
Targeted therapies for patients with uncommon molecular alterations

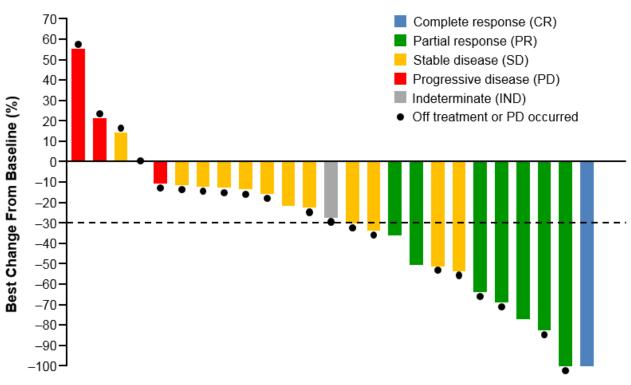
Tom Stinchcombe

Duke Cancer Institute

Emerging targets and targeted therapies

Tsao et al Journal of Thoracic Oncology 2015

Topics

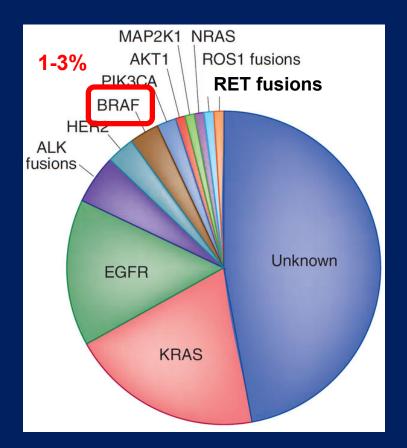

- ROS1: beyond crizotinib
- BRAF V600E and non-V600E
- MET exon 14 alterations and MET amplification
- HER2 mutations
- *RET* rearrangements
- NTRK fusions

Efficacy of Entrectinib in ROS1+ NSCLC

Best Response by BICR, n (%)	Total (N=53)
Objective Response Rate (BICR-ORR)	77.4%
Intracranial BICR-ORR (patients with measurable disease, n=20)	55.0%
Median Duration of Response (BICR-mDOR)	24.6 months
Median Progression-Free Survival (BICR-mPFS) Without CNS disease (n=30) With CNS disease (n=23)	26.3 months 13.6 months

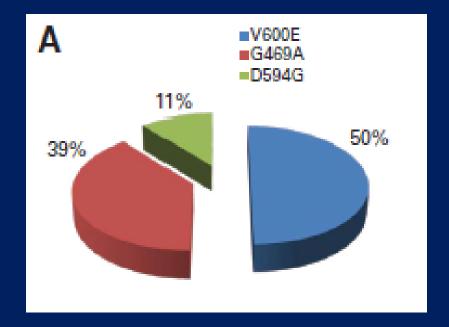
Doebele et al WCLC 2018

Lorlatinib in ROS1 + NSCLC



Patients with at least one on-study <u>target lesion</u> assessment as per independent central review were included. If any procedure was different and not interchangeable from the procedure at screening, the percent change from baseline could not be calculated and is not displayed.

TRAEs in ≥10% of Patients, n (%)	Total (N=47)	Grade 3	Grade 4
Hypercholesterolemia*	39 (83.0)	4 (8.5)	0
Hypertriglyceridemia*	28 (59.6)	9 (19.1)	0
Edema*	21 (44.7)	1 (2.1)	0
Peripheral neuropathy*	16 (34.0)	1 (2.1)	0
Cognitive effects*	11 (23.4)	0	0
Weight increased	10 (21.3)	3 (6.4)	0
Dizziness	7 (14.9)	2 (4.3)	0
Mood effects*	6 (12.8)	0	0
Lipase increased	6 (12.8)	3 (6.4)	0
Fatigue*	5 (10.6)	1 (2.1)	0
ALT increased	5 (10.6)	0	0
Arthralgia	5 (10.6)	0	0
Thrombocytopenia	5 (10.6)	0	1 (2.1)


Ou et al WCLC 2018

BRAF mutation in NSCLC

_

Relative distribution of 'driver' mutations in lung adenocarcinoma Pao and Hutchinson 2012

Relative distribution of BRAF mutations in NSCLC

Paik P et al JCO 2011

BRAF V600E-directed therapy

Agent	ORR	Median DOR (months)	Median PFS (months)	Median OS (months)
Dabrafenib (n=78)	33%	9.6	5.5	12.7
Vemurafenib (n=14)	43%	Not available	Not available	Not available
Vemurafenib (n=19)	42%		7.3	NR
Dabrafenib/Trametinib (n=59)	63.2%	9.0	9.7	NR
Dabrafenib/Trametinib (n=36)	64%	10.4	10.2	24.6 months

Planchard et al Lancet Oncology May 2016, Planchard et al Lancet Oncology July 2016, Planchard et al Lancet Oncology 2017, Hainsworth JCO 2018, Hyman et al NEJM 2015

Dabrafenib alone and with trametinib in *BRAF* V600E NSCLC: Adverse events

Treatment	Grade 3 AE's ≥ 5%	Treatment delivery
Dabrafenib	Squamous cell carcinoma (12%) Asthenia (5%) basal cell carcinoma (5%),	6% discontinued due AE 43% required dose interruption 18% required dose reduction
Dabrafenib/trametinib (previously treated)	Neutropenia (9%) Hyyponatremia (7%) Anemia (6%)	12% discontinued due AE 61% required dose interruption or delay 58% of patients received 80% of planned dabrafenib 75% of patients received 80% planned trametinib
Dabrefenib/trametinib (first-line)	Pyrexia (11%) ALT increase (11%) HTN (11%) Vomiting (8%)	AE's leading to treatment discontinuation (22%), dose interruption (75%), and dose reduction (39%) Dose reduction dabrafenib: 47%, Dose reduction trametinib 28%

Planchard et al Lancet Oncology 2016, Planchard et al Lancet Oncology 2016, Planchard Lancet Oncology 2017

BRAF Non-V600E mutations

First author	Therapy	# of patients	ORR	PFS	OS
Mazieres et al	Vemurafenib	17	0%	1.8 month	5.2 months
Hainsworth et al	Vemurafenib	23*	4%	Not available	Not available
Gautschi et al	Vemurafenib or dabrafenib	6**	17% (1 of 6)	1.5 months	11.8 months

* Number includes patients with all tumor types. Cohort stopped for futility

** Retrospective study and subset analysis for non-V600E

Mazieres et al WCLC 2018, Hainsworth et al JCO 2018, Gautschi et al JTO 2015

MET exon 14 alterations

- Introns flanking *MET* exon 14 in pre-mRNA are spliced out resulting MET mRNA which is translated into functional MET receptor
- *MET* exon 14 encodes the ubiquitin ligase binding site which is used in receptor degradation
- Mutations that disrupt splice sites result in MET exon 14 skipping producing a MET receptor that lacks ubiquitin binding site → reduced degradation of MET protein → sustained MET activation
- Next generation sequencing the preferred testing method
- *MET* exon 14 skipping mutations in 20-30% of pulmonary sarcomatoid carcinoma, and can be seen in squamous histology
- Median age 73 years

Crizotinib in MET amplified NSCLC: Context matters

MET/CEP7 ratio	Ν	ORR	PFS
≥1.8 to ≤ 2.2	3	33%	1.8
> 2.2 to < 4.0	14	14.3%	1.9
≥ 4.0	20	40%	6.8

- MET amplified defined by copy number as well. Copy number cut-off vary depending on testing
- MET amplification present in 15-20% of samples of MET exon 14 alteration
- 2/19 patients of MET amplified patients had MET exon 14 alterations (10.5%)

Frequency of *MET* alterations

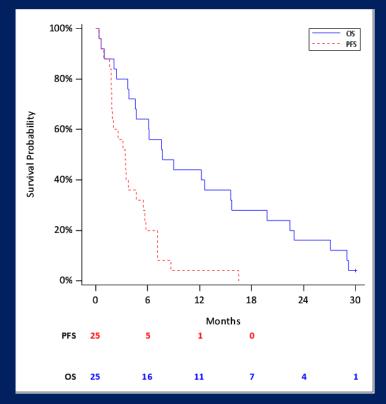
Molecular alteration	Screening	# of positive cases	Pts included
MET amplification	4191	252 (6.0%)	25 patients
MET mutation	1192	86 (7.2%)	29 patients

Moro-Sibilot et al WCLC 2018

Select patient characteristics

Patient and disease characteristics	MET amplification	MET mutation
Number	25 Median copy #: 8 (6-12)	28 Exon 14: n=25)
Male	56%	32%
Median age (range)	59 (30-92)	72 (35-85)
Adenocarcinoma	21 (84%)	26 (92%)
Smokers (current and former)	18 (76%)	11 (52%)
Brain metastases	5 (20%)	7 (25%)

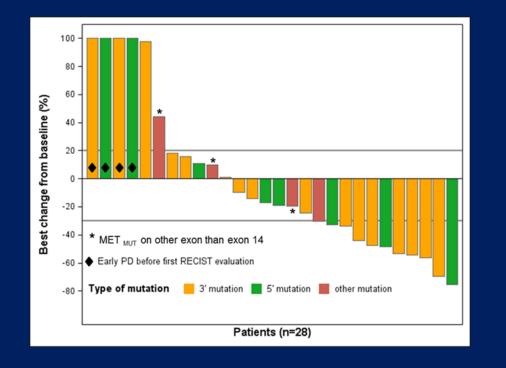
Moro-Sibilot et al WCLC 2018


MET amplification

MET level of amplification Polysomy High Low Intermediate 100 Early PD before first RECIST evaluation 80 Best change from baseline (%) 60 40 20 0 -20 -40 -60 -80 Patients (n=24)

Response

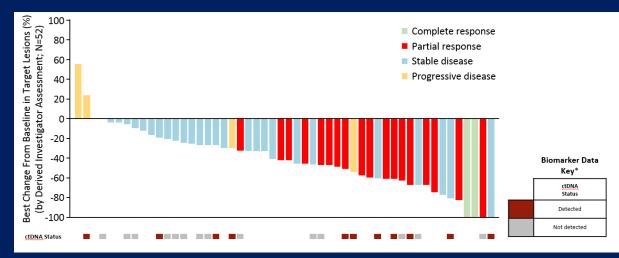
ORR: 32% (8/25)


PFS and OS

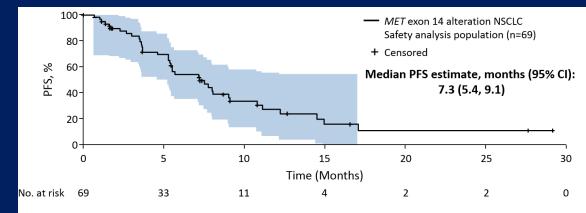
Median PFS: 3.4 months Median OS: 7.7 months

Moro-Sibilot et al WCLC 2018

MET exon 14 mutation


ORR 40% (10/25)

Moro-Sibilot et al WCLC 2018


Median PFS 3.6 months Median OS: 9.5 months

Crizotinib in MET exon 14 alterations

Responses

Progression-free survival

OS data were not mature at time of data cutoff: 34.8% patients had died; 40.6% still in follow-up

Median Overall Survival (OS) estimate, months (95% CI): 20.5 (14.3, 21.8)

Median OS: 20.5 months

ORR: 32% (28/65) DOR: 9.1 months

Drilon et al WCLC 2018

Novel agents MET exon 14 agents

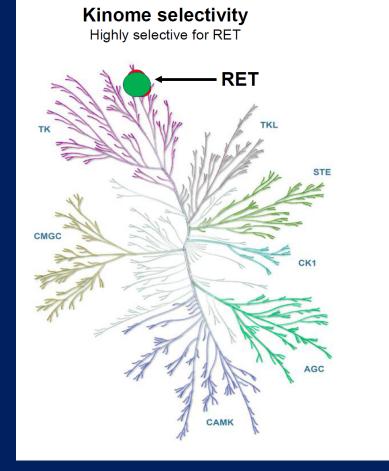
Agent	Patient population	ORR	PFS
Capmatinib	MET exon 14	39%	Not available
(INC280)	Pre-treated	27/69	
Capmatinib	MET exon 14	72%	Not available
(INC280)	Treatment naïve	(18/25)	
Tepotinib	MET exon 14 Pre-treated	35% (14/40)	Not available

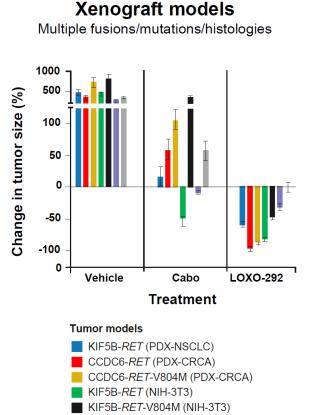
Wolf et al ESMO 2018, Felip et al WCLC 2018

RET rearranged NSCLC

- RET rearrangements are detected in 1-2% of adenocarcinomas, 8% among patients who are EGFR and ALK negative
- *RET* proto-oncogene is rearranged with partner gene: *KIF5B* most common but others are *CCDC6*, *NCOA4*, or *TRIM33*
- Multi-targeted TKI's investigated in prospective phase 2 studies
- Frequent dose reductions for "off target" toxicities were observed, often related to VEGF and/or EGFR activity

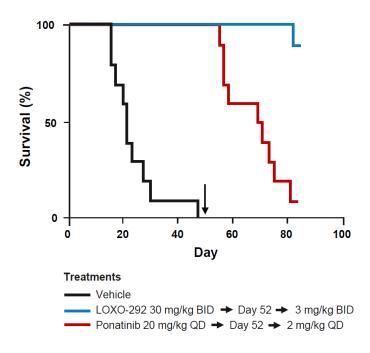
Gautschi et al JCO 2017, Yoh et al Lancet Respiratory 2017, Drilon et al Lancet Oncology 2016, Lee et al Annals of Oncology 2017


Phase 2 trials of RET inhibitors


Agent	# of patients	ORR	PFS	Dose reduction
Vandetanib	17	47% (n=9) 95% CI: 24-71%	4.7 months 95% CI: 2.8-8.5	53% of patients
Vandetanib	18	18% (n=3)	4.5 months	22% of patients
Cabozantinib	26	28% (n=7) 95% CI: 12-49%	5.5 months 95% CI: 3.8-8.4	73% of patients
Platinum-based chemotherapy*	84	51% (n=33) 95% CI: 38-63	7.8 months 95% CI: 5.3-10.2	

- Of 84 patients 66 received platinum-pemetrxed
- Median OS 24.8 months

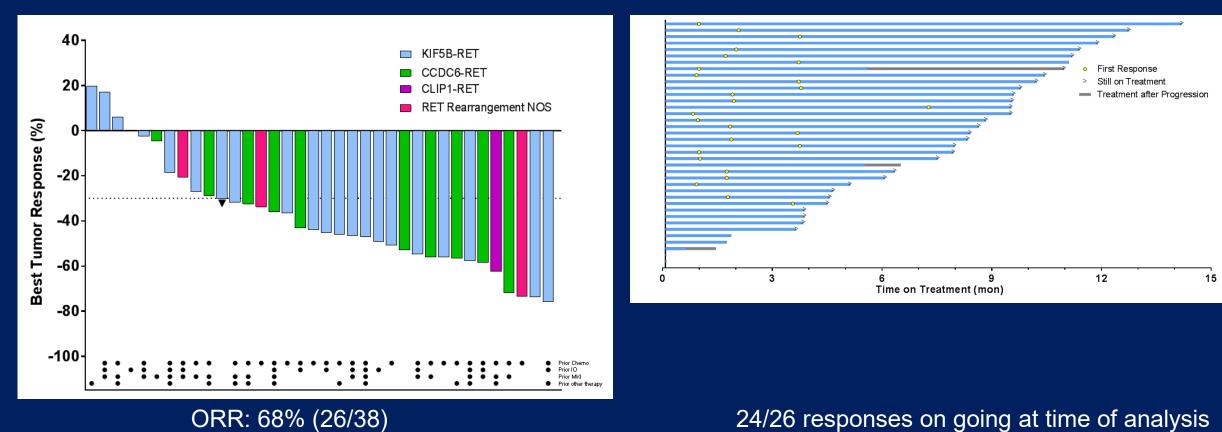
Yoh et al Lancet Respiratory 2017, Drilon et al Lancet Oncology 2016, Lee et al Annals of Oncology 2017


LOXO-292 is a potent and selective RET inhibitor

Orthotopic brain model

CCDC6-RET orthotopic brain PDX

Oxnard et al WCLC 2018


RET C634W (TT cell line-MTC) CCDC6-RET (LC-2/ad cell line-NSCLC)

Subbiah et al. Ann Oncol 2018; Cabo = cabozantinib; PDX = patient-derived xenograft; NSCLC = non-small cell lung cancer; CRC = colorectal cancer; MTC = medullary thyroid cancer; BID = twice-daily; QD = once-daily

Efficacy of LOXO-292 in RET fusion NSCLC

Responses

Oxnard et al WCLC 2018

LOXO-292 safety profile

	All doses and patients, n=82								
	Tr	eatment-em	nergent AEs	(≥10% overal	ll)		Treatment-related AEs		
	Grade 1	Grade 2	Grade 3	Grade 4	Total		Grade 3	Grade 4	Total
Diarrhea	15%	7%	1%	-	23%		1%	-	11%
Fatigue	9 %	13%	-	-	22%		-	-	17%
Dry Mouth	21%	-	-	-	21%		-	-	13%
Constipation	17%	2%	-	-	20%		-	-	4%
Hypomagnesemia	12%	1%	-	-	13%		-	-	2%
Cough	11%	1%	-	-	12%		-	-	1%
Headache	10%	1%	1%	-	12%		-	-	1%
Nausea	9%	4%	-	-	12%		-	-	5%

• Most treatment-emergent AEs were Grade 1 in severity and judged not related to LOXO-292

- Four patients experienced treatment-related AEs ≥ grade 3: diarrhea, increased ALT/AST, thrombocytopenia (DLT @ 240mg BID), tumor lysis syndrome (DLT @ 240mg BID)
- Dose exploration ongoing at 200 mg BID

AE = adverse event; DLT = dose limiting toxicity; ALT = alanine aminotransferase; AST = aspartate aminotransferase; Note: Total %s for any given AE may be different than the sum of the individual grades, due to rounding. Patients enrolled as of April 2, 2018. Follow-up as of July 19, 2018.

Oxnard et al WCLC 2018

Phase 1 trial of BLU-667 in patients with advanced RET-altered solid tumors

- 53 patients enrolled: 29 medullary thyroid cancer and 19 NSCLC
- MTD 400 daily with dose-limiting toxicities of hyponatremia and hypertension
- Grade ≥ 3 AE's: increased liver tests, hypertension, diarrhea, fatigue, neutropenia
- Response evaluable patients (n=40): CR 1 (3%), PR 17 (43%), SD 20 (50%), PD 2 (5%)
- ORR in RET-fusion NSCLC: 50%
- 41 of 51 RET altered patients remain on treatment

NTRK gene rearrangements

- Gene rearrangements on *NTRK1*, *NTRK2*, and *NTRK3* and multiple gene partners
- FISH and NGS can identify alteration
- Screened 1,378 cases of NSCLC, NTRK1 gene rearrangements identified in 0.1%
- Present in papillary thyroid cancer, cholangiocarcinoma, glioblastoma, sarcomas
- Larotrectinib potent and selective inhibitor of all 3 TRK proteins

Vaishnavi et al Nature Medicine 2013, Farago et al JTO 2015, Stransky et al Nature Communications 2014, Drilon et al NEJM 2018

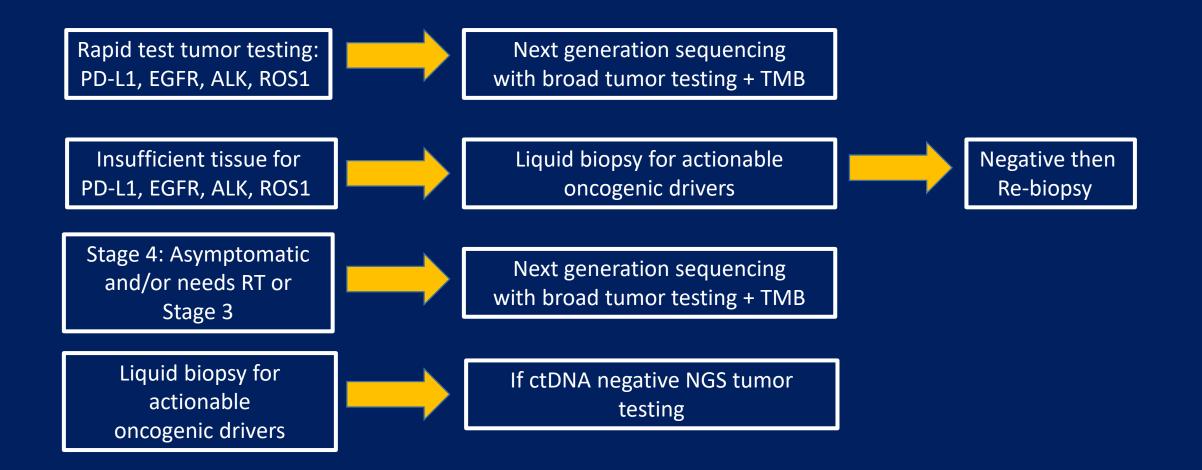
Larotrectinib in TRK-fusion cancers

Diseases

Efficacy

Tumor type	#/ percentage
Salivary gland tumor	12 (22%)
Soft tissue sarcoma	11 (20%)
Infantile fibrosarcoma	7 (13%)
Thyroid cancer	5 (9%)
Colon cancer	4 (7%)
Lung cancer	4 (7%)
Melanoma	4 (7%)
GIST	3 (5%)
Cholangiocarcinoma	2 (4%)
Appendix	1 (2%)
Breast	1 (2%)
Pancreas	1 (2%)

Parameter	Result
ORR	75% (41/55)
Median time to response	1.8 months
Median duration of response	NR
Median PFS	NR
1-year PFS	55%


Emerging targeted agents for patients with metastatic NSCLC

Genetic Alteration (i.e. driver event)	Available targeted agent
High level <i>MET</i> amplification or <i>MET</i> exon 14 skipping mutation	Crizotinib
RET rearrangements	Cabozantinib, vandetanib
HER2 mutations	Ado-trastuzumab emtansine
Tumor mutation burden	Nivolumab +/- ipilimumab

Note: All recommendations are category 2A unless otherwise indicated Clinical trials: NCCN believes that the best management of any patient with cancer is a clinical trial. Participation in clinical trials is especially encouraged.

https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf-accessed 2/19/2018 Version 3.2019

Testing strategies: one size does not fit all

My thoughts

- *ROS1* crizotinib the standard therapy. Novel first and second-line agents may become available
- BRAF V600E: dabrafenib and trametinib standard option
- *MET* exon 14 and MET amplified promising target: crizotinib active, but need to develop new agents
- *HER2* mutant: current TKI's limited activity, and T-DM1 promising but needs further validation
- RET inhibitor LOXO-292 reveals promising activity and tolerable side effects. BLU-667 in development as well
- Supports wider used on NGS or broad testing methods for rare mutations