

Updates in Multiple Myeloma Advances In Oncology 2019

Aaron S Rosenberg Assistant Professor of Medicine Division of Hematology/Oncology

UCDAVIS COMPREHENSIVE CANCER CENTER

Disclosures

- Research: Amgen
- Speakers Bureau: Janssen, Millenium-Takeda
- Ad-boards: Karyopharm, Celgene
- Discussion of off label use: will discuss investigational treatments not yet approved by the FDA

Updates on Multiple Myeloma: 2019 was an active year

- Carfilzomib + Daratumumab (Chari et al Blood 2019)
- Approval of Selinexor (Chari et al, NEJM 2019)
- Phase III ADMYRE study: Plitidepsin + Dex (Spika et al, Ann of Hematol 2019)
 - Now approved in Australia
- Bortez + Thal + Dex +/- Dara (CASSIOPEIA) (Attal, Lancet 2019)
- Len + Dex +/- Dara (MAIA) (Facon et al, NEJM 2019)
- Anti-BCMA CAR-T cells show efficacy (Raje et al NEJM 2019)
- Maintenance Ixazomib: TOURMALINE-MM3 (Dimopoulos et al, Lancet 2019)
- Isatuximab (CD38 antibody) +Pom + Dex presented at ASCO 2019

Outline

- Sparing dexamethasone in older and intermediate frailty patients (ASH18, EHA19)
- GRIFFIN trial: Dara+VRd vs VRd in newly diagnosed myeloma (IMW2019)
- What to do with venetoclax?
 - Quick look at the BELLINI trial (IMW2019)
- If there's time:
 - Balantamab Mafodotin

- IMWG frailty index includes age, ADL and IADL and charlson comorbity index
 - Predicts toxicity, treatment interruptions and mortality
 - <u>http://www.myelomafrailtyscorecalculator.net/</u>
- Patients with a score of 1 or more were included

- Median follow up 25 mo
- ≥ VGPR rates comparable
 - 35% Len-dex continuous
 - 43% Len-dex -> len maintenance
- At least 1 non-hematologic grade 3-4 tox seen in:
 - 39% len-dex continuous
 - 31% len-dex -> len maintenance
- Len discontinued more frequently in continuous arm

LaRocca et al HemaSphere 2019

- 20 month PFS:
 - Len-dex cont: 42%
 - Len-dex-> maint: 43%
- 20 month OS:
 - Len-dex cont: 79%
 - Len-dex-> maint: 84%
- Median EFS:
 - Len-dex cont: 6.6 mo
 - Len-dex-> maint: 9.3 mo

LaRocca et al HemaSphere 2019

- Conclusions:
 - At least in older patients there does not appear to be an advantage to continued doublet therapy
 - The strategy of starting with a more intensive regimen and the proceeding to maintenance is in line with current practice
 - Need long term follow up to ensure that OS is comparable (or better?) in the dex-sparing arm
- Have I implemented this?
 - Yes and I have extrapolated this data to other regimens
 - Dex sparing, anecdotally, associated with improved patient morale

LaRocca et al HemaSphere 2019

GRIFFIN (NCT02874742): Randomized Phase

• Phase 2 study of D-RVd vs RVd in transplant-eligible NDMM, 35 sites in US with enrollment from 12/2016 and 4/2018

D-RVd, daratumumab-lenalidomide/bortezomib/dexamethasone; RVd, lenalidomide/bortezomib/dexamethasone; NDMM, newly diagnosed multiple myeloma; US, United States; ECOG, Eastern Cooperative Oncology Group; CrCl, creatinine clearance; IV, intravenously; PO, orally; SC, subcutaneously; G-CSF, granulocyte colony-stimulating factor; D-R, daratumumab-lenalidomide; Q4W, every 4 weeks; Q8W, every 8 weeks; sCR, stringent complete response; MRD, minimal residual disease; NGS, next-generation sequencing; CR, complete response; ORR, overall response rate; VGPR, very good partial response.

*Lenalidomide dose adjustments were made for patients with CrCl <50 mL/min. ^bCyclophosphamide-based mobilization was permitted if unsuccessful. *Consolidation was initiated 60-100 days post transplant. *Protocol Amendment 2 allowed for the option to dose daratumumab Q4W, based on pharmacokinetic results from study SMM2001 (NCT02316106).

Baseline Demographic and Clinical Characteristics (ITT)

	D-RVd (n = 104)	RVd (n = 103)		D-RVd (n = 104)	RVd (n = 103)
Age			ISS stage, ^b n (%)		
Median (range), years	59 (29-70)	61 (40-70)		49 (47)	50 (49)
▶ ≥65 years	28 (27)	28 (27)	II	40 (39)	37 (36)
Male, n (%)	58 (56)	60 (58)	III	14 (14)	14 (14)
ECOG status,ª n (%)	n = 101	n = 102	Missing	1 (1)	2 (2)
0	39 (39)	40 (39)	Cytogenetic profile, cn (%)	n = 98	n = 97
1	51 (51)	52 (51)	Standard risk	82 (84)	83 (86)
2	11 (11)	10 (10)	High risk	16 (16)	14 (14)
Baseline creatinine clearance, n (%)			Time since diagnosis of MM	n = 103	n = 102
► 30-50 mL/min	9 (9)	9 (9)	Median, months	0.7	0.9
>50 mL/min	95 (91)	94 (91)			

Treatment arms were well balanced

ITT, intent-to-treat; ISS, International Staging System; MM, multiple myeloma.

^aECOG performance status is scored on a scale from 0 to 5, with 0 indicating no symptoms and higher scores indicating increasing disability.

^bThe ISS disease stage is based on the combination of serum β_2 -microglobulin and albumin levels. Higher stages indicate more advanced disease.

°Cytogenetic risk was assessed by fluorescence in situ hybridization (locally tested) among patients with available cytogenetic risk data; high risk was defined as the presence of del(17p), t(4;14), or t(14;16).

Primary Endpoint: sCR by the End of Consolidation^a

- Primary endpoint met at pre-set 1-sided alpha of 0.1
- Post-consolidation depth of response^a

PR VGPR CR scR

- sCR by end of consolidation
 - 42.4% D-RVd vs 32.0% RVd
 - Odds ratio, 1.57; 95% CI, 0.87-2.82; 1-sided P = 0.068^b

PR, partial response.

ancluded patients in the response-evaluable population (all randomized patients with a confirmed diagnoses of MM, measurable disease at baseline, received ≥1 dose of study treatment, and had ≥1 post-baseline disease assessment). ^bP values were calculated with the use of the Cochran–Mantel–Haenszel chi-square test. A 1-sided P value is reported for sCR; for all other responses, 2-sided P values not adjusted for multiplicity are reported.

Responses Deepened Over Time

Response rates and depths were greater for D-RVd at all time points

UCDAVIS COMPREHENSIVE CANCER CENTER

SD, stable disease; PD, progressive disease; NE, not evaluable.

Stem Cell Collection and Transplantation

	D-RVd	RVd
CD34 ⁺ cell yield, ^{a,b} median (10 ⁶ cells/kg)	8.1	9.4
CD34 ⁺ cells transplanted, ^c median (10 ⁶ cells/kg)	4.2	4.8
Patients receiving plerixafor for mobilization, ^d n (%)	66 (70)	44 (55)
Patients receiving cyclophosphamide, ^d n (%)	5 (5)	4 (5)
Days to neutrophil (0.5×10 ⁹ /L) engraftment, median	12	12
Days to platelet (20×10 ⁹ /L) engraftment, median	13	12

DARA did not impact time to engraftment

*Among patients who underwent peripheral blood stem cell apheresis (D-RVd, n = 94; RVd, n = 80). *One patient in the D-RVd group had a stem cell yield <3x10° cells/kg; no patients in either group had a stem cell yield <2x10° cells/kg. *Among patients receiving transplant (D-RVd, n = 94; RVd, n = 78). *Among patients who underwent mobilization (D-RVd, n = 95; RVd, n = 80). Patients underwent stem cell mobilization with G-CSF with or without plerixafor, according to institutional standards; if unsuccessful, cyclophosphamide-based mobilization was permitted.

Most Common TEAEs^a

	D-RVd (n = 99)		RVd (n = 102)	
	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4
Hematologic, n (%)				
Neutropenia	48 (49)	32 (32)	32 (31)	15 (15)
Thrombocytopenia	43 (43)	16 (16)	31 (30)	8 (8)
Leukopenia	34 (34)	15 (15)	27 (27)	7 (7)
Anemia	32 (32)	8 (8)	32 (31)	6 (6)
Lymphopenia	30 (30)	23 (23)	29 (28)	23 (23)
Non-hematologic, n (%)				
Fatigue	61 (62)	5 (5)	56 (55)	4 (4)
Peripheral neuropathy ^b	58 (59)	7 (7)	74 (73)	7 (7)
Diarrhea	53 (54)	6 (6)	43 (42)	4 (4)
Constipation	46 (47)	2 (2)	41 (40)	1 (1)
Nausea	46 (47)	1 (1)	47 (46)	1 (1)
Upper respiratory tract infection	46 (47)	1 (1)	37 (36)	1 (1)
Pyrexia	39 (39)	2 (2)	25 (25)	3 (3)
Insomnia	39 (39)	2 (2)	30 (29)	1 (1)
Cough	38 (38)	0	25 (25)	0
Edema peripheral	32 (32)	2 (2)	35 (34)	3 (3)
Back pain	32 (32)	1 (1)	28 (28)	4 (4)
Infusion-related reactions	41 (41)	5 (5)	_	_

• Any-grade infections occurred in 81 (82%) patients in the D-RVd arm and 56 (55%) patients in the RVd arm; grade 3/4 infections were similar between groups (17 [17%] patients each)

- Pneumonia occurred in 10 (10%) patients in the D-RVd arm and 9 (9%) patients in the RVd arm

TEAE, treatment-emergent adverse event.

aAny-grade TEAEs are listed that occurred in ≥30% of patients in either group. The safety analysis population included all randomized patients who received ≥1 dose of study treatment; analysis was according to treatment received. Includes patients with neuropathy peripheral and peripheral sensory neuropathy.

GRIFFIN: Rosenberg's Hot Takes

- Between MAIA, CASSIOPEIA and GRIFFIN, we're likely moving into an era of antibody based inductions
- Is it ready for prime time?
 - No PFS or OS data, so I don't think we necessarily need this in all patients
 - No data on daratumumab re-treatment, thus I worry about the strategy of continuous dara in newly diagnosed patients as opposed to an induction strategy
 - This is a costly strategy and we need some answers on who needs intensive vs lower intensity strategies

BELLINI: Ven+Bor+Dex vs Bor+Dex

- Slides curtusy of Dr. Shaji Kumar
- IMW 2019 update

Kumar et al, IMW 2019

BELLINI Study Design

Cycles 1 – 8: 21-day, Bortezomib 1.3 mg/m² Days 1, 4, 8, 11 and dexamethasone 20 mg Days 1, 2, 4, 5, 8, 9, 11, 12 **Cycles 9+:** 35-day, Bortezomib 1.3 mg/m² Days 1, 8, 15, 22 and dexamethasone 20 mg Days 1, 2, 8, 9, 15, 16, 22, 23

Stratification factors	 Bortezomib sensitive vs naïve Prior lines of therapy: 1 vs 2–3
Non-ranked secondary endpoints	PFS in BCL-2 ^{high} (IHC), DOR, TTP, MRD negativity rate, other PROs (GHS, fatigue)
Key subgroup analyses	t(11;14), high/standard-risk cytogenetics, and BCL2 expression (gene expression)

DOR, duration of response; GHS, global health status; IHC, immunohistochemistry; MRD, minimal residual disease; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PI, proteasome inhibitor; PRO, patient reported outcome; QD, daily; QOL, quality of life; RRMM, relapsed/refractory multiple myeloma; TTP, time to progression; VGPR, very good partial response.

Demographics and Baseline Characteristics

	Ven+Bd (N=194)	Pbo+Bd (N=97)
Median age, years (range) → ≥65 years, n (%)	66 (36, 87) 108 (56)	65 (44, 83) 52 (54)
Multiple myeloma ISS , n (%) Stage 1 Stage 2 Stage 3	81 (42) 69 (36) 39 (20)	48 (50) 32 (33) 13 (14)
ECOG performance score, n (%) 0 1 or 2	101 (52) 92 (48)	47 (49) 49 (51)
No. of prior lines of therapy, n (%) 1 2 or 3	91 (47) 103 (53)	44 (45) 53 (55)
Prior stem cell transplant, n (%)	116 (59)	57 (59)
Prior exposure to PI, n (%)	135 (70)	68 (70)
Prior exposure to IMiD, n (%)	131 (68)	65 (67)
Prior exposure to PI + IMiD, n (%)	78 (40)	42 (44)

ECOG, Eastern Cooperative Oncology Group; IMiD, immunomodulatory drug; ISS, International Staging System; PI, proteasome inhibitor.

	Ven+Bd (N=194)	Pbo+Bd (N=97)
Type of measurable disease, n (%) IgG IgA FLC / Other	115 (59) 40 (21) 39 (20)	47 (49) 25 (26) 25 (26)
Cytogenetics, n (%)* High-risk [†] Standard-risk [‡] Unknown [§]	31 (17) 141 (78) 9 (5)	18 (19) 72 (77) 4 (4)
t(11;14) status, n (%)* Positive Negative Unknown [§]	20 (11) 152 (84) 9 (5)	15 (16) 74 (79) 5 (5)
BCL-2 expression (IHC), n (%)* High Low	93 (78) 26 (22)	47 (81) 11 (19)

FLC, serum free light chain; IHC, immunohistochemistry.

* Percentage calculated by excluding patients with missing data

[†] t(4;14) or t(14;16) or del(17p)

[‡] No high-risk cytogenetics

§ Sample was tested but results were inconclusive

Primary Endpoint Analysis: Progression-Free Survival All Patients (ITT), 26 Nov 2018

The BELLINI study met its primary endpoint with superior median PFS in the Ven+Bd arm versus Pbo+Bd

Clinical Response Rates in All Patients 26 Nov 2018

Overall response, ≥VGPR, ≥CR and MRD negativity rates were significantly higher with Ven+Bd

MRD assessment was performed by next-generation sequencing on bone marrow aspirate at time of CR/sCR

Overall Survival All Patients (ITT), 26 Nov 2018

A higher risk of death was observed in the Ven+Bd arm compared to Pbo+Bd at interim OS analysis

Overall Survival All Patients (ITT), Updated 18 Mar 2019

Summary of Cause of Death

Safety Population (Only patients who received treatment)	Ven+Bd (N = 193) n (%)	Pbo+Bd (N = 96) n (%)
All deaths	40 (21)	11 (11)
Infection	14 (7)	2 (2)
Progressive disease	17 (9)	8 (8)
Other*	9 (5)	1 (1)
Deaths occurring within 30 days of last dose	13 (7)	1 (1)
Progressive disease	2 (1)	1 (1)
Other	3 (2)	0
Deaths occurring after 30 days of last dose	27 (14)	10 (10)
Infection	6 (3)	2 (2)
Progressive disease	15 (8)	7 (7)
Other	6 (3)	1 (1)

*Includes: cardiac/cardiopulmonary arrest (n = 4), congestive heart failure (n = 1), pancreatic cancer (n = 1), and unknown cause (n = 4).

More deaths were observed in the Ven+Bd arm, with a more prominent imbalance in the treatment-emergent deaths attributed to infectious causes

Most Common Adverse Events

24

BELLINI: Ven+Bor+Dex vs Bor+Dex

- Conclusions:
 - Venetoclax is clearly active, with a pronounced increase in efficacy in the t(11;14) and BLC2high population
 - Increased risk of infection lead to early deaths, with the flipping of the PFS and OS signals
 - This has lead to consternation at the FDA about using PFS as an endpoint in MM – hopefully we won't see a chilling effect on drug development
 - Would have differences in prophylaxis have made a difference?
 - Unknown how many were immunoparetic
 - Prior studies on primary prophy with fluroquinolones in MM have been positive

Kumar et al, IMW 2019