

### Surgery for Colorectal Tumors

### Miguel A. Rodriguez-Bigas, MD Professor of Surgery



Making Cancer History<sup>®</sup>

7<sup>th</sup> Annual Puerto Rico Winter Cancer Symposium

March 23-24, 2018, San Juan, Puerto Rico

MDAnderson Cancer Center

#### Disclosures

Up To Date<sup>®</sup> (author)



### Objectives

- Oncologic Principles
  - Surgical
  - Combined modality therapy and benchmark outcomes
- Tailoring local therapy
  - Minimal access surgery
  - Change surgery in context of multimodality therapy?



### Objectives

- Oncologic Principles
  - Surgical
  - Combined modality therapy and benchmark outcomes
- Tailoring local therapy
  - Minimal access surgery
  - Change surgery in context of multimodality therapy?



#### Colorectal Cancer Treatment Principles

- Surgery as primary treatment for loco-regional disease
  - Remove tumor with adequate margins
  - Treatment of lymph nodes
  - En bloc resection of adjacent organs
    - Restoration of organ integrity if possible
      - Sphincter preservation
      - Bladder preservation



#### Extended Surgical Procedures in Cancer Complex Problems



#### **CAN** resect vs. **SHOULD** resect



### Surgical Principles Colon Cancer Extent and Integrity of Resection

- NIH Consensus 2001
  - Lymph node resection should extend to the level of the origin of the primary feeding vessel...be radical and en bloc.
- National Comprehensive Cancer Network (NCCN)
  - Patients considered to be N0 but who have <12 lymph nodes examined are suboptimally staged and should be considered in the high-risk group for adjuvant chemotherapy.

Nelson H, et al. J Natl Cancer Inst 2001; 93:583-596. http://www.nccn.org/professionals/physician\_gls/PDF/colon.pdf



### Surgical Standards Colon Cancer Patterns of Recurrence COST Trial





Vassiliki L, et al J Clin Oncol 2009; 27:3671-3676.

### Ileocolic LN Recurrence/Persistence







Complete Mesocolic Excision and Central Vascular Ligation Old Concepts New Terminology (Turnbull, Stearns and Schottenfeld, Bokey, Enker)

Standardized surgery for colonic cancer: complete mesocolic excision and central ligation – technical notes and outcome

W. Hohenberger\*, K. Weber\*, K. Matzel\*, T. Papadopoulos† and S. Merkel\*

\*Department of Surgery, University Hospital, Erlangen, Germany and †Department of Pathology, Vivantes Humboldt Hospital, Berlin, Germany

- Sharp dissection of the visceral plane from the retroperitoneal one aiming to avoid breach of the visceral fascia layer
- Origin of colonic arteries exposed and tied centrally at their origin ensuring maximum LN harvest

Hohenberger W, et al. Colorectal Dis 2008; 11; 354-365.



### **Complete Mesocolic Excision**





West NP, et al. J Clin Oncol 2010; 28:272-278. Hohenberger W, et al. Colorectal Dis 2008; 11: 354-365.



### Rectal Cancer Adjuvant and Neoadjuvant Chemoradiation <u>The Facts:</u>

- **Good News** =
  - Local Recurrence < 10%</p>
- **Bad News** =
  - Distant Metastases ≈ 25%
    Do not make up for poor surgery



#### Optimal Local Control Extent and Integrity of the Resection



TME

#### Circumferential Resection Margin (CRM)



Regional Lymphadenectomy



### Why does surgery for rectal cancer fail?



Technical Failure Results in Treatment Failure

> THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Zollinger & Zollinger, Atlas of Surgical Operations 7<sup>th</sup> ed 1993

#### Rectal Cancer Local Recurrence

 The main cause of local recurrence after rectal cancer surgery is incomplete removal of the lateral or circumferential tumor spread.





Photos from Nagtegaal ID, et al. J Clin Oncol 2002; 20:1729-1734.

#### Optimal Surgical Quality MRC C07/NCIC CTG C016 Routine XRT + TME vs. TME + selective CXRT involved CRM



Quirke P, et al. Lancet 2009; 373: 821-28.

MDAnderson Cancer Center

### Objectives

- Oncologic Principles
  - Surgical
  - Combined modality therapy and benchmark outcomes
- Tailoring local therapy
  - Minimal access surgery
  - Change surgery in context of multimodality therapy?



# Rectal Cancer Treatment 2018





# Rectal cancer treatment...the future in selected patients?



#### Neoadjuvant treatment response and outcomes MDACC

| n=725<br>f/u median 65 mos | Complete<br>response | Intermediate<br>response | Poor response<br>(n=384) |  |
|----------------------------|----------------------|--------------------------|--------------------------|--|
|                            | (n=131)              | (n=210)                  |                          |  |
| Local recurrence only      | 0                    | 3 (1.4)                  | 17 (4.4)                 |  |
| Systemic recurrence only   | 8 (6.2)              | 19(9)                    | 87(22.7)                 |  |
| Local + systemic           | 1 (0.8)              | 2 (1)                    | 16 (4.2)                 |  |
|                            |                      |                          |                          |  |
|                            |                      |                          |                          |  |
|                            |                      |                          |                          |  |



Park IJ, et al. J Clin Oncol 2012; 30:1770-1776.

#### Neoadjuvant treatment response and outcomes MDACC

| n=725                    | Complete | Intermediate | Poor response |  |
|--------------------------|----------|--------------|---------------|--|
| f/u median 65 mos        | response | response     | (n=384)       |  |
|                          | (n=131)  | (n=210)      |               |  |
| Local recurrence only    | 0        | 3 (1.4)      | 17 (4.4)      |  |
| Systemic recurrence only | 8 (6.2)  | 19(9)        | 87(22.7)      |  |
| Local + systemic         | 1 (0.8)  | 2 (1)        | 16 (4.2)      |  |
| Survival                 |          |              |               |  |
| 5-yr DFS                 | 90.5%    | 78.7%        | 58.5%         |  |
| 5-yr OS                  | 93.4%    | 87%          | 77.3%         |  |



Park IJ, et al. J Clin Oncol 2012; 30:1770-1776.

### Objectives

- Oncologic Principles
  - Surgical
  - Combined modality therapy and benchmark outcomes
- Tailoring local therapy
  - Minimal access surgery
  - Change surgery in context of multimodality therapy?



### **Current Techniques in Rectal Cancer Surgery**





Courtesy Y. Nancy You, MD

### Laparoscopy in Colorectal Cancer

- Randomized trials
  - COST (Colon and Rectal)
  - CLASICC (Colon and Rectal)
  - COLOR II (Rectal)
  - COREAN (Rectal)
- Results:
  - Oncologic outcomes similar (Colon and Rectal)<sup>1,2,3</sup>
    - DFS, OS, CRM positivity, Distal Margin
  - Short term benefits favor laparoscopy (Colon and Rectal)<sup>1,2,3</sup>
    - LOS, return of bowel function
  - Quality of life (Colon Cancer)<sup>4,5</sup>
    - Minimal differences between techniques
  - No differences in functional outcomes (Rectal Cancer)<sup>6</sup>
- 1. Fleshman J, et al. Ann Surg 2007; 246:655-664.
- 2. Green BL, et al. Br J Surg 2013; 100:75-82.
- 3. van der Pas MHGM, et al. Lancet Oncol, 2013; 14:210-218. Bonjer HJ, et al. NEJM 2015; 372:1324-1332.
- 4. Weeks JC, et al. JAMA 2002; 16:321-328.
- 5. Stucky CC, et al. Ann Surg Onc, 2011; 18:2422-2431.
- 6. Andersson J, et al. Br J Surg, 2014; 101:1272-1279.
- 7. Yeong SY, et al. Lancet Oncol 2014; 15:767-764.



### Laparoscopy in Rectal Cancer

| ACOSOG Z6051                                                                                       | Laparoscopic<br>Resection<br>(n = 240) | Open Resection<br>(n = 222)                          | DifferentTY                    | P Value          |
|----------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------|------------------|
| CRM >1 mm or distance = NA                                                                         | 87.9 (83.8 to 92.0)                    | 92.3 (88.8 to 95.8)                                  | <b>1</b> () <b>1</b> to 0.98)  | .11 <sup>b</sup> |
| Distal margin negative                                                                             | 98.3 (96.7 to 99.95)                   | 98.2 (96.5 to 900)                                   | 1 (-2.3 to 2.5)                | .91 <sup>b</sup> |
| Complete or nearly complete total mesorectal excision                                              | 92.1 (88.7 to 95.5)                    | 95.1 (9) NOT                                         | -3.0 (-7.4 to 1.5)             | .20 <sup>b</sup> |
| Successful resection <sup>d</sup>                                                                  | -                                      | N-L                                                  |                                |                  |
| Modified intent to treat                                                                           | 81.7 (76.8 to 86.                      | (32.5 to 91.4)                                       | −5.3 (−10.8 to ∞) <sup>c</sup> | .41              |
| Per protocol <sup>e</sup>                                                                          | 81.7 (76.5 to ).9)                     | 36.9 (82.5 to 91.4)                                  | −5.3 (−11.0 to ∞) <sup>c</sup> | .41              |
| ALaCaRT                                                                                            | to Shopic<br>Resection<br>(1 = 238)    | Open Laparotomy<br>and Rectal Resection<br>(n = 235) | Risk Difference,<br>% (95% Cl) | P<br>Value       |
| Primary Outcome                                                                                    |                                        |                                                      |                                |                  |
| No. (%) with negative of the rential<br>and distal margins and uplete<br>total mesorectal excision | 194 (82)                               | 208 (89)                                             | -7.0 (-12.4 to ∞)              | .38ª             |

MDAnderson

**Cancer** Center

- 1. Fleshman J, et al. JAMA 2015; 314:1346-1335.
- 2. Stevenson, et al, JAMA, 2015; 314:1356-1363.

### Current Evidence for Robotic Surgery in Rectal Cancer

- Early data suggests:
  - Technically feasible with low conversion rate<sup>1,2</sup>
  - Immediate oncologic principles maintained (CRM, distal margin)<sup>1,2,3</sup>
  - Possible improved local recurrence<sup>2</sup>
  - Similar 5 yr DF and OS<sup>2</sup>
  - Potential for improved urologic/sexual outcomes<sup>4</sup>
- Randomized trial: Robotic vs. Laparoscopic rectal surgery (ROLARR)<sup>5</sup>
  - No difference in conversion (12% vs 8%)
  - No difference in short term oncologic outcomes
- 1. Hellan M, Ann Surg Oncol, 2015; 22:2151-2158.
  - . Ghezzi TL, Eur J Surg Oncol, 2014; 40:1072-1079.
- 3. Park IJ, et al. Dis Colon Rectum 2012; 55:228-233. Sammour T et al Ann. Surg 2018.
- 4. Borholm M, et al. Colorectal Dis 2014 2015; 17:375-381.
- 5. Jayne D, et al. JAMA 2017; 318:1569-1580.



### Objectives

- Oncologic Principles
  - Surgical
  - Combined modality therapy and benchmark outcomes
- Tailoring local therapy
  - Minimal access surgery
  - Change surgery in context of multimodality therapy?



### Complete Clinical Response Lymph nodes, LVI





Rectal Adenocarcioma Nodal Status after Neoadjuvant Chemoradiation

|      | MDACC<br>n = 219* | MSKCC<br>n= 187 | Wash U./<br>Western PA<br>n = 644 | Padova<br>n = 235 | International<br>EUS T3N0<br>n = 188 | MDACC<br>n = 420** |
|------|-------------------|-----------------|-----------------------------------|-------------------|--------------------------------------|--------------------|
| ypT0 | 9%                | 7%              | 2%                                | 2%                | 3%                                   | 12%                |
| ypT1 | 20%               | 8%              | 4%                                | 15%               | 7%                                   | 10%                |
| ypT2 | 23%               | 22%             | 23%                               | 17%               | 20%                                  | 30%                |
| урТ3 |                   | 37%             | 47%                               | 38%               | } 36%                                | 58%                |
| ypT4 |                   | 67%             | 48%                               | 33%               |                                      | 50%                |

Bedrosian I et al. J Gastrointest Sung 2004; 1:56-63. Stips F, et al. Ann Sung Oncol 2004; 11:187-191. Read TE, et al. Die Colens & Beenam 2004; 47:822-831. Paociarolli S, et al. Ann Sung Oncol 2005; 12:111-116. Guilten J et al. J Clin Oncol 2008; 26:588-373. 420 patiente IBE (Mar 2407) N+:M01

\* n= 122 pT0-pT2







#### Watch and Wait

Int J Radiat Oncol Biophys 2014; 88:822-828.

International Journal of Radiation Oncology biology • physics

www.redjournal.org

**Clinical Investigation** 

Local Recurrence After Complete Clinical Response and Watch and Wait in Rectal Cancer After Neoadjuvant Chemoradiation: Impact of Salvage Therapy on Local Disease Control

Angelita Habr-Gama, MD, PhD,<sup>\*,†</sup> Joaquim Gama-Ro Guilherme P. São Julião, MD,<sup>\*,†</sup> Igor Proscurshim, M Patricio B. Lynn, MD,<sup>\*</sup> and Rodrigo O. Perez, MD, Pl

\*Angelita and Joaquim Gama Institute; <sup>†</sup>University of São Paulo School ε University of São Paulo School of Medicine, São Paulo, Brazil; <sup>§</sup>Ludwig Ins

Received Oct 15, 2013, and in revised form Nov 29, 2013. Accepted for publication

- N=98/183
- 5-year local recurrence=31%
- 93% salvaged
- 78% organ preservation





#### International Watch & Wait Database (IWWD) ASCO GI 2017

- International Multicenter Observational Study
- 775 patients; 11 countries; 35 participating institutions
  - -679 (90%) included due to a cCR;
    - incomplete response or other reasons for watch and wait excluded
  - Median follow-up 2.6 yrs. (range 0-24)
  - 90% neoadjuvant chemoradiation



## International Watch & Wait Database (IWWD) ASCO GI 2017

- 167 pts. (25%) local regrowth
  - 84% of these occurred in years 1-2 of follow-up
    - 96% (n=161) located endoluminal
    - 4% (n=7) in regional LN
- 49 pts. (7%) distant metastases
- 3-yr overall survival 91% in all pts.
  - 87% in pts. with tumor regrowth.



Pre treatment



26 mos. post CRT

pre treatment





26 most post CRT



Pre treatment



2 mos. post CRT



9 mos post CRT



21 mos. post CRT



26 most post CRT



#### Tumor Regrowth after Watch and Wait



#### 9 months post CXRT



#### 12 mos. Post CXRT (3 mos post last eval.)



#### **RB** Watch and Wait Patients

- 2003-2018 patients with cCR after neoadjuvant CXRT
- 19 patients, 17 males 2 female
- Median age 63 yrs (range 42-75)
  - Median distance anal verge 5 cm (1.5-12)
- MRI or EUS
  - 14 T3, 10 N+, 4Nx, 1M1
- Circumference median 25% (15-80%)
- CEA median 1.8 ng/mL (0.8-88.4\*)
- 50.4 Gy + capecitabine; (1) 5-FU CI
- 18/19 adjuvant chemo



#### **RB** Watch and Wait Patients

- median follow-up of 24.7 months (range 1.7-142.6 mos.)
  - 3/19 tumor regrowth at primary site
    - 1 refused surgery in spite of + LN
      - Later salvaged ypT3N2
      - rypT3N0M0 and rypT2N0M0
  - 1/19 mesorectal recurrence salvaged
    - Alive 142.6 mos. liver, lung, bone metastases
  - 1/19 lung metastases salvaged
    - Alive 137 mos. NED
  - 1/19 with lateral LN involved refused rectal surgery
  - 1/19 lung mets at dx alive cCR at primary 39 mos.



#### Surgery for Colorectal Tumors Conclusions

- Optimal local control
  - High quality surgery to begin with
  - Multimodality therapy (benefit/toxicities)
- Tailor local therapies
  - Mimimally invasive surgery
    - post op benefits and long term results
  - Patient selection is key to tailor extent of surgery in context of multimodality therapy



### Acknowledgements

- Brian Bednarski, MD
- George Chang, MD
- Craig Messick, MD
- Paul Nickerson, MD
- John Skibber, MD
- Y. Nancy You, MD



#### Rectal Adenocarcinoma

## "What has been omitted during surgery for the primary tumor has been lost forever"

RJ Heald, Rio de Janeiro 1998

#### THE UNIVERSITY OF TEXAS MDAnderson Gancer Center

#### Making Cancer History®

