1</sup>*Roboz et al. ASCO, 2019 (abstr 7028);* <sup>2</sup>*Dinardo et al. ASCO, 2019 (abstr 7011)* 

### Beat AML s3 – Study Design and Objectives

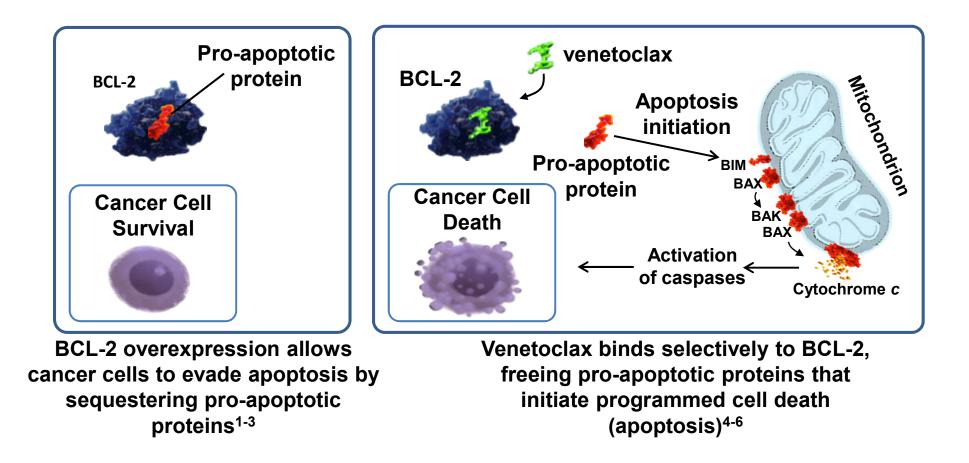


Key Secondary Objectives:

- To explore the toxicity profile of combining Enasidenib with azacytidine
- Estimate progression free and overall survival in patients treated with Enasidenib

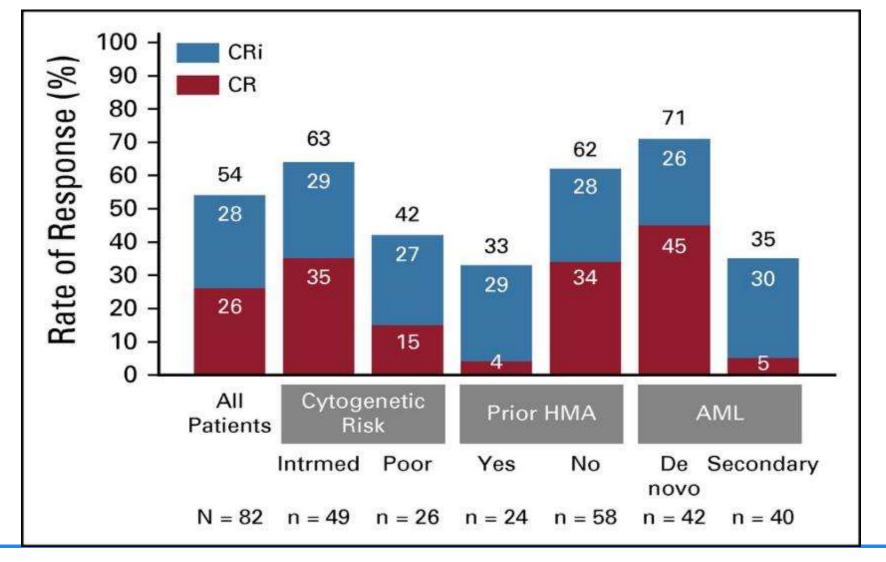
# **Response in Newly Diagnosed IDH2 mut AML**

|                                    | N=27        |
|------------------------------------|-------------|
| Overall response (CR, CRi), n (%)  | 12 (44.4)   |
| Best response, n (%)               |             |
| CR                                 | 10 (37)     |
| CRi                                | 2 (7.4)     |
| MLFS                               | 0 (0)       |
| No response (PR, SD, TF/PD) n (%)  | 15** (55.6) |
| Early Death (death within 30 days) | 0           |


Median number of enasidenib treatment cycles: 5 (range 1-14+)

Stein et al. ASH, 2018 (abstr 287)

#### **Frequently Asked Questions Re: IDH2**


- Does molecular CR occur?
  Yes, about 30%
- Does differentiation syndrome occur? Yes, and can occur late (med d48,10-340)
- How long does it take to achieve CR? 21% by C3, 68% by C5, 82% by C7
- Are molecular signatures predictive of response or nonresponse?
   RAS mutations assoc with NR
- What is the longest duration of CR? >36 months

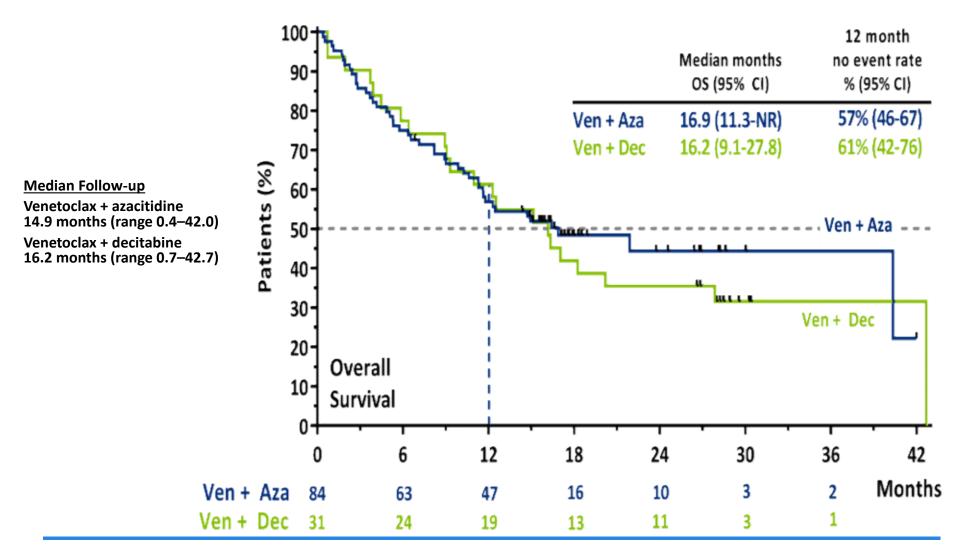
#### Venetoclax: Promotes Apoptosis Through Selective Inhibition of *BCL-2*



<sup>1</sup>Leverson et al. Sci Transl Med 2015; <sup>2</sup> Czabotar, et al. Nature Reviews 2014; <sup>3</sup>Plati et al. Integr Biol (Camb) 2011; <sup>4</sup>Certo et al. Cancer Cell. 2006; <sup>5</sup>Souers et al. Nat Med. 2013; <sup>6</sup>Del Gaizo Moore V et al. J Clin Invest. 2007

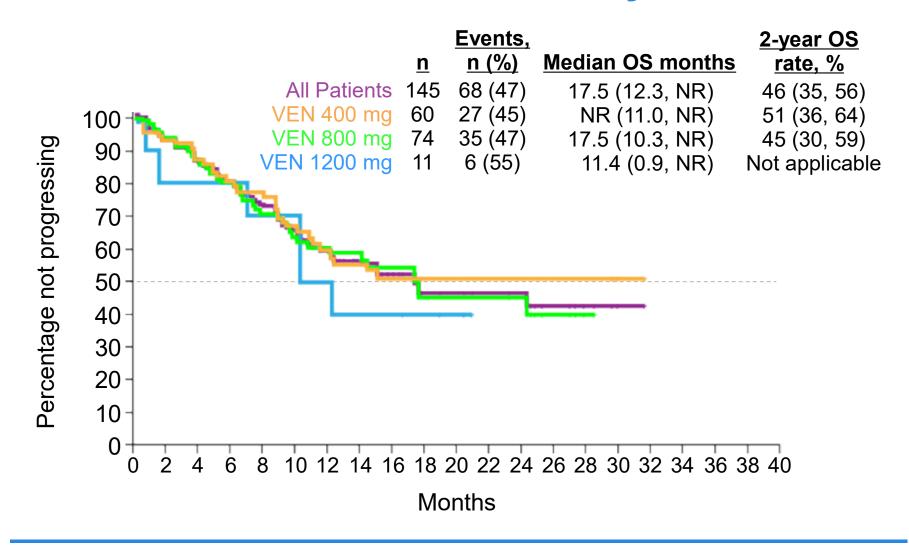
#### CR/CRi Rates By Patient Subgroups Treated With LoDAC + Venetoclax




Wei et al. J Clin Oncol, 2019

#### Venetoclax + HMA in Older Newly Diagnosed Pts Ineligible for Intensive Chemotherapy

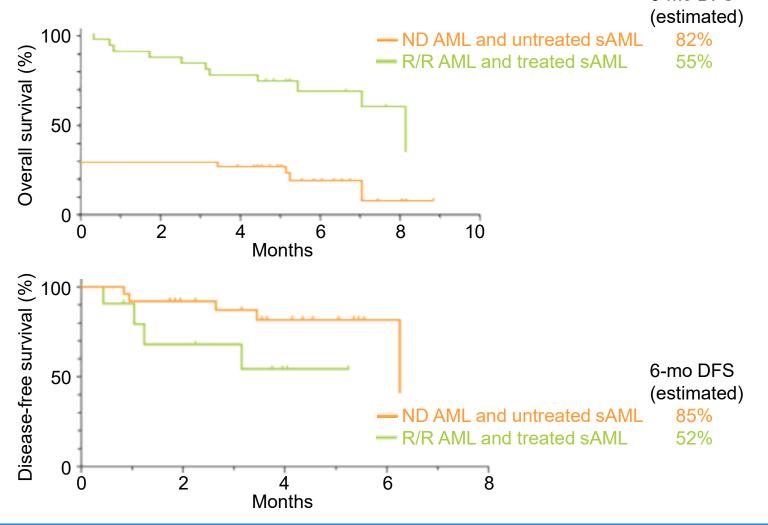
- N=115 Aza 84, DAC 31
- Med age: **75 and 72**, respectively
- Secondary AML: 25% and 29%
- Poor risk cyto: **39% and 48%**
- CR/CRi: **70% and 75%**
- Med time to CR: **1.2 mo and 1.9 mo**
- Med OS: **14.9 mo and 16.2 mo**
- Among CR/CRi's MRD neg 45%


Pollyea et al. ASH, 2018 (abstr 285)

#### **Overall Survival in Untreated Older AML** HMA + Venetoclax



Pollyea et al. ASH, 2018 (abstr 285)

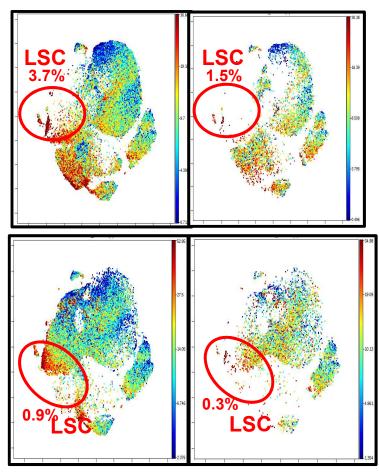

#### OS by Venetoclax Dose Levels in Treatment Naïve Elderly AML



Dinardo et al, Blood, 2019

# **DEC10-VEN in AML/MDS**

#### **Disease-free Survival**




Maiti et al. ASH, 2018 (abstr 286)

6-mo DFS

#### Venetoclax and Azacitidine Results in Rapid Eradication of Blasts and LSCs

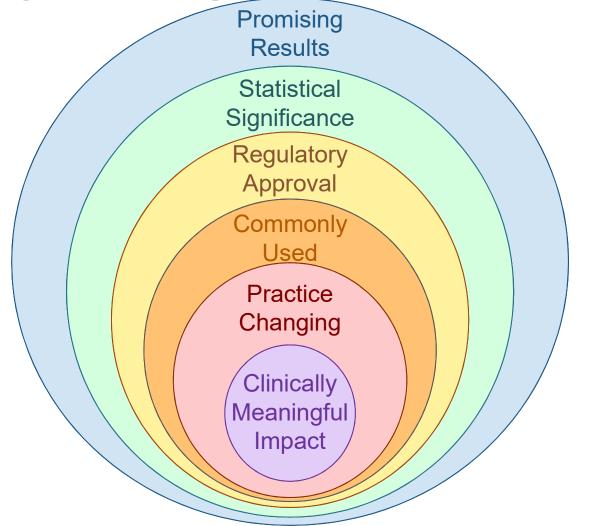
| Peripheral Blood Blasts (%) |                |                                |                                |  |
|-----------------------------|----------------|--------------------------------|--------------------------------|--|
|                             | Pre- Treatment | 24 Hours<br>Post-<br>Treatment | 72 Hours<br>Post-<br>Treatment |  |
| Pt 1                        | 71%            | 50%                            | 16%                            |  |
| Pt 2                        | 81%            | 72%                            | 34%                            |  |



LSCs defined as Lin-/CD34+/CD123+/HLA-DR+/CD117+/CD33

Pollyea et al. Nature Med, 2018

#### **AML Treatment Strategies in 2019**


| AML subgroup                                                              | Candidate for<br>intensive chemo                | Not candidate for<br>intensive chemo |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|--|--|
| All patients                                                              | Clinical trial preferred                        | Clinical trial preferred             |  |  |
| CBF                                                                       | GO + chemo, ? If pretrans                       | HMA/LoDAC + Venetoclax*              |  |  |
| CD33 pos                                                                  | GO + chemo, ? If<br>pretransplant               | GO d1,8 or HMA/LoDAC +<br>Venetoclax |  |  |
| t-AML or AML w/MRC<br>(incl complex cyto)                                 | CPX-351 ind/consol,<br>transplant               | HMA/LoDAC + Venetoclax*              |  |  |
| TP53 mutant                                                               | Chemo or decitabine x 5-<br>10d +/- Venetoclax  | Decitabine x 5-10d +/-<br>Venetoclax |  |  |
| FLT3+                                                                     | Mido + chemo<br>ind/consol/maint,<br>transplant | ?AZA + sorafenib or HMA alone        |  |  |
| IDH1/2+                                                                   | Chemo (on trial with IDHi)                      | HMA/LoDAC + Venetoclax* or<br>Ivo    |  |  |
| Marker - *HMA/LoDAC + Vefetterner awaiting phase HMara oDAC + Venetoclax* |                                                 |                                      |  |  |

### **AML Treatment Strategies in 2019: Rel/Ref**

| AML subgroup                                        | Candidate for<br>intensive chemo                 | Not a candidate for<br>intensive chemo   |  |  |
|-----------------------------------------------------|--------------------------------------------------|------------------------------------------|--|--|
| All patients                                        | Clinical trial preferred                         | Clinical trial preferred                 |  |  |
| R/R <i>IDH2</i> +                                   | Enasidenib                                       | Enasidenib                               |  |  |
| R/R <i>IDH1</i> +                                   | Ivosidenib                                       | Ivosidenib                               |  |  |
| R/R <i>FLT3</i> +                                   | Gilteritinib                                     | Gilteritinib                             |  |  |
| R/R <i>TP53</i> mutant                              | Chemo vs decitabine x 5 or<br>10d +/- Venetoclax | Decitabine x 5 or x10d +/-<br>Venetoclax |  |  |
| R/R CD33+                                           | Chemo or GO                                      | HMA/LoDAC + Venetoclax* or<br>GO         |  |  |
| R/R marker -                                        | Chemo vs HMA vs<br>HMA/LoDAC + Venetoclax*       | HMA vs HMA/LoDAC +<br>Venetoclax*        |  |  |
| *Lower RR for HMA/LoDAC + Venetoclax in R/R setting |                                                  |                                          |  |  |

(Dinardo et al. Am J Hematol 2018; Goldberg et al. ASH 2017, abstr 1353)

#### The Circuitous Road To A Clinically Meaningful Impact Of A New Drug



#### **Summary and Conclusions**

- 8 new drugs are recently approved for AML, era of precision medicine in AML
- Second gen more potent FLT3i available, in randomized trials
- CPX-351 new SOC for t-AML and AML-MRC
- Venetoclax + HMA or LoDAC highly effective even in high risk pts (P53), may emerge as a new SOC for older adults
- Many novel agents in AML with unique mechanisms of action available
- Therapeutic paradigms are (finally) shifting, more care now delivered as outpt potentially placing strain on outpt services

# **Acknowledgments**

#### Leukemia Service Memorial Sloan Kettering Cancer Center

## **ECOGLeukemia** Committee