

Liquid Biopsy in Non-Small Cell Lung Cancer: From Target to Immunotherapy

Christian Rolfo, MD, PhD, MBA, Dr.h.c.

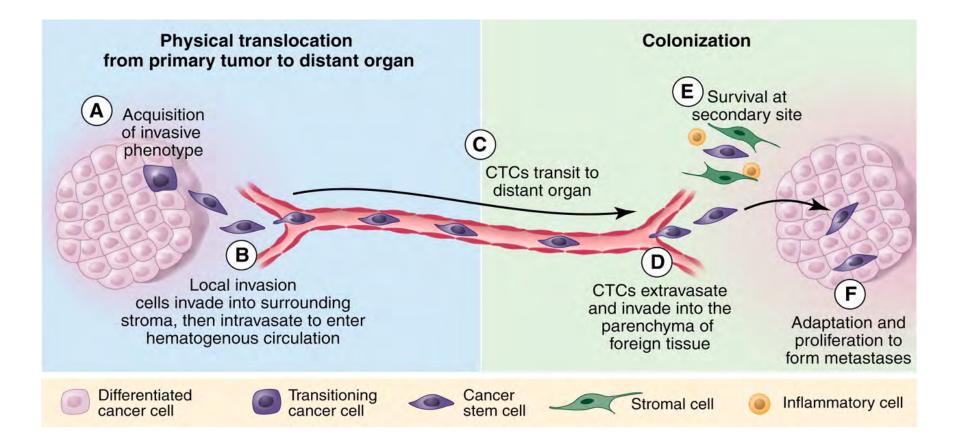
Professor of Medicine Director of Thoracic Medical Oncology Director of Early Clinical Trials Marlene and Steward Greenebaum Comprehensive Cancer Center

A Center Center Designated by the National Center Institute

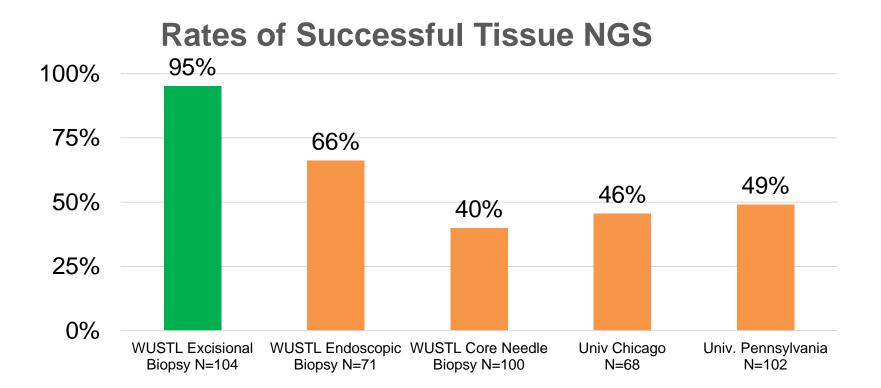
DISCLOSURE INFORMATION

Personal financial interests

Speaker bureau: MSD, Novartis, GuardantHealth; Scientific advisor: Mylan

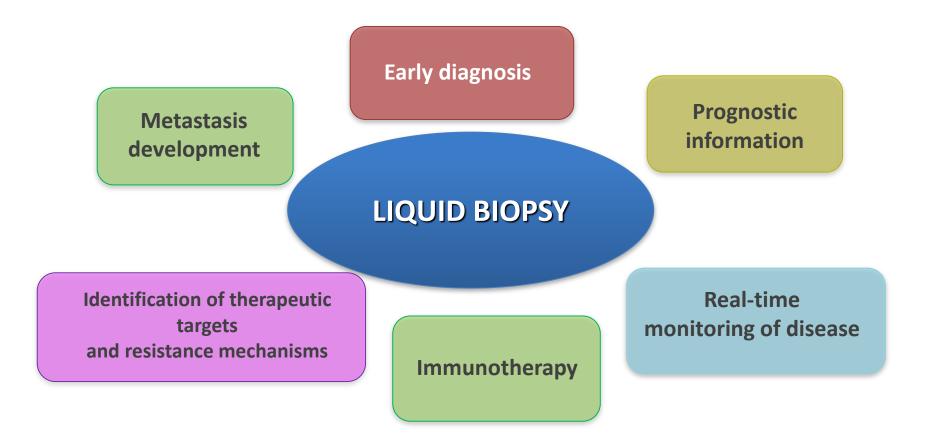

- Institutional financial interests Research grant at Antwerp University Hospital, Belgium: Novartis, Sanofi
- Non-financial interests: Oncompass Steering scientific committee; OncoDNA: Research collaboration no remunerated for Exosomes (2017)

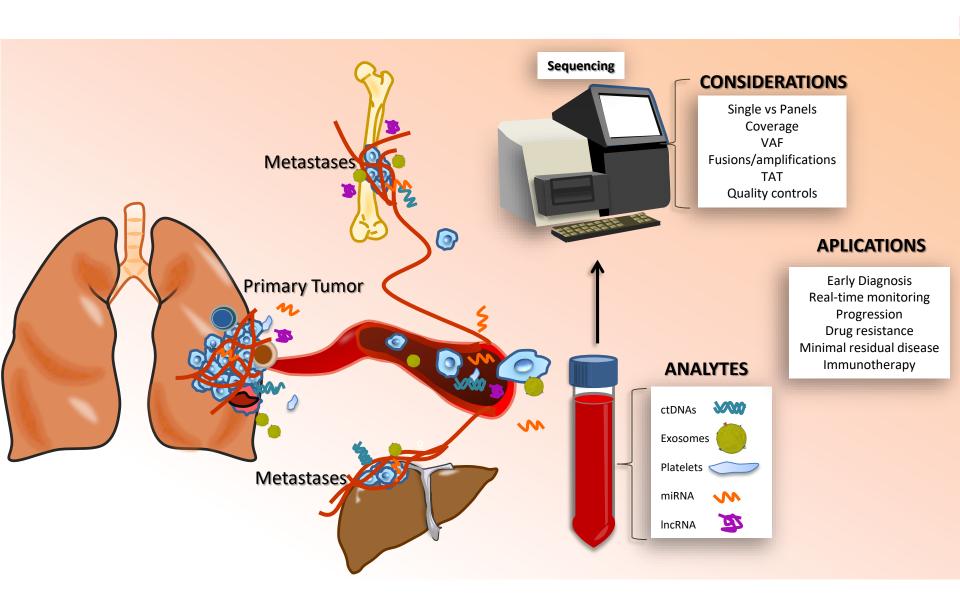
• Leadership roles:

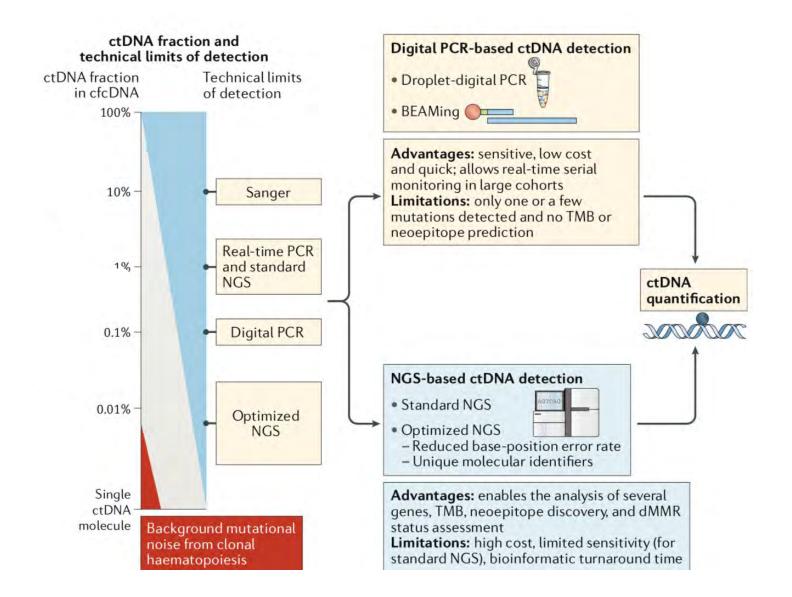

Educational Committee Member: IALSC - Vice President : ISLB (International Society of Liquid Biopsy) - Educational Chair: OLA Oncology Latin American Association - Faculty for ASCO International

Scientific Committee Member at ESO (European School of Oncology).

Beginning of Concept of Liquid Biopsy

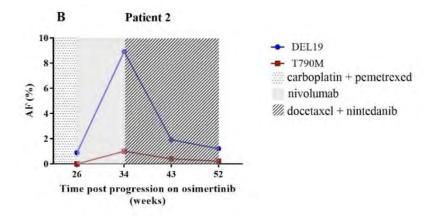



In NSCLC Tissue is still an Issue... ...Insufficient for Genotyping

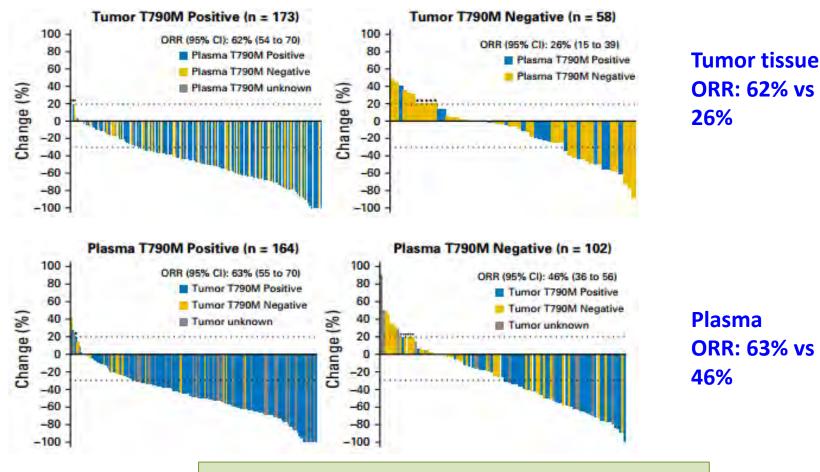


- ¹Hagemann (Govindan) et al. 2015 Cancer
- ²Villaflor (Salgia) et al. 2016 Oncotarget
- ³Thompson (Carpenter) et al. 2016 *Clin Canc Res*

Liquid Biopsy: clinical application



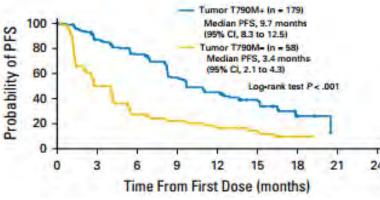
A Multicenter Study to Assess *EGFR* Mutational Status in Plasma: Focus on an Optimized Workflow for Liquid Biopsy in a Clinical Setting



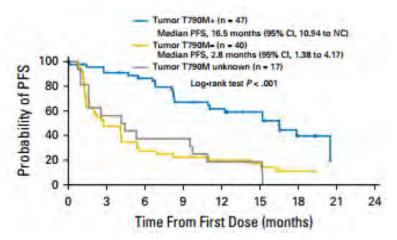
549 plasma samples from 234 non-small cell lung cancer (NSCLC) patients were collected. Epidermal Growth Factor Receptor (*EGFR*) circulating cell-free tumor DNA (ctDNA) mutational analysis was performed using digital droplet PCR (ddPCR).

- Longer transit time increased the risk of hemolysis
- Low temperatures were shown to have a negative effect.
- Metastatic sites were found to be strongly associated with ctDNA detection (p < 0.001), as well as allele frequency (p = 0.034).
- Activating mutations were detected in a higher concentration
- and allele frequency compared to the T790M mutation (*p* = 0.003, and *p* = 0.002, respectively)

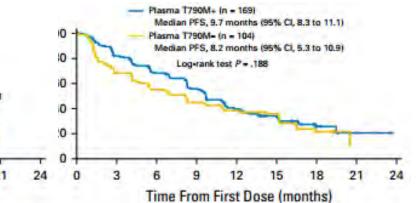
RR to Osimerinib according to T790M in plasma or tumor tissue

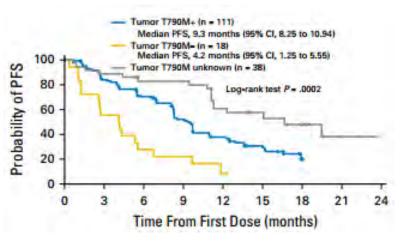


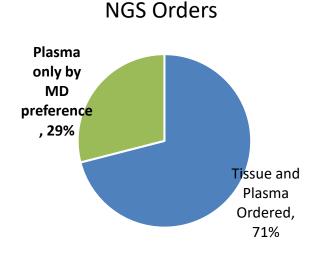
Tissue vs Plasma ORR (T790M+): 62% vs 63% / ORR (T790M-): 26% vs 46%


Oxnard, JCO 2016

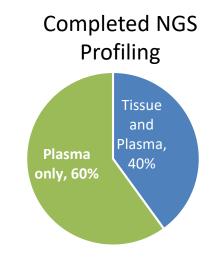
PFS to Osimerinib according to T790M in plasma or tumor tissue


Tumor T790M+ vs T790M-


PlasmaT790M- by tissue status

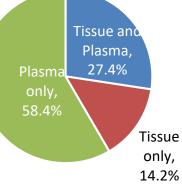

Plasma T790M+ vs T790M-

PlasmaT790M+ by tissue status

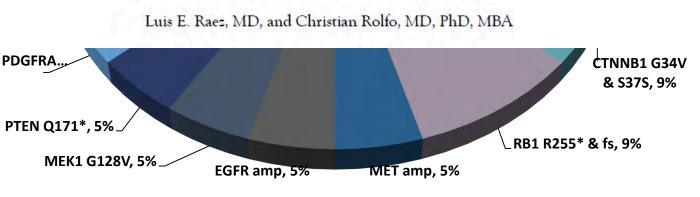

Prospective Study of 323 Advanced NSCLC Patients with Guardant360 Ordered as Standard of Care

Tissue NGS Order Outcomes -10%: biopsy not possible

-34%: tissue QNS


-56%: completed

 -70% at disease progression (reflection of heterogeneity)


Plasma Performance

- Detected 86% of targetable mutations
- Only source of targetable mutation detection for 58% of patients

When Osimertinib Moves to First Line – Comprehensive Genomic Testing Reveals Acquired Resistance Mechanisms

Case Report: Detection of c797s as a Mechanism of Resistance in a Patient With Lung Cancer With EGFR Mutations

Ramalingam (Jänne) et al. 2017 *Journal of Clinical Oncology* Raez & Rolfo AJHO. 2017;13(9):19-22

RESULTS: CANDIDATE ACQUIRED RESISTANCE MECHANISMS WITH OSIMERTINIB (n=91)*

- No evidence of acquired EGFR T790M
- The most common resistance mechanisms were MET amplification and EGFR C797S mutation
 - Other mechanisms included HER2 amplification, PIK3CA and RAS mutations

Liquid Biopsy: Guidelines & Recommendations

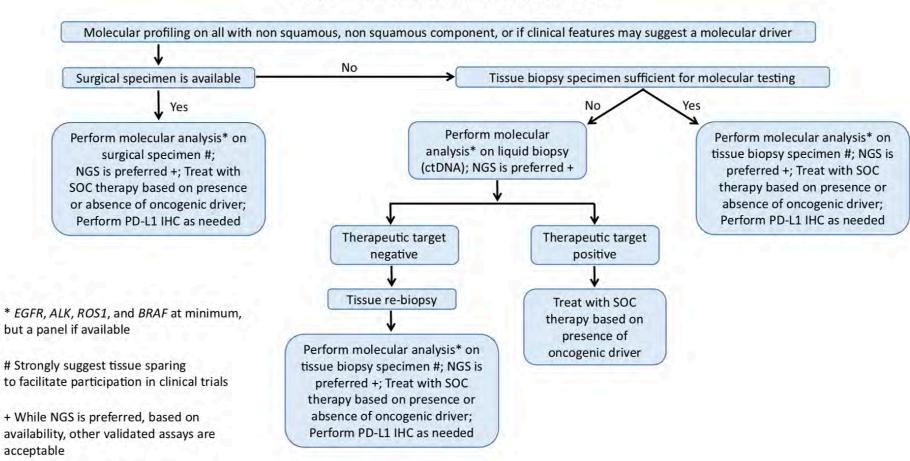
"If repeat biopsy is not feasible, plasma biopsy should be considered" "Testing should be conducted as part of broad molecular profiling"

NCCN 2017 NSCLC Practice Guidelines¹

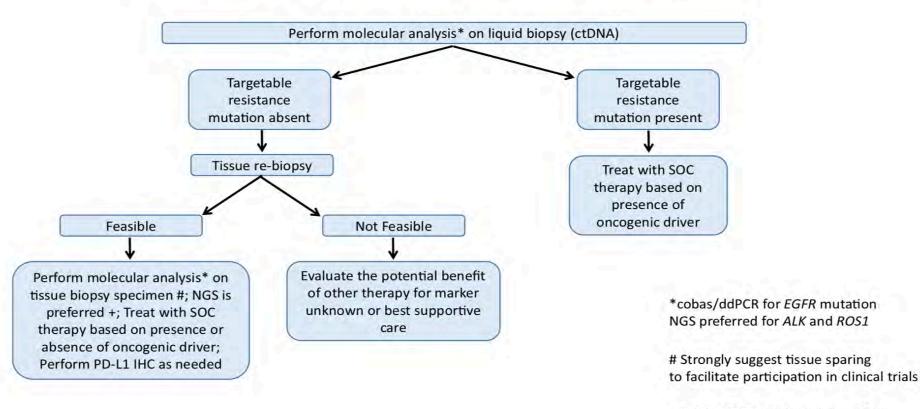
"Key new recommendations include the inclusion of additional genes (*ERBB2, MET, BRAF, KRAS*, and *RET*)...and the use of cell-free DNA to "rule in" targetable mutations when tissue is limited or hard to obtain.

AMP/CAP/IASLC 2018 Molecular Testing Guidelines for Lung Cancer²

"Even for patients who are able to undergo a traditional tissue biopsy, a liquid biopsy may be safer, quicker, and more convenient—and perhaps even more informative."


2017 ASCO Clinical Cancer Advances³

¹Ettinger (Hughes) et al. 2017 JNCCN ²Lindemann (Yatabe) et al. 2018 J Thor Onc ³Burstein (Dizon) et al. 2017 J Clin Onc

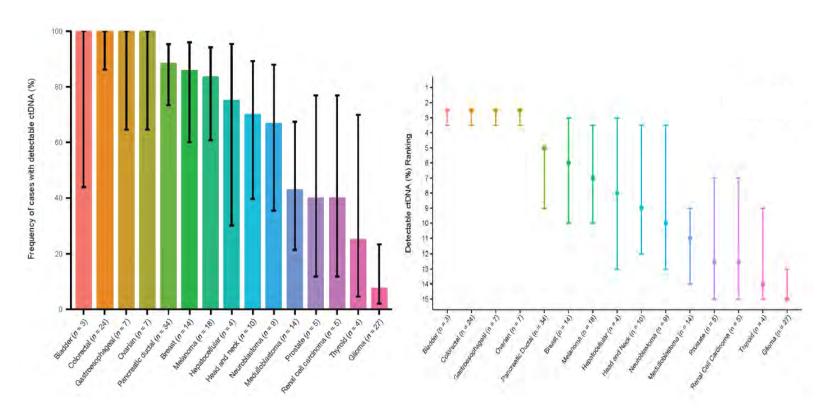

Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC

Christian Rolfo, MD, PhD, MBA,^a Philip C. Mack, PhD,^b Giorgio V. Scagliotti, MD, PhD,^c Paul Baas, MD, PhD,^d Fabrice Barlesi, MD, PhD,^e Trever G. Bivona, MD, PhD,^f Roy S. Herbst, MD, PhD,^g Tony S. Mok, MD,^h Nir Peled, MD, PhD,[†] Robert Pirker, MD,^j Luis E. Raez, MD,^k Martin Reck, MD, PhD,¹ Jonathan W. Riess, MD,^b Lecia V. Sequist, MD, MPH,^m Frances A. Shepherd, MD,ⁿ Lynette M. Sholl, MD,^o Daniel S. W. Tan, MBBS, PhD,^P Heather A. Wakelee, MD,^q Ignacio I. Wistuba, MD,^r Murry W. Wynes, PhD,⁵ David P. Carbone, MD, PhD,^t Fred R. Hirsch, MD, PhD,^{u,*} David R. Gandara, MD^b

Patient with advanced treatment naive NSCLC

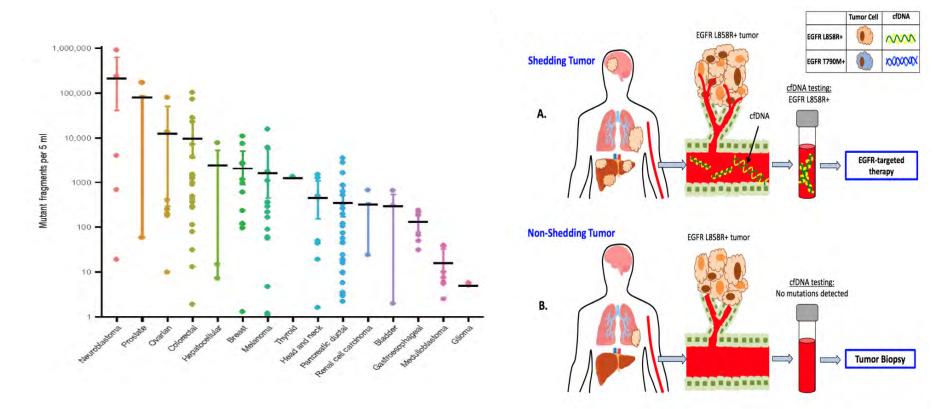
Patient with NSCLC progressive or recurrent disease during treatment with TKI

+ While NGS is preferred, based on availability, other validated assays are acceptable


Pre-analytical factors for optimal ctDNA testing!

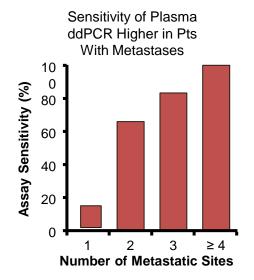
SPECIAL CONSIDERATIONS...

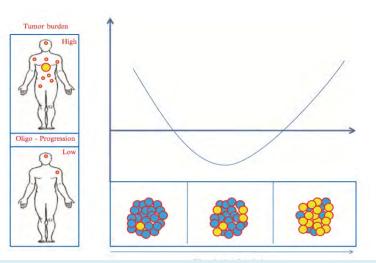
Liquid biopsy: ctDNA


Does different tumor types release the same amount of DNA in the blood?

Bettegowda et al., Sci Trans Med, 2014

Liquid biopsy: ctDNA


Does ctDNA concentration is the same among patients with the same tumor?


Bettegowda et al., Sci Trans Med, 2014

Sacher, Komatsubara, Oxnard J Thorac Oncol. 2017 Sep;12(9):1344-1356

Some considerations

Correlation between tumor burden (y-axis) and dynamic clonal evolution of the tumor

Increasing number of metastatic sites (P = .001) and presence of bone (P = .007), hepatic (P = .001) metastases significantly associated with assay sensitivity

Metastatic site influences accurancy in EGFR mut

• Pooled analysis

Study (Reference)	EGFR Mutation (ctDNA)	Sensitivity (M1b) n.(%)	Sensitivity (M1a) n.(%)	Odds Ratio (95% CI)
Oxnard <i>et al.</i> 2016 <i>(15)</i>	Del19/L858R	139/161 (86%)	36/48 (75%)	2.11 (0.95-4.66)
Normanno <i>et al.</i> 2016 (18)	Del19/L858R	52/82 (63%)	13/57 (23%)	5.87 (2.73-12.6)
Yi-Long Wu et al. 2016 (19)	Del19/L858R	180/234 (77%)	63/105 (60%)	2.22 (1.35-3.65)
Tseng <i>et al.</i> 2015 (20)	Del19/L858R	32/41 (78%)	5/21 (24%)	11.28 (3.27-39.6)
Kumar <i>et al.</i> 2017 <i>(22)</i>	Del19/L858R	21/28 (75%)	15/27 (55%)	2.40 (0.76-7.53)
Kasahara <i>et al.</i> 2017 (23)	Del19/L858R	26/33 (79%)	8/16 (50%)	3.71 (1.03-13.46)
Karlovich et al. 2016 (17)	Del19/L858R	52/55 (95%)	7/18 (39%)	27.24 (6.07-122.17)
Karlovich et al.* 2016 (17)	T790M	47/49 (96%)	4/15 (27%)	64.63 (10.47-398.8)
Thress et al. 2015 (21)	T790M	21/27 (78%)	2/11 (18%)	15.75 (2.65-93.46)
Jenkins <i>et al.</i> 2017 (24)	T790M	111/154 (72%)	123/243 (51%)	2.52 (1.63-3.88)

A significant association was observed for both **EGFR-activating** (OR: 4.30, 95% CI: 2.35-7.88) **and resistant T790M mutations** (OR: 11.89, 95% CI: 1.45-97.22), regardless of the use of digital-PCR (OR: 5.85, 95% CI: 3.56-9.60) or non-digital PCR technologies (OR: 2.96, 95% CI: 2.24-3.91).

Important considerations

NEXT GENERATION SEQUENCING PLATFORMS

- Assay: laboratory developed vs. commercial
- **Commercial tests:** test panel *vs.* central CLIA-lab
- Coverage: number of bases, genes, exons, VAF
- Validation and Quality Controls
- Enrichment technology: multiplex PCR, Hybrid capture
- Limit of detection: % mutant allele / wild type allele
- Sensitivity & specificity: samples with known mutant allele frequency
- **Bioinformatics:** variant calling and error correction methods
- Interpretation and reporting
- TAT and costs!

Guardant360 – All NCCN Targets in a Single Blood Test

Critical exons completely sequenced and all four major classes of alterations

Point Mut	tations – 7	3 Genes								
AKT1	ALK	AF	°C	AR	ARAF	ARID1A	ATM	BRAF	BRCA1	BRCA2
CCND1	CCND	2 CCI	VE1	CDH1	CDK4	CDK6	CDKN2A	CTNNB1	DDR2	EGFR
<i>ERBB2</i> (HER2)	ESR1	EZ	'H2	FBXW7	FGFR1	FGFR2	FGFR3	GATA3	GNA11	GNAQ
GNAS	HNF1,	4 HR	AS	IDH1	IDH2	JAK2	JAK3	KIT	KRAS	MAP2K1 (MEK1)
MAP2K2 (MEK2)	MAPK (ERK2			MET	MLH1	MPL	MTOR	МҮС	NF1	NFE2L2
NOTCH1	NPM	NR.	AS	NTRK1	NTRK3	PDGFRA	PIK3CA	PTEN	PTPN11	RAF1
RB1	RET	RH	EB	RHOA	RIT1	ROS1	SMAD4	SMO	STK11	TERT**
TP53	TSC1	VH	ΗL					** Includ	es TERT pror	noter region
Indels – 2					DDC 42					CATAO
ATM	APC	ARID1			BRCA2	CDH1	CDKN2A PTEN	EGFR	ERBB2	GATA3
KIT TP53	MET ex1 TSC1	4 MLH1 VHL	IVI I	TOR .	NF1	PDGFRA	PIEN	RB1	SMAD4	STK11
Amplifications – 18 Genes										
AR	BRAF	CCND1	CCND2	CCNE	1 CDK4	CDK6	EGFR	ERBB2		
FGFR1	FGFR2	KIT	KRAS	MET	MYC	PDGFRA	A PIK3CA	RAF1		
Fusions – 6 Genes										

Oncomine[™] Pan-Cancer Cell-Free Assay | *Gene Content*

Assay	Configuration	Unique Genes	DNA	RNA
Pan Cancer	TNA (DNA + RNA)	52	50	12
Hotspot Genes		Tumor Suppressor Genes	Copy Number Genes	Gene Fusions
AKT1 ALK AR ARAF BRAF CHEK2 CTNNB1 DDR2 EGFR ERBB2 ERBB3 ESR1 FGFR1 FGFR1 FGFR2 FGFR3 FGFR4 FLT3 GNA11 GNAQ GNAS	HRAS IDH1 IDH2 KIT KRAS MAP2K1 MAP2K2 MET MTOR NRAS NTRK1 NTRK3 PDGFRA PIK3CA RAF1 RET ROS1 SF3B1 SMAD4 SMO	APC FBXW7 PTEN TP53	CCND1 CCND2 CCND3 CDK4 CDK6 EGFR ERBB2 FGFR1 FGFR2 FGFR3 MET MYC	ALK BRAF ERG ETV1 FGFR1 FGFR2 FGFR3 MET NTRK1 NTRK1 NTRK3 RET ROS1

Variant Type	Total Variants
SNV	> 900
CNV	12
Fusion/MET Exon Skipping	99

Single Pool design (DNA & RNA)

Performance Specs:

Hotspot SNV/Indel

• 0.1% AF LOD with 20 ng input

Whole target SNV/Indel

• 1.0% AF

CNV detection

• 1.4x fold change

Fusion detection & MET exon 14 skipping

• 1% RNA fusions in cfTNA

Sample Plexy

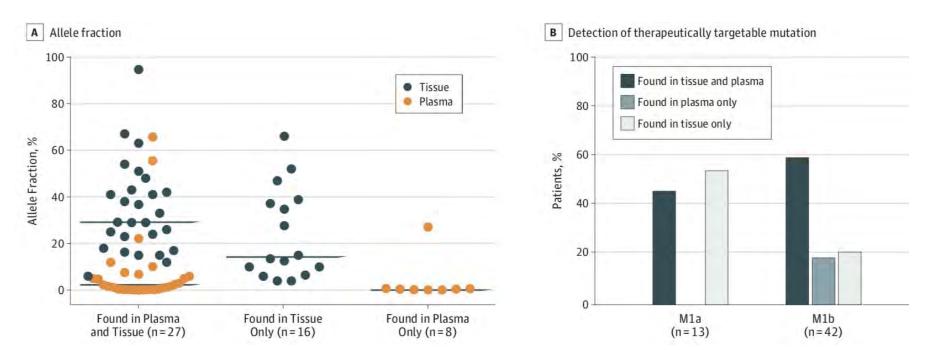
- 4 libraries on a 540 chip
- 8 libraries on a 550 chip

Oncomine data.

Turnaround Time Shorter for Plasma ddPCR vs Tissue Genotyping

• Turnaround time shorter for plasma genotyping vs tissue genotyping (P < .001 for cohort 1)

Turnaround Time, Median Days (Range)	Cohort 1, Newly Diagnosed (n = 115)	Cohort 2, Acquired Resistance (n = 59)
Plasma genotyping*	3 (1-7)	2 (1-4)
Tissue genotyping ⁺	12 (1-54)	27 (1-146)

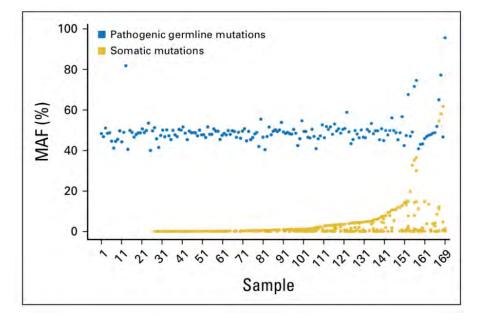

• Plasma genotyping completed for all pts

*Plasma turnaround time: business days from blood sampling to reporting. †Tissue turnaround time: date of initial order to date of first report; includes time for repeat biopsies.

• Repeat biopsies required for 19% of newly diagnosed pts and 21% of pts with acquired resistance

The importance of method and concordance

Mutation Detection by Type of Test and Disease Stage

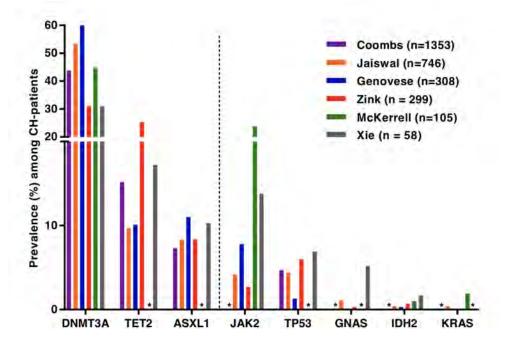


323 patients 73-gene commercial platform.

85.7% who received a targeted therapy based on the plasma result achieved a complete or a partial response or stable disease. The plasma-based targeted mutation AF had no correlation with depth of Response Evaluation Criteria in Solid Tumors response

Germline Mutations detected by next generation sequencing and/or liquid biopsy

10,888 unselected patients with advanced cancer (stage III/IV) lung (41%) Guardant360 testing

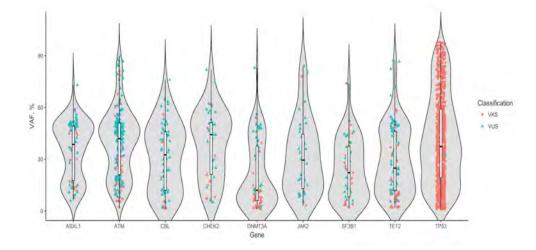

156 pts (1.4%) had suspected hereditary cancer mutations in 11 genes.

Putative germline mutations were **more frequent in individuals younger** than 50 years versus those 50 years and older (3.0% v 1.2%, respectively; P , .001).

Genetic counseling advise is madatory in these patients

A new problem: Clonal Hematopoeisis

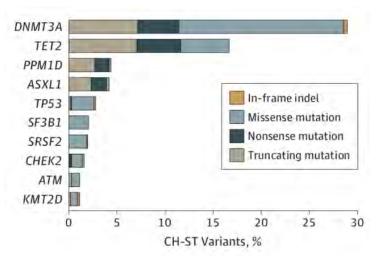
Genes commonly mutated



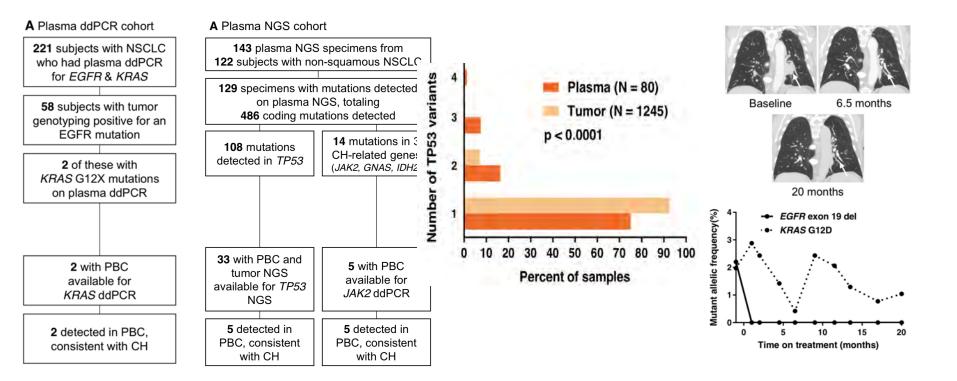
Clonal hematopoiesis (CH) is the somatic acquisition of genomic alterations in hematopoietic stem and/or progenitor cells, leading to clonal expansion.

- A large proportion of cfDNA is derived from peripheral blood cells (PBC), therefore somatic mutations within nonmalignant hematopoietic cells, known clonal hematopoiesis (CH).
- CH might be a recurring source of discordance between tumor genotyping and plasma cfDNA genotyping.

CLONAL HEMATOPOEISIS


Genes commonly mutated

Mutations in genes that are frequently altered in **clonal hematopoiesis were identified in 65% (1139/1757)** of patients undergoing next-generation sequencing.


DNA isolated from tumor tissue and matched peripheral blood using the MSK-IMPACT assay

17469 patients with advanced cancer, paired nextgeneration sequencing results show that **5% of the patients would have at least 1 CH-associated mutation** misattributed as tumor derived in the absence of matched blood sequencing.

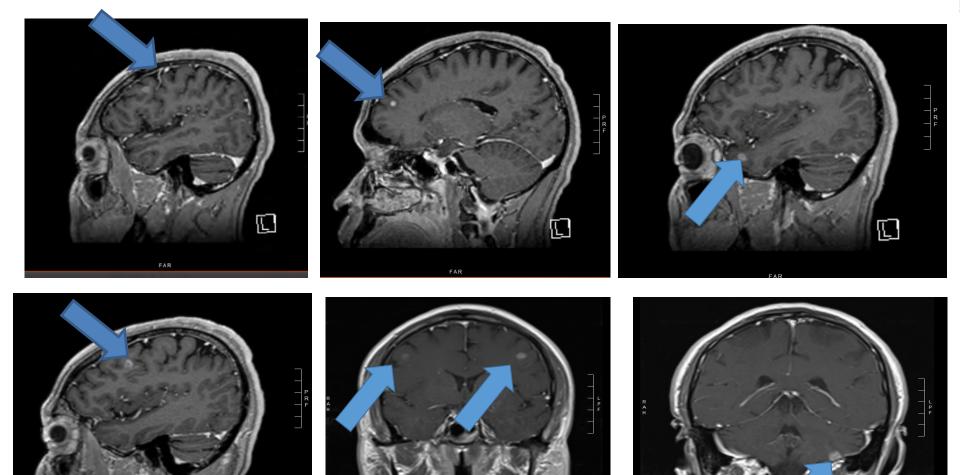
Ptashkin et al , JAMA Oncol. June 2018

False positive plasma genotyping due to clonal hematopoiesis (CH) peripheral blood cells (PBC)

• JAK2 mutations, some TP53 mut, and rare KRAS mut detected in cfDNA are derived from CH not tumor

Clinical Case

- A 43 yo M, never smoker,
- December 2017 and later was found to have LUL mass (7*5cm) with enlarged left hilar and mediastinal nodes, and numerous bone lesions(Chest CT, 1/22/18).
- A sternal bone biopsy (1/24/18) showed metastatic adenocarcinoma consistent w/ lung origin.
- PET/CT showed LUL mass with widely spread lesions in brain, chest, abdomen, pelvic, and bones. Brain MRI (3/7/18) revealed multiple small metastatic lesions.
- EGFR mutation... PD-L1 expression 50%.


EGFR mutation G719X

Mutation Detected G719X B1 Base change: 2156G>C, 2155G>A, 2155G>T Missense mutation exon 18 of the EGFR gene

• Compared with other EGFR mutations, L861Q, G719X or S768I substitution mutations are associated with a poorer prognosis

Clinical Case

Clinical Case

PATIENT RESULTS^{II}

4 genomic findings

7 therapies associated with potential clinical benefit

0 therapies associated with lack of response

10 clinical trials

"Reduced sensitivity due to sample quality – See Appendix: Performance Specifications for details.

TUMOR TYPE: LUNG ADENOCARCINOMA

Genomic Alterations Identified⁺

EGFR E709V, G719A

Additional Findings[†]

Microsatellite status Cannot Be Determined *Tumor Mutation Burden* Cannot Be Determined

Additional Disease-relevant Genes with No Reportable Alterations Identified⁺

RET ROS1 ALK BRAF KRAS ERBB2 MET

⁺ For a complete list of the genes assayed and performance specifications, please refer to the Appendix

Highest Variant Allele Fraction 31.6%		
AUG-27-2018		
Alteration	% cfDNA or Amp	
Alteration EGFR E709V	% cfDNA or Amp 31.6%	
EGFR E709V	31.6%	
EGFR E709V EGFR G719A	31.6% 31.4%	Variant of Uncertain Significance

The table above annotates the variant allele fraction (% cfDNA) detected in this sample, listed in descending order.

§ See definitions section for more detail

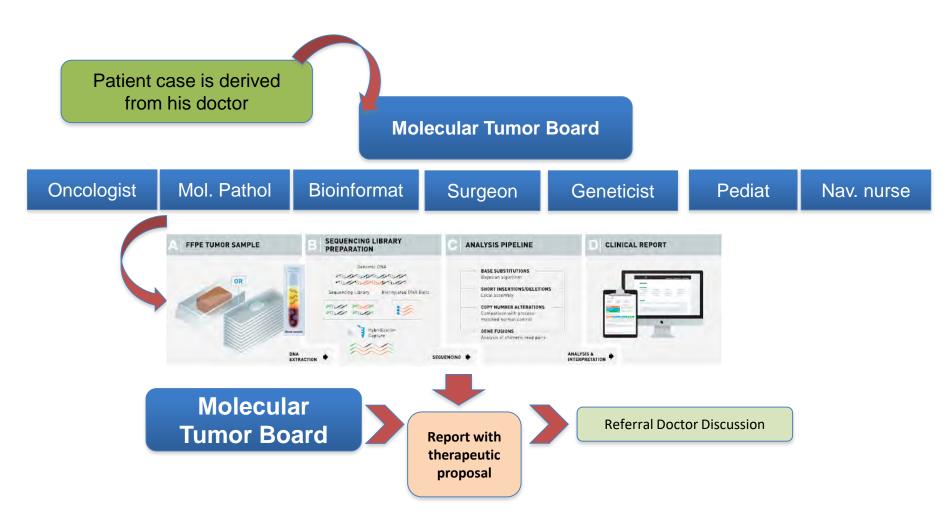
Clinical Case

THERAPEUTIC IMPLICATIONS

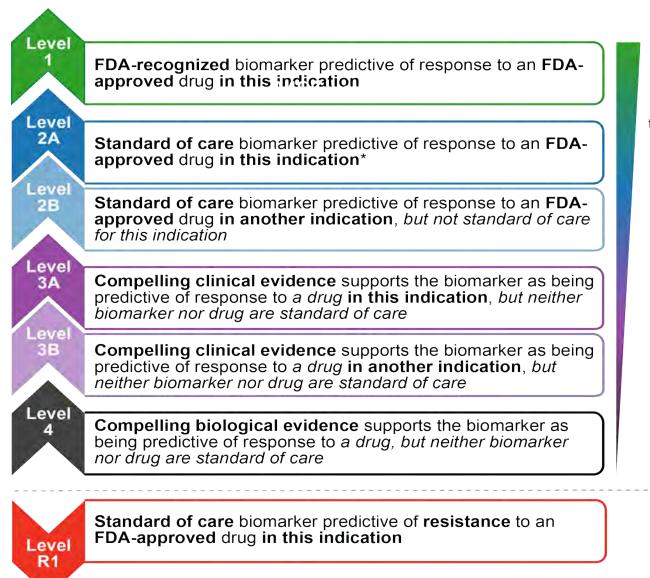
Genomic Findings Detected	FDA-Approved Therapies (in patient's tumor type)	FDA-Approved Therapies (in another tumor type)	Potential Clinical Trials
EGFR E709V, G719A	Afatinib Erlotinib Gefitinib Osimertinib	Cetuximab Lapatinib Panitumumab	Yes, see clinical trials section
<i>Microsatellite status</i> Cannot Be Determined	None	None	None
Tumor Mutation Burden Cannot Be Determined	None	None	None

Clinical Case

Summary of Somatic Alterations & Associated Treatment Options


Alteration	% cfDNA or Amplification	Associated FDA-approved therapies	Clinical trial availability (see page 3)	
AR Amplification	Low (+)	X Abiraterone, Enzalutamide	Yes	
EGFR G719A	31.4%	Afatinib Erlotinib, Gefitinib, Neratinib, Osimertinib	Yes	
EGFR E709V	31.6%	Afatinib, Erlotinib, Gefitinib, Neratinib, Osimertinib	Yes	
NRAS Q61R	0.2%	Binimetinib, Cobimetinib, Trametinib	Yes	

Variants of Uncertain Significance

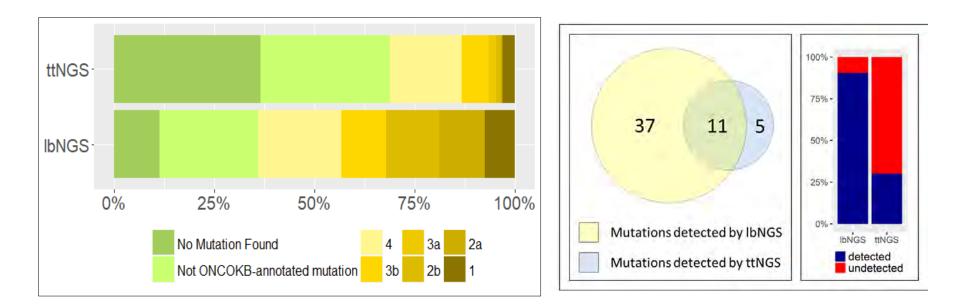

ARID1A R2164W (0.2%)

The functional consequences and clinical significance of alterations are unknown. Relevance of therapies targeting these alterations is uncertain.

Our New Way to Work . . . Molecular Tumor Board

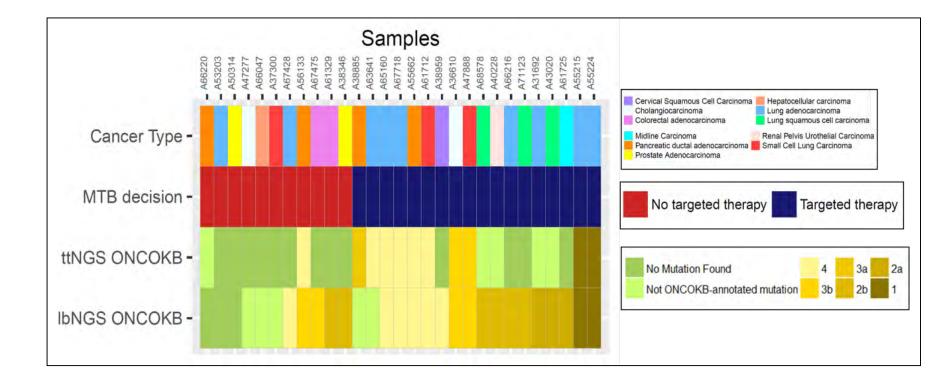
Onc_©KB

Standard Therapeutic Implications

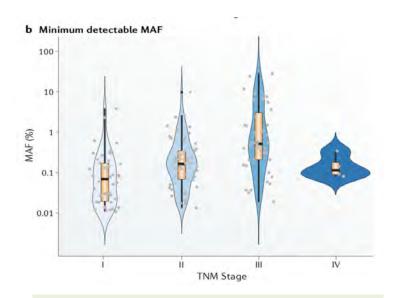

*Includes biomarkers that are recommended as standard of care by the NCCN or other expert panels but not necessarily FDA-recognized for a particular indication

Investigational Therapeutic Implications possibly directed to clinical trials

Hypothetical Therapeutic Implications based on preliminary, nonclincial data


> Standard Therapeutic Implications

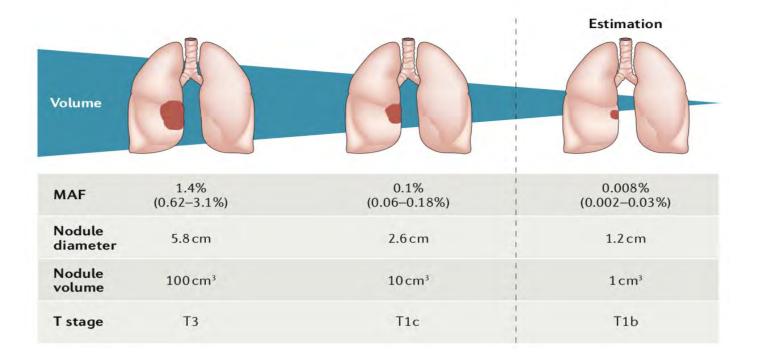
Effects of molecular tumor board and different NGS panels implementation for the treatment of patients with cancer.


It looks like lbNGS can provide patients with alteration-driven treatment recommendations more effectively than ttNGS

Effects of molecular tumor board and different NGS panels implementation for the treatment of patients with cancer.

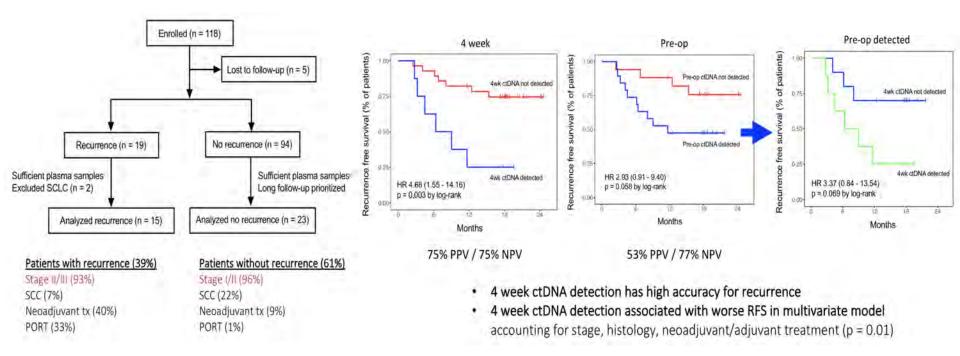
Minimal Residual disease

The Role of Liquid Biopsy



Minimum detectable mutant allele frequencies (MAFs) for 142 patients with detectable ctDNA, from a total of 301 patients analysed.

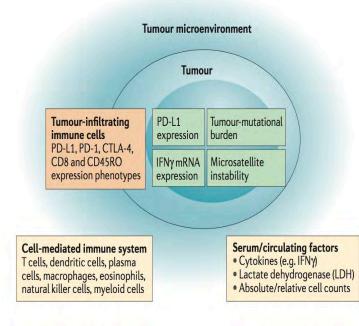
Technique (purpose)	Panel size (base pairs)	Enrichme nt technolo gy	Stage I	Stage II	Stage III
CAPP-Seq (detection & MRD)	128 genes (188 kbp)	Hybridizat ion	5/5 (100 %)	4/6 (67%)	20/21 (95%)
TEC-Seq (detection)	58 genes (80.9 kbp)	Hybridizat ion	13/29 (45%)	23/31 (74%)	4/5 (80%)
CancerSEEK (detection)	16 genes (4.6 kbp)	Multiplex PCR	2/46 (4%)	10/26 (38%)	11/31 (35%)
TRACERx (MRD)	18 patient- specific SNV (1.5 kbp)	Multiplex PCR	22/37 (59%)	16/23 (70%)	8/14 (57%)


Abbosch, Birkbak & Swanton, Nat Rev Clin Oncol, Sep 2018 M. Tsao, WCLC 2018

Mutant allele frequency (MAF) in Early Stage NSCLC

Early detection of small NSCLC (<2 cm; T1a – T1b) using ctDNA will be limited by the technical and physical constraints of detecting mutations present at a low MAF (<0.1%).

ctDNA detection at 4 weeks identifies high-risk pts



Lam V (Heymach) et al, WCLC 2018

Immunotherapy in Cancer

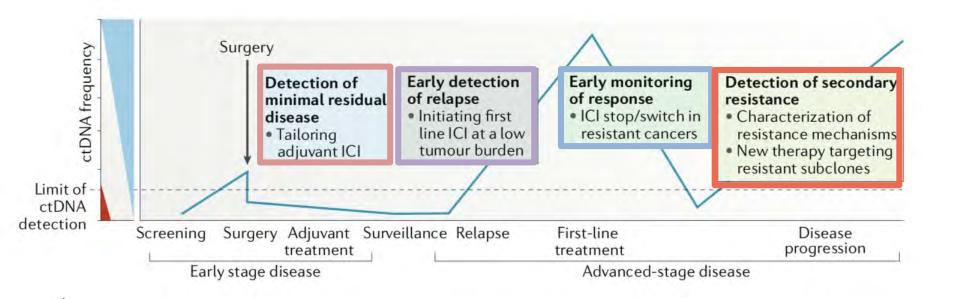
Liquid Biopsy and Immunotherapy in Cancer

Unmeet Medical Need:

Validated Biomarkers in Blood!

Potential Utility of Liquid Biopsy in Immunotherapy

Diagnostic
Prognostic
Predictive of Response
Monitoring
Mechanisms if Resistance

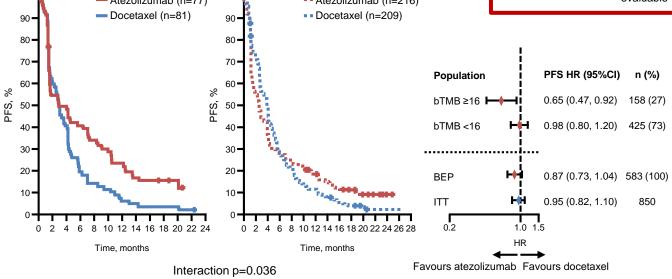

Current tools:

- Calculation of circulating TMB
- Detection of bPDL1
- Alellic Fraction Variation Dynamic

Liquid Biopsy in Immunotherapy is challenging!

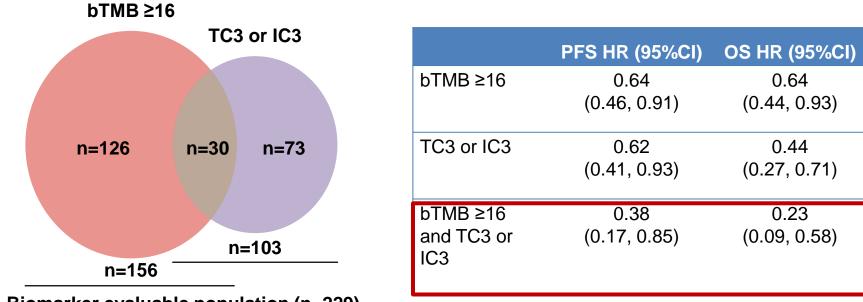
A complex microenvironment

Clinical Application of liquid biopsy in Immunotherapy



Not so easy!!

Blood-based biomarkers for cancer immunotherapy: Tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK)


> 211/273 samples from POPLAR and bTMB ≥16 bTMB <16 583/797 samples from OAK were biomarker-100-100 • evaluable Atezolizumab (n=77) Atezolizumab (n=216) Docetaxel (n=81) Docetaxel (n=209) 90-90 80-80 70-70 PFS HR (95%CI) n (%) Population 60 60 %

Atezolizumab PFS benefit in bTMB subgroups: OAK

Blood-based biomarkers for cancer immunotherapy: Tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK)

Limited overlap between bTMB ≥16 and PD-L1 expression: OAK

Biomarker evaluable population (n=229)

Gandara DR et al. Ann Oncol 2017;28(suppl 5):Abstr 1295O

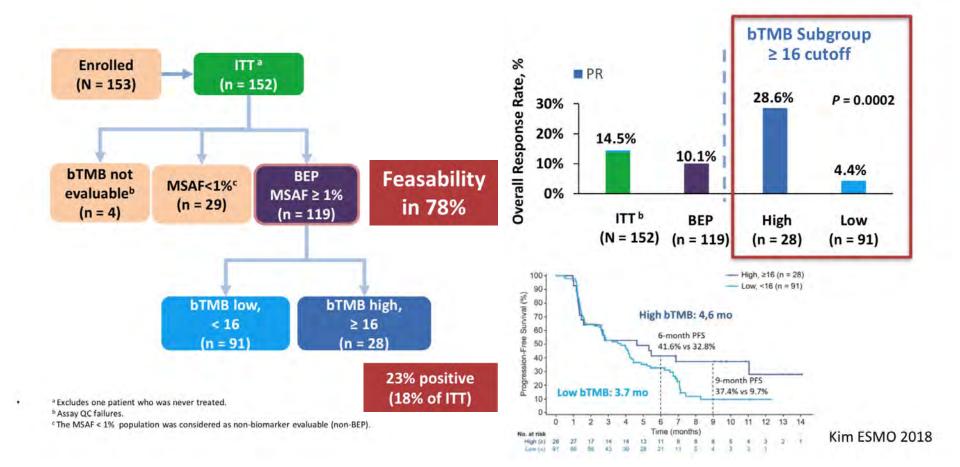
Key Results

Conclusions

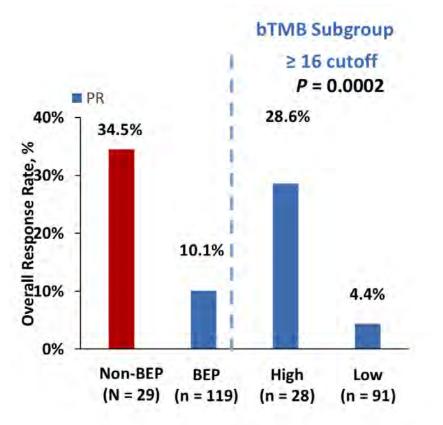
- This exploratory analysis demonstrated that TMB can be measured in blood
- The cut-point of bTMB ≥16 was identified in POPLAR, and independently validated to predict PFS benefit in OAK
- bTMB identified a unique patient population which was not significantly associated with PD-L1 status

Comments

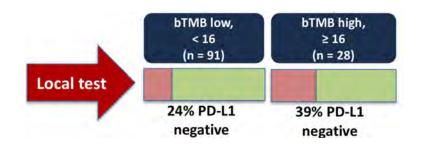
- Great News
- The cut-point of bTMB ≥16 was is a real cut-off?
- Great News: to be validated
- No wildly applicable in clinical practice

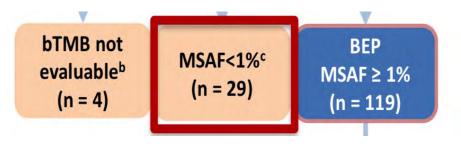

Digital Tumor Mutation Burden Predicts IO Response in NSCLC (top tertile vs. lower tertiles) 73 genes panel

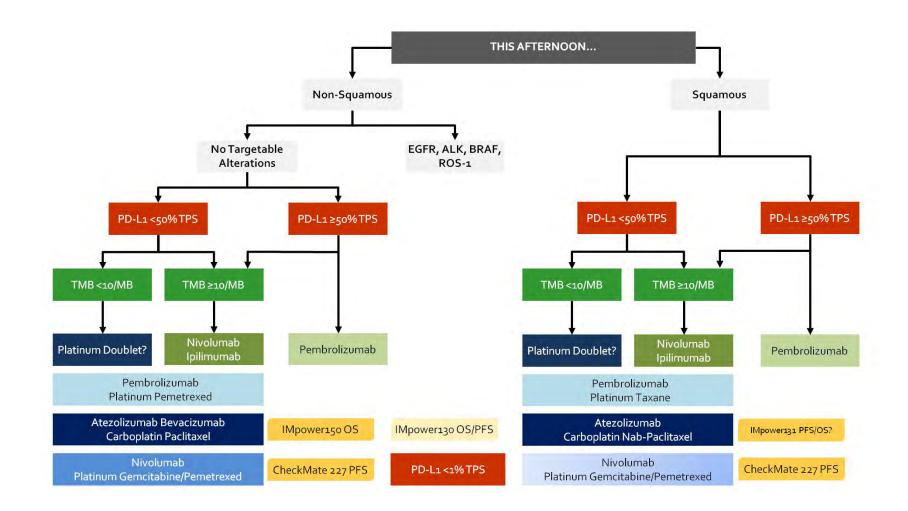
0 High muts/Mb Progression-Free Survival (%) Low muts/Mb 0.8 0.6 HR(adj-mut-count>=8.426): 0.4 .42 [.16-1.1], p=0.08 0.2 0.0 25 20 10 15 Time (months)


PFS by G360 adjusted-mut-count

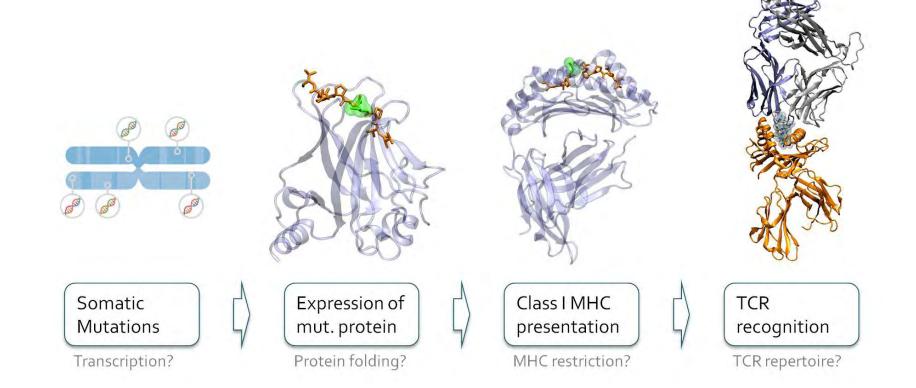
Grinberg (Peled) et al. 2018 Abstract ELCC, Geneva, Switzerland N = 27, 12 IO responders and 15 non-responders


B-F1RST :Blood-Based Tumour Mutational Burden as a Biomarker of Atezolizumab Activity in First-Line NSCLC Treatment

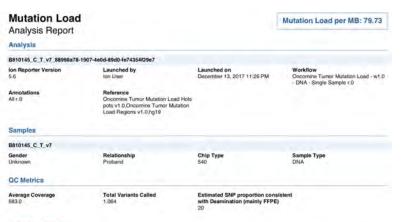

B-F1RST: strengths and weaknesses


Median overall survival (OS) was not estimable (NE) in patients with blood TMB high compared to 13.1 months in blood TMB low patients, HR 0.77; 90% CI, 0.41 - 1.43 (p = 0.48).

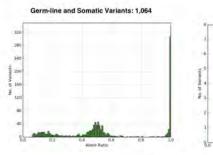
Major limitations No tissue collection No central PD-L1 testing No tissue TMB



LOW TUMOR BURDEN! LESS REPLICATIVE? IS MASF<1% THE BEST PREDICTIVE MARKER?

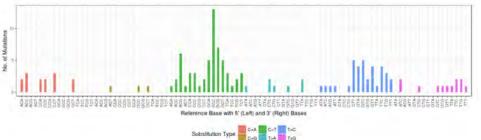


Quantity or quality of mutations?

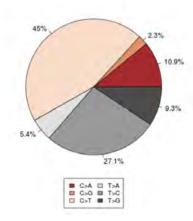

Present antigents is the matter...

Mutational Load

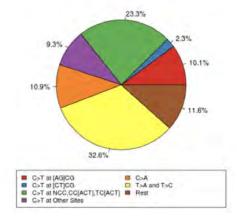
Analysis Results


Nonsynonymous: 65: Synonymous: 64

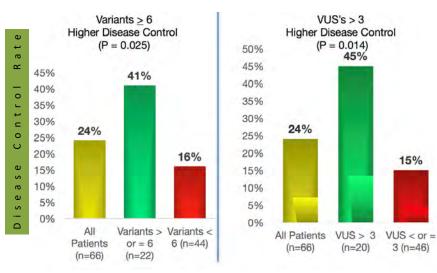
Alimin Dury


Only Somatic Variants: 129

Number of Somatic Variants Present in COSMIC: 14


Substitution Type and Context of Somatic Mutations

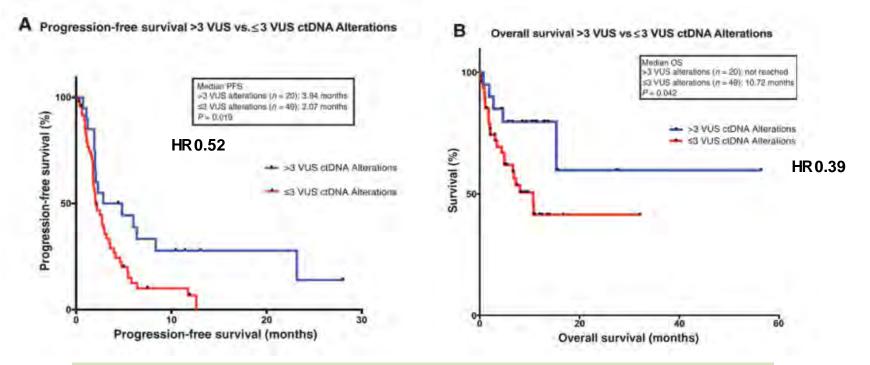
Substitution Type of Somatic Mutations


Signature Pattern of Somatic Mutations

Oncomine sample report

Hypermutated Circulating Tumor DNA

Hypermutated **Circulating Tumor DNA:** Correlation with Response to Checkpoint Inhibitor-Based Immunotherapy

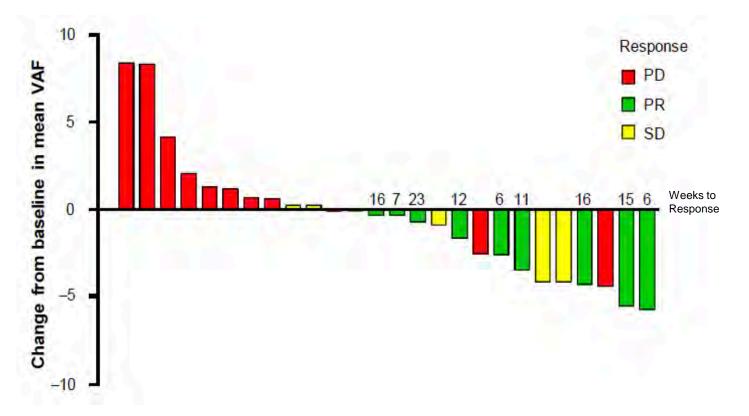

Khagi (Kurzrock) et al. Oct 2017 Clinical Cancer Research

Disease Control Rate: CR+ PR + SD

15%

3 (n=46)

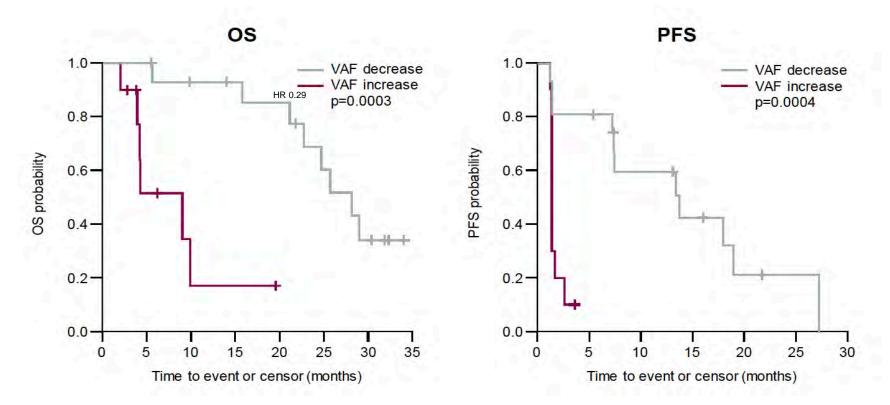
HYPERMUTATED CIRCULATING TUMOR DNA


In patients undergoing therapy with IO a higher amount of mutations was associated with a better PFS and OS

Khagi (Kurzrock) et al. 2017 Clinical Cancer Research

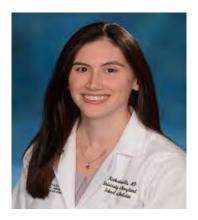
Monitoring ctDNA during immune-checkpoint inhibition in patients with metastatic cancer

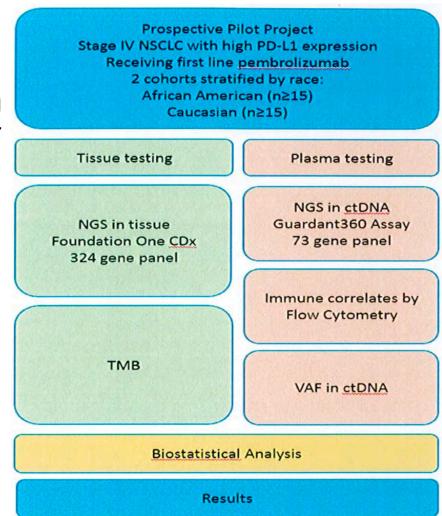
n	Detection method	Patients with detectable ctDNA at baseline (%)	Timing of second blood sample	Criteria used for ctDNA response during therapy	Correlation with PFS	Correlation with OS
Non	-small-cell lung can	cer				
23	Targeted NGS	65	8 weeks	ctDNA <0.006 ng/μl vs >0.006 ng/μl	Median not reached vs 1.8 months; P=0.003	Median not reached vs 2.2 months; $P=0.044$
28	Targeted NGS	Focus on patients with detectable ctDNA	Serial (every other week)	>50% decrease in ctDNA level vs <50% decrease (in 2 consecutives samples)	HR 0.2; <i>P</i> =0.03	HR 0.13; <i>P</i> =0.0034
28	Targeted NGS	NA	8 weeks	Increased VAF vs decreased VAF	NA	NA
14	Targeted NGS	50	2 weeks	Increased VAF vs decreased VAF (2 weeks)	NA	NA

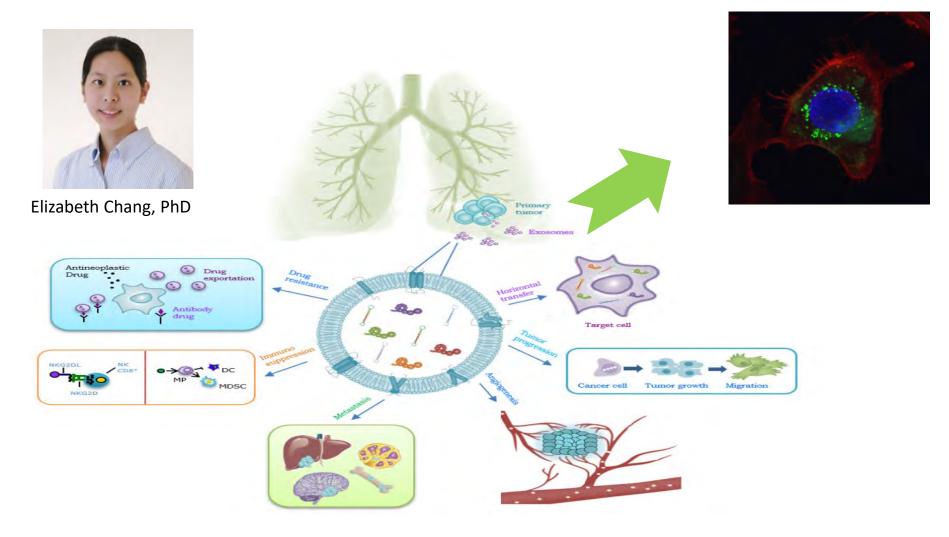

"ctDNA Velocity": Change in ctDNA Allele Fractions at 6 weeks Predicts IO Response in NSCLC

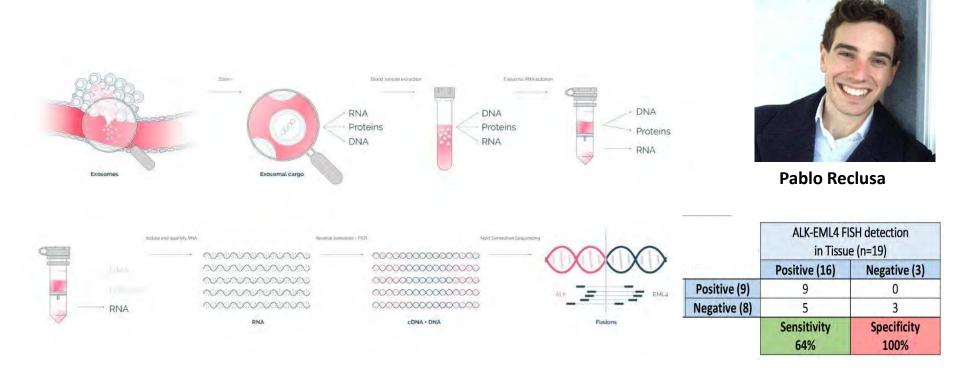
The delta in variant allele fractions (VAF) was calculated by subtracting the mean VAF pre-dose from the mean VAF post-dose. VAF decreased in 9/9 PR patients and 4/6 SD subjects. The time (in weeks) to investigator determination of PR response is shown.

A Decrease in Mean VAF After 6 Weeks of Durvalumab Treatment was Associated with Improved OS and PFS


"ctDNA Dynamics": Change in ctDNA Allele Fractions at 6 weeks Predicts IO Response in NSCLC

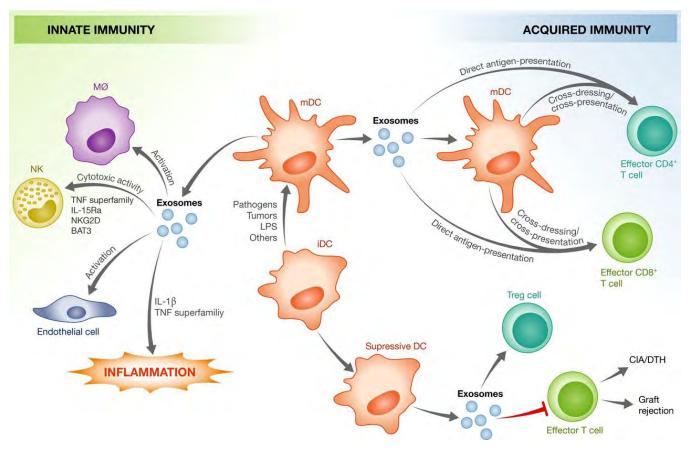

Kuziora (Ranade) et al. 2017 Abstract 582 AACR


Immunologic Differences by Race among Stage IV Non-small Cell Lung Cancer Patients treated with First Line Immunotherapy

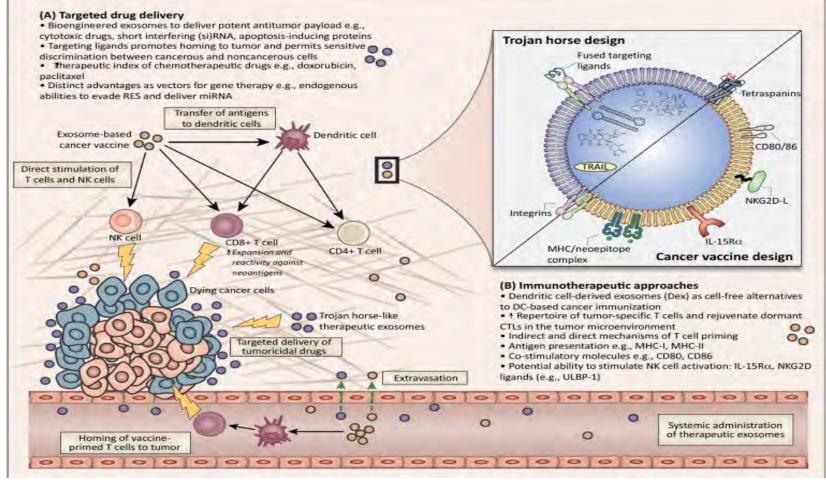

Dr. Katherine Scilla

Exosomes in lung cancer

EML4-ALK translocation identification in RNA exosomal cargo (*ExoALK*) in NSCLC Patients: a novel role for liquid biopsy



The concordance between tissue and exosomes was 63% (9 / 16 patients). All three patients being negative for the fusion gene in tissue resulted also negative in the *ExoALK* analysis, representing a specificity of 100%.



Immune-response

Muthukumar Gunasekaran, PhD

Exosomes in IO: potential therapeutic implication

Trends in Biotechnology 2017 Jul;35(7):665-676

Take home message

- Liquid biopsy are entering in our clinicla practice in oncology Important tool in NSCLC, as a non invasive method.
- Free tDNA nowdays have a high concordance with tissue and more easy.
- LB Immunoterapy: several questions to be answered: correlation with tumor, standarize isolation, mutations.
- Exosomes represents a step forward with multiple possibilities for clinical application
- More trials grants, academia, cooperative groups and pharma efforts are needed.

Liquid biopsy Program **University Antwerp & University Maryland**

Dr. Simona Taverna

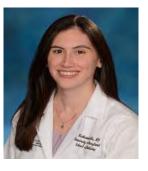
Pablo Reclusa

Dr Karen Zwaenepoel

Laure Sorber

Prof. Patrick Pauwels

Prof. Rena Lapidus


Muthukumar Gunasekaran, PhD

Elizabeth Chang, PhD

Dr. Katherine Scilla

Allison Gittens, RN,Onc

Brandon Carter, Cooper, BsC

THE RELIABILITY OF LIQUID BIOPSY

JOIN ISLB TODAY!

http://www.isliquidbiopsy.com

Thanks

christian.rolfo@umm.edu